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Abstract

Background—Prenatal alcohol exposure (PAE) can result in an array of morphological, 

behavioural and neurobiological deficits that can range in their severity. Despite extensive research 

in the field and a significant progress made, especially in understanding the range of possible 

malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses 

in development are still not well understood. There have been multiple transcriptomic studies 

looking at the changes in gene expression after PAE in animal models, however there is a limited 

apparent consensus among the reported findings. In an effort to address this issue, we performed a 

comprehensive re-analysis and meta-analysis of all suitable, publically available expression data 

sets.

Methods—We assembled ten microarray data sets of gene expression after PAE in mouse and rat 

models consisting of samples from a total of 63 ethanol-exposed and 80 control animals. We re-

analyzed each data set for differential expression and then used the results to perform meta-

analyses considering all data sets together or grouping them by time or duration of exposure (pre- 

and post-natal, acute and chronic, respectively). We performed network and Gene Ontology 

enrichment analysis to further characterize the identified signatures.

Results—For each sub-analysis we identified signatures of differential expressed genes that show 

support from multiple studies. Overall, the changes in gene expression were more extensive after 

acute ethanol treatment during prenatal development than in other models. Considering the 

analysis of all the data together, we identified a robust core signature of 104 genes down-regulated 

after PAE, with no up-regulated genes. Functional analysis reveals over-representation of genes 

involved in protein synthesis, mRNA splicing and chromatin organization.

Conclusions—Our meta-analysis shows that existing studies, despite superficial dissimilarity in 

findings, share features that allow us to identify a common core signature set of transcriptome 

changes in PAE. This is an important step to identifying the biological processes that underlie the 

etiology of FASD.
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Introduction

Fetal Alcohol Spectrum Disorders (FASD) is an umbrella term that describes a wide variety 

of deficits caused by maternal alcohol consumption during pregnancy. These developmental 

deficits can be morphological, behavioural and neurobiological and can range in their 

severity. The prevalence of FASD is currently estimated to range between 2–5% (May et al. 

2009).

Since the birth anomalies resulting from the prenatal alcohol exposure (PAE) were first 

described in the modern scientific literature (Lemoine et al. 1968, Jones and Smith 1973), 

thousand of papers have been published on the topic of FASD. It is well known that the 

outcome of PAE can vary immensely and that it can be influenced by dose, duration, 

frequency and timing of PAE relative to the developmental stage of the fetus. The genetic 

backgrounds of the mother and fetus, as well as various environmental effects, such as 

socioeconomic status, maternal nutrition and exposure to other harmful substances, also play 

important roles in susceptibility to adverse effects of PAE (Guerri et al. 2009, Jones 2011). 

This array of complicating factors, as well as ethical considerations limiting access to tissue, 

makes FASD research in humans challenging. Thus animal models, which allow for a direct 

control over alcohol exposure parameters, genetic background and environment variables, 

with the ability to assay cells and tissue at any time during or after development, are 

extremely important in investigating the adverse effects of PAE. Experimental research in 

animal models has allowed studies to focus on the underlying cellular and molecular 

mechanisms of alcohol-induced teratogenesis and has contributed significantly to our current 

knowledge of FASD.

While significant progress has been made in understanding the spectrum of possible 

malformations and neurobehavioral abnormalities after PAE, the molecular mechanisms of 

alcohol responses in development still remain unclear. One approach has been to apply 

genome-wide assays of gene expression, leading to elucidation of several candidate 

mechanisms and gene/pathway targets (for review see Ramsay 2010). However, the resulting 

gene lists identified as altered and the associated molecular pathways are rarely concordant 

across studies. Integration and harmonization of these disparate results is a challenge facing 

FASD research (Haycock 2009).

Focusing only on the rodent animal models, which are among the most common, the 

discrepancy of results of transcriptome studies after PAE can be attributed to several sources. 

Besides differences in the genetic background of animals used and potential effect of diverse 

environments, the studies can widely vary in choice of treatment paradigm, including timing, 

dosage, duration and means of ethanol administration, as well as sample collection details 

(timing and organs/tissues collected). In addition, there are methodological differences in 

sample preparation, choice of gene-expression quantification platform and data analysis. 

Finally, many of the older studies focused on a small subset of genes or particular molecular 

Rogic et al. Page 2

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathways, offering a very limited view of the transcriptome in PAE. Whole transcriptome 

studies, on the other hand, often have small sample sizes, resulting in limited power to detect 

more subtle differences in expression.

One approach to resolve some of these issues is to re-analyze and meta-analyze available 

gene expression data sets. Combining information across multiple existing data sets can 

increase the reliability and generalizability of findings and allow for detection of relatively 

small but consistent perturbations in gene expression that can be undetectable in a single, 

underpowered study. While meta-analytical approaches for combining high-throughput gene 

expression profiling data have been successfully applied in other areas of neuroscience and 

alcohol research (Mulligan et al. 2006, 2011, Hu et al. 2008, Tabakoff et al. 2008, Rogic and 

Pavlidis 2009, Roder et al. 2012, Mistry et al. 2013a, Uddin and Singh 2013, Raddatz et al. 

2014, Ch’ng et al. 2015), such a synthesis is lacking in FASD research.

In this study, we sought to identify commonalities in gene expression changes across 

multiple publically available data sets of prenatal alcohol exposure in rodent models. We re-

analyzed and meta-analyzed ten publicly available gene expression data sets, considering 

them all together or grouping them by time or duration of exposure. We identified a number 

of genes that are consistently differentially expressed in PAE animals across multiple 

studies, which otherwise seemed to be largely discordant. Our results indicate that PAE acts 

predominantly as a net inhibitor of gene expression and that genes involved in protein 

synthesis, mRNA splicing and chromatin organization are primary targets of PAE.

Materials and Methods

Data set selection

We searched public data repositories (GEO, ArrayExpress) as well as published literature for 

gene expression profiling studies relating to prenatal alcohol exposure in murine animal 

models. We selected only data sets with case-control experimental design and excluded the 

data sets or samples using maternal tissue. The following initially selected GEO data sets 

were excluded: GSE19436 (ethanol-treated and control samples were treated with additional 

mitogenic agents), GSE23579 (small data set with a strong batch effect not deemed 

correctable), GSE5186 (the GEO record was ambiguous about the source of extracted RNA; 

no publication available), GSE43324 and GSE1997 (excluded due to the shape of the p-

value distribution for differential expression, indicating violation of assumptions of our 

statistical approach (Barton et al. 2013); see Figure S1 and further explanation in 

Supplemental Materials).

After additional screening based on QC parameters described below we retained 8 mouse 

and one rat data set, with of a total of 63 alcohol-exposed and 83 control samples (Table 1). 

One of the mouse data sets, GSE9545, contained samples processed on two different 

microarray platforms and for the purposes of further analyses was split in two separate data 

sets (GSE9545.1 and GSE9545.2; see Supplemental Materials).

The selected data sets were generated on five different microarray platforms, including four 

different Affymetrix platforms and one Illumina platform (details in Table S1). In addition to 
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differences in microarray platforms used, the collected data sets were heterogeneous in a 

number of other ways; they differed with respect to organ or tissue used for RNA extraction, 

developmental stage at the time of treatment and at the time of RNA extraction, and alcohol 

exposure method and duration. The timeline depicting time and duration of ethanol 

treatment and time of RNA extraction is shown in Figure 1.

Data Acquisition and Quality Control

For all Affymetrix data sets we retrieved raw data (CEL files) from GEO. Since the only two 

Illumina data sets were pre-processed and normalized the same way, we downloaded 

normalized data from GEO. All data sets were subjected to comprehensive quality control. 

Based on this we excluded one sample from the Downing data set and one sample from the 

GSE1074 data set (see Supplemental Materials for details).

Differential Expression Analysis of Individual Data sets

The raw expression data were pre-processed using Robust Multi-array Average (RMA) 

implemented in the affy (Gautier et al. 2004) or oligo (Carvalho and Irizarry 2010) R 

packages where appropriate. For two Illumina data sets, GSE23105 and GSE23106, the 

normalized data were downloaded from GEO and further processed to exclude probes that 

were not expressed in more than half of the samples and then log2-transformed. Probeset 

annotations were obtained from Gemma (Zoubarev et al. 2012), which performs sequence 

analysis and gene assignment based on the current genome annotations. Probesets that map 

to multiple genes or do not map to a gene were excluded from the analysis. Three of our data 

sets, Downing, GSE34305, and GSE34469, were generated in multiple batches. We used 

ComBat (Johnson et al. 2007) to correct for batch effects (see Supplemental Materials for 

more details).

Differential expression analysis based on the case-control model was performed using 

analysis of variance (ANOVA) implemented in the R package limma (Smyth 2004). For 

some data sets additional factors were used to model gene expression values: for Downing 

and GSE1074, the additional factor was the strain of mice and for GSE1996, the additional 

factor was the differential training. In the case of two-factor design, the additive linear model 

was used and the interactions between factors were ignored. The resulting p-values were 

adjusted for multiple testing using Benjamini-Hochberg method (Benjamini and Hochberg 

1995).

For the purposes of meta-analysis, in order to take into account the direction of expression 

change, we computed one-sided p-values based on the two-sided p-values derived from 

ANOVA.

Meta-analysis

We conducted five separate meta-analyses: “all”, including all 10 data sets, “prenatal”, 

including Downing, GSE1074, GSE9545.1, GSE9545.2, “postnatal”, including GSE34469, 

GSE34549, GSE34305, GSE23105, GSE23106, GSE1996, “acute”, including Downing, 

GSE1074, GSE9545.1, GSE9545.2, GSE34469, GSE34549, and “chronic”, including 

GSE34305, GSE23105, GSE23106, GSE1996 data sets (Figure 1). We used Fisher’s 
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combined probability test (Fisher 1928) that combines p-values resulting from the individual 

differential expression analyses, an effective method for expression data meta-analysis 

(Chang et al. 2013).

We conducted separate meta-analyses for up-regulated and down-regulated genes. For each 

individual data set, we computed one-sided p-values corresponding to two alternative 

hypotheses (gene expression does not increase after PAE and gene expression does not 

decrease after PAE) and used them to compute F statistics for each direction separately. This 

approach allowed us to consider all the genes in all the data sets. Since data sets were 

generated on different platforms we used gene-level data to allow for cross-platform 

integration (see Supplemental Materials for more details). The p-values obtained from 

Fisher’s test were adjusted for multiple testing using the Benjamini-Hochberg method. The 

genes that meet the threshold of FDR<0.05 were considered to be meta-signature genes. For 

the purposes of integration, rat genes from data set GSE1996 were mapped to their mouse 

homologs using NCBI’s resource HomoloGene (NCBI Resource Coordinators 2014; http://

www.ncbi.nlm.nih.gov/homologene).

To obtain core signature genes we employed a jackknife procedure, which performs n sub-

meta-analyses, where n is the number of data sets considered, removing sequentially one 

data set at a time and then finally combining the results of all n runs. We combined the 

results by intersecting n resulting meta-signatures at FDR<0.1.

Functional enrichment analysis

We conducted functional enrichment analysis using ermineJ version 3.0 (Gillis et al. 2010, 

http://erminej.chibi.ubc.ca; see more details in Supplemental Materials). For summarizing 

and visualizing statistically significant GO terms based on their semantic similarity we used 

REVIGO (Supek et al. 2011).

Network analysis

We examined local network properties of our meta- and core signatures using protein-

protein interaction networks (PPIN). Both mouse and human PPINs were used to assemble a 

more complete, integrated network consisting of 14,325 unique genes and 160,663 unique 

interactions. We computed shortest path length, node degree and clustering coefficients for 

the sub-networks composed of our genes of interest and evaluated their statistical 

significance using the permutation test (more details in Supplemental Materials).

Results

Data set selection and pre-processing

After an exhaustive search of the literature and public data repositories, followed by a 

careful selection process and quality control, we identified ten suitable microarray data sets 

relating to prenatal alcohol exposure in rodent models (see Materials and Methods). The data 

sets were heterogeneous with respect to species, organ or tissue collected and treatment 

paradigm but could be clustered into groups on the basis of experimental design (Figure 1 

and Table 1). For each data set we performed a comprehensive quality analysis of raw data 
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using an array of quality measures (see Materials and Methods). The filtered final data set 

consisted of a total of 63 ethanol-exposed and 80 control samples across 10 data sets (Table 

1).

Differential expression analysis of individual data sets and comparison with published 
results

Our initial analysis considered each data set independently. We analyzed each data set for 

differential expression using a standard linear modeling approach. Most of the data sets 

showed evidence of differential expression based on the distribution of p-values observed 

(Figure 2). However, applying a standard multiple test correction that controls the false 

discovery rate (FDR), only two data sets, Downing and GSE1996, yielded a relatively large 

amount of significant results (FDR<0.05; Table S2). We compared these results to the 

original reported findings of the study authors using two methods. First, we computed the 

overlap between the hits we obtained at FDR<0.05 and the genes reported. Overall, the 

direct overlap is poor, except for the Downing data set, which we believe is due to the lower 

stringency used for the selection of significant genes in the original studies. In our analysis, 

at an FDR threshold of 0.05, many of the studies yielded no significant results. Because this 

thresholding might hide similarities to our gene rankings, we examined the rankings of the 

originally reported hits in our meta-analysis, quantified using the area under the receiver 

operating characteristic curve (AUC) (Table 2). The AUC is equivalent to the Wilcoxon 

rank-sum test and provides a measure for the extent genes selected by the authors rank 

highly in our own analysis, regardless of p-value. These analyses reveal reasonably high 

agreement between our re-analysis and the previously published results, especially for 

down-regulated genes, despite differences in data pre-processing and analytic approach. The 

data set yielding the lowest AUC, GSE34469, had been analyzed in two batches in the 

published study and the provided lists of significant probesets are not as directly comparable 

to our results. We conclude that our re-analyses are reasonable starting points for meta-

analysis.

Meta-analysis of differential expression

We began our data integration by simply comparing the results of our differential expression 

re-analyses across the data sets (Supplemental Figure S2), expressed as an overlap of hits. 

These overlaps, although limited, were encouraging and we hypothesized that a 

comprehensive statistical meta-analysis would identify further concordances.

We chose to employ a p-value combination approach, using Fisher’s combined probability 

test (Fisher 1928), which is one of the most widely used meta-analytical methods. In the 

recent review by Chang et al., 2013, which compares 12 meta-analytical approaches for 

combining multiple gene expression profiles, it was shown to have a high detection power 

and robustness and to yield biologically plausible results, especially if the goal is to detect 

genes that are differentially expressed in one or more studies. Due to the heterogeneity of the 

data sets, we conducted five separate meta-analyses: one including all 10 data sets (referred 

to as “all”), and four analyses on overlapping subsets of the data, grouped together by their 

experimental designs, first considering tissue sampling time (“prenatal” or “postnatal”) and 

second by duration of alcohol exposure (“acute” or “chronic”) (Figure 1). In order to take 
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into account direction of expression change when performing a meta-analysis, we conducted 

separate analyses for up-regulated and down-regulated genes, using gene-level one-sided p-

values. Altogether, this analysis yielded 10 ranked gene lists (“meta-signatures”): for each of 

the five analyses, and for “up” and “down” direction of expression change.

The results, in terms of the total number of genes found to be significant in a meta-analysis 

at FDR<0.05, are shown in Table S3 (the full results are given in the Supplemental Material 

and at our supplemental website: http://www.chibi.ubc.ca/faculty/paul-pavlidis/pavlidis-lab/

data-and-supplementary-information/pae/). Overall, there are more down-regulated than up-

regulated genes, with the exception of “prenatal” and “chronic” meta-signatures. The 

agreement between meta-results and individual differential expression analysis results are 

shown in Figure S3. Meta-results for each of the analyses show a positive and reasonably 

high correlation with the results of data sets included in that analysis. We also examined the 

different meta-signatures for overlap with each other. The “prenatal” group of data sets 

represents a subset of “acute” data sets; as expected, the meta-signatures computed for these 

two groups have a large overlap (Figure S4). The agreement between the results is further 

confirmed using Spearman’s correlation between the full lists of Fisher’s p-values from each 

meta-analysis (0.92 for up-regulated and 0.79 for down-regulated) (for complete results see 

Table S4). The situation is similar for the “postnatal” and “chronic” groups. The “all” meta-

signature overlaps with every other meta-signature and the full meta-results correlate well 

with the results of other meta-analyses. This agreement suggests that the “all” meta-analysis 

captures commonalities across the ten data sets, especially for down-regulated genes.

Identification of robust core signatures

Closer examination of the top genes from the “all” meta-analysis suggested that, while there 

were genes that had concordant changes of expression across multiple data sets (e.g. down-

regulated Crebzf; Figure S6), inclusion of some genes seemed to be solely due to the 

influence of one data set (e.g. up-regulated Rbm33; Figure S5). Due to its relatively large 

sample size, the Downing data set yielded genes with very small p-values (down to 10−12), 

which were sufficient to generate low Fisher’s p-values, regardless of p-values from other 

data sets (the other data set with many differentially expressed genes, GSE1996, had a 

smaller sample size and the p-values were more moderate (down to 10−7), so its contribution 

to the meta-analysis results was less). This behavior of Fisher’s method with respect to the 

influence of individual studies was expected. Therefore, as in our previous meta-analyses 

(Mistry et al. 2013a, 2013b, Ch’ng et al. 2015), to control for the susceptibility of Fisher’s 

method to outliers, we employed a jackknife procedure, described in the Materials and 

Methods. The procedure provides a core signature that is not due to the influence of any 

single data set and would therefore be considered a more robust set of findings. The results, 

in terms of the total number of genes in the core signatures, are shown in Table S5. The core 

signatures are subsets of their corresponding meta-signatures, but contain fewer genes. 

Importantly, the core signatures necessarily show higher concordance across data sets. For 

example, down-regulated gene Srfs7, which was among the top six genes in the “all” meta-

signature, but was heavily influenced by the Downing data set, is not included in the core 

signature (Figure S6). Similarly, none of the up-regulated genes shown in Supplemental 

Figure S5 survived the jackknife procedure.
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In general, there are very few genes in the up-regulated core signatures, which is in 

agreement with observed lower numbers of up-regulated genes in meta-signatures, smaller 

overlap between meta-signatures (Figure S4) and an indication of an overall lower 

concordance among up-regulated genes across studies. The “prenatal”, “postnatal” and 

“acute” down-regulated core signatures are mostly contained within the “all” core signature 

(Supplemental Figure S7). We also looked at the expression patterns of core signature genes. 

The heatmaps for down-regulated “all” core signature genes are shown in Figure 3. For most 

of the data sets there is a small, but clear difference between expression levels of core 

signature genes between PAE and control samples. Closer inspection of expression levels of 

top core signature genes (ranking based on their Fisher’s p-value from the initial meta-

analysis) revealed that the direction of expression change is usually consistent across all data 

sets. An example is given for the top-ranked core signature gene, Crebzf, in Supplemental 

Figure S8. Down-regulation of this gene can be observed in the majority of data sets, not 

only the ones that yielded low p-values (this gene achieved statistical significance at 

FDR<0.05 only for the Downing data set).

Network analysis

To characterize our meta- and core signatures we first performed a gene network analysis. 

The goal was to assess whether our signature genes have unusual network properties when 

compared to carefully selected groups of background genes. To this end, we focused on local 

network properties of our meta- and core signature genes within a large aggregated mouse 

and human protein-protein interaction network (PPIN) and computed their shortest path 

length, node degree and clustering coefficients. The results are given in Supplemental Table 

S11 and Figure S9. Our main finding was that our down-regulated core signatures and 

several meta-signatures are unusually close (p-value for shortest path length <0.05) in the 

examined PPINs, suggesting a higher likelihood of functional relatedness.

Functional characterization of core and meta-signatures

Next, we compared our results with known FASD candidate genes downloaded from 

Phenocarta (Portales-Casamar et al. 2013). Two of the genes in our core signatures, Gpx1 
and Ntf3, have been previously associated with FASD. An additional 9 genes are associated 

with “developmental disorder of mental health”. Across all meta-signatures there were 8 

known FASD candidate genes and this enrichment was statistically significant for “prenatal” 

and “chronic” down-regulated meta-signatures (Table S6). The associations of these genes 

with FASD phenotype were not based on microarray gene expression measurements and 

thus are independent from the data sets used in our meta-analysis study. The full lists of 

known FASD candidate genes that are present in the meta- and core signatures are given in 

Supplemental Tables S6 and S7.

We computed enrichment of Gene Ontology (GO) terms associated with our signatures, 

using a FDR of 0.1 across the terms tested to identify significant enrichment. For the “all” 

down-regulated core signature, the most significant GO term was “peptidyl-proline 

modification” (Supplemental Table S8), with 5 out of 29 genes with this annotation present 

in the core signature (Egln3, Fkbp1b, Fkbp7, Fkbp14, and Ppig). The p-value support of 

these genes across ten data sets is shown in Figure S10. The three genes from the FKBP 

Rogic et al. Page 8

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



family along with Ppig have prolyl isomerase activity and function as protein folding 

chaperones for proteins containing proline residues (“protein folding” was also one of the 

enriched GO categories). Egln3 is involved in peptidyl-proline hydroxylation, which is a 

vital component of the hypoxia response. Some earlier studies have shown that prenatal 

alcohol exposure attenuates cerebrovascular responses to hypoxia (Gleason et al. 1997, 

Mayock et al. 2007), which might be caused by down-regulation of Egln3, which was 

consistently observed across the data sets in our study. Egln1, another peptidyl-proline 

hydroxylase, showed similar down-regulation after PAE (significant at a FDR of 0.09 in the 

“all” meta-analysis).

Two significant GO terms were related to bisphosphate biosynthetic/metabolic process and 

came up as significant due to three genes in the core signature, Pank3, Ppcdc and Papss1. 

Finally, genes annotated with “RNA splicing” and “protein folding”, two of the fundamental 

steps in gene expression, were also found to be significantly enriched in the “all” down-

regulated core signature. The other core signatures did not have any GO functional 

categories that pass the significance threshold.

We found significant GO enrichment for “all”, “acute”, “prenatal” and “postnatal” down-

regulated meta- signatures. Based on semantic similarity and GO hierarchy, enriched GO 

terms can be summarized by two groups: RNA metabolism and macromolecular complex 

biogenesis (Table S9 and Figure S11). Additionally, “acute” and “prenatal” meta-signature 

functional enrichment yielded GO categories that relate to nucleosome organization and 

chromatin assembly.

The concentration of histone coding genes at the top of our “all” down-regulated meta-

signature (Figure S5) as well as the functional and pathway (see Supplemental Materials) 

enrichment results led us to believe that our meta- and core signatures might be enriched for 

this group of genes. We assembled a list of all 83 histone-coding genes in the mouse genome 

(see Supplemental Materials for details) and used it to assess the presence and enrichment of 

these genes in our signatures. We found that histone genes are significantly enriched in “all”, 

“acute”, and “prenatal” down-regulated meta-signatures as well as in “all” and “acute” 

down-regulated core signatures (Table S10, Figure S12).

Discussion

Using meta-analytical approaches we were able to identify a number of genes that are 

consistently differentially expressed in PAE animals across multiple studies, which 

otherwise seemed to be discordant. The majority of data sets that were included in our study 

had a small sample size and thus limited statistical power to detect differentially expressed 

genes at reasonable false discovery rates, even though p-value distribution plots suggested 

the presence of differential expression (Figure 2). Integrated analysis of data sets overcame 

this limitation by identifying consistent signals across the data sets.

Although the fact that selected data sets were heterogeneous in a number of ways 

represented a challenge, it gave us an opportunity to compare molecular effects of different 

treatment paradigms and, at the same time, look for unifying PAE gene expression signature. 
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We did not consider different tissues separately primarily due to the limited availability of 

data, but also because three of the data sets included in our study already used a mixture of 

tissues for RNA extraction (Downing, GSE9545.1, GSE9545.2 used whole embryos). It is 

important to point out that, while this approach allowed us to look for commonalities across 

the tissues, it would not be able to identify tissue-specific expression changes.

While four of our meta-analyses subgrouped the data sets based on their experimental 

designs, considering the overlap between these subgroups (e.g. “prenatal” with “acute” and 

“chronic” with “postnatal”) and the overlap between computed meta-signatures (Figure S4), 

we can simplify the discussion by summarizing the findings for overlapping subgroups 

together. Overall, the changes in gene expression were more extensive after acute ethanol 

treatment during prenatal development. This is somewhat expected considering that for the 

majority of experiments in this group the RNA was extracted soon after the treatment, so the 

observed changes would include acute and transient effects of alcohol exposure, such as cell 

death (Kleiber et al. 2014).

Altogether, our results suggest that PAE acts as a net inhibitor of gene expression. Most of 

our down- regulated meta-signatures were larger than their up-regulated counterparts; they 

also showed higher concordance across different sub-analyses. In addition, we found very 

few up-regulated genes in our core signatures. This is in agreement with previous 

interpretations of gene expression studies in the field (Hard et al. 2005, Zhou et al. 2011, 

Downing et al. 2012, Kleiber et al. 2013). In addition, down-regulated genes in our core and 

meta-signatures seemed to be more functionally related based on our network and functional 

enrichment analyses. Finally, all but one of the previously known FASD candidate genes 

differentially expressed in our data showed a pattern of down-regulation (Table S6).

Using GO functional enrichment analysis, we identified a number of basic biological 

processes that are consistently affected after PAE, and which can be summarized under the 

umbrella of RNA processing, RNA metabolism, macromolecular complex biogenesis and 

chromatin organization. The genes involved in these processes were all found to be down-

regulated across the studies. A caveat to our discussion of the functional significance of our 

findings is that changes in RNA levels do not automatically indicate downstream functional 

changes e.g. to protein levels (Gygi et al. 1999, Wilhelm et al. 2014).

One of the earliest hypotheses to explain the widespread and heterogeneous effects of 

prenatal alcohol exposure proposed protein synthesis inhibition as the main mechanism. 

Impairment in protein synthesis following PAE results in cellular growth restriction at 

critical periods of development and is not typically restored postnatally. This integrating 

hypothesis brought forward by Kennedy in 1984 relied on earlier experimental studies that 

reported reduced protein synthesis in fetal tissue after alcohol exposure. One study that 

appeared after Kennedy’s review demonstrated that protein synthesis rates were significantly 

reduced in the brains of ethanol-exposed rat embryos (Rawat 1985). This was further 

confirmed in more recent studies, which established that the rate of protein synthesis 

reduction in the brain can be as much as 40% (Bonner et al. 2003, 2003, Narasimhan et al. 

2013). The results of our meta-analyses are consistent with this hypothesis: we found 

enrichment of genes involved in ribosome biogenesis (or more generally ribonucleoprotein 
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complex biogenesis) in our down-regulated “all”, “acute” and “prenatal” meta-signatures. In 

addition, other important cellular processes that can result in reduced numbers of functional 

proteins, such as mRNA processing and protein folding are found to be affected (core and 

meta-signatures). Furthermore, we found that one of the key initiators of translation, RNA 

helicase Eif4a2, which is required for unwinding of double stranded mRNA and its binding 

to the 40S ribosomal subunit, was consistently down-regulated across all the data sets in our 

study (Figure 4) and was found in down-regulated “all” core signature and “all”, “acute” and 

“prenatal” meta-signatures. Previously, this gene was reported to be significantly down-

regulated in rat-derived ethanol-treated primary cortical neurons and it was suggested that 

ethanol-induced blocking of eukaryotic initiation factor-4A (eIF4A) complex is the main 

mechanism of de novo protein synthesis inhibition (Narasimhan et al. 2013). A second 

member of the eIF4A family, Eif4a3, was also in “all” down-regulated meta-signature.

We found that genes involved in RNA splicing are consistently down-regulated across our 

data sets. The RNA splicing GO category was found to be significantly enriched in down-

regulated “all” core signature and down-regulated “all”, “prenatal” and “acute” meta-

signatures. Congruently, pathway enrichment analysis revealed that these meta-signatures 

are enriched in spliceosome pathway genes (see Supplemental Materials). Similar functional 

enrichment was noted in (Downing et al. 2012), which discusses one of the data sets 

included in our study. However, the down-regulation of these genes goes beyond the 

influence of this one data set and is supported by the expression patterns in multiple data 

sets (Figure S13). We are not aware of any other studies identifying the impairment of 

spliceosome machinery as one of the consequences of PAE, but based on our results this 

seems like a viable target of investigation.

Lastly, we observed consistent dysregulation of genes involved in chromatin organization, 

indicated by significant functional enrichment of multiple GO categories related to this 

biological process. In particular, we found that a subgroup of these genes, histone genes, 

were significantly enriched in “all”, “acute”, and “prenatal” down-regulated meta-signatures 

as well as in “all” and “acute” down-regulated core signatures. Down-regulation of 

epigenetic-related genes was also reported in some of the gene-expression studies that 

produced data sets included in our meta-analyses (Liu et al. 2009, Zhou et al. 2011, 

Downing et al. 2012, Kleiber et al. 2013). The hypothesis that ethanol-induced abnormalities 

could arise through epigenetic reprograming has gained much interest lately. This area of 

FASD research is still in its infancy but there is emerging evidence that ethanol can cause 

changes in both DNA methylation (Garro et al. 1991, Liu et al. 2009, Kaminen-Ahola et al. 

2010) and histone modifications (evidence mostly from studies using chronic alcohol 

exposure, reviewed in Shukla et al. 2008 and Haycock 2009). Our results provide further 

evidence for epigenetic dysregulation following PAE and suggest an important role of 

histone genes themselves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Timeline of treatment and sample collection across the data sets. Numbered red vertical lines 

indicate timing of the first and second injection. For GSE1996 the plotted time periods are 

based on reported rat developmental stages.
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Figure 2. 
Distributions of p-values resulting from the individual DE analyses of data sets included in 

the study. For each data set the raw p-values were computed using a standard linear 

modeling approach. The dashed line represents the uniform distribution expected if there 

was no differential expression in the data set. Most data sets have a peak of p-values near 

zero indicating differential expression.
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Figure 3. 
Visualization of expression differences between PAE and control samples for 104 genes in 

“all” down-regulated core signature. The heatmaps are based on expression data that was 

normalized and batch corrected within each data set. For display purposes, the expression 

values for each gene were normalized to have mean 0 and variance 1 to facilitate comparison 

between genes in the same heatmap. The heatmap colors were binned to allow for 

comparison across data sets. Grey rows represent genes that were not present in a particular 

data set (microarray platform).
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Figure 4. 
Expression pattern of RNA helicase and translation initiator Eif4a2. Normalized batch-

corrected expression values are plotted for each data set. Note the differences in the ordinate 

scales of each plot, which reflect expression levels as measured in each data set.

Rogic et al. Page 18

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rogic et al. Page 19

Ta
b

le
 1

D
at

a 
se

ts
 u

se
d 

in
 th

e 
st

ud
y.

 T
he

 la
st

 c
ol

um
n 

in
di

ca
te

s 
th

e 
nu

m
be

r 
of

 e
th

an
ol

-t
re

at
ed

 a
nd

 c
on

tr
ol

 s
am

pl
es

 in
 th

e 
st

ud
y.

 T
he

 n
um

be
rs

 in
 p

ar
en

th
es

es
 

re
pr

es
en

t t
he

 n
um

be
r 

of
 s

am
pl

es
 r

em
ai

ni
ng

 a
ft

er
 e

xc
lu

di
ng

 s
am

pl
es

 d
ue

 to
 Q

C
 o

r 
ba

tc
h 

ef
fe

ct
 p

ro
bl

em
s.

 F
or

 G
SE

19
96

 th
e 

re
po

rt
ed

 r
at

 d
ev

el
op

m
en

ta
l 

st
ag

es
 is

 s
ho

w
n.

D
at

a 
se

t
P

la
tf

or
m

R
ef

er
en

ce
Sp

ec
ie

s 
(S

tr
ai

n)
D

ev
 S

ta
ge

T
is

su
e

PA
E

:C
on

tr
ol

D
ow

ni
ng

G
PL

12
61

(D
ow

ni
ng

 e
t a

l. 
20

12
)

m
ou

se
 (

C
57

B
L

/6
J 

an
d 

D
B

A
/2

J)
E

9
w

ho
le

 e
m

br
yo

20
:4

0 
(2

0:
38

)

G
SE

10
74

G
PL

12
61

(G
re

en
 e

t a
l. 

20
07

)
m

ou
se

 (
C

57
B

L
/6

J 
an

d 
C

57
B

L
/6

N
)

E
8

he
ad

fo
ld

s
4:

4 
(4

:3
)

G
SE

95
45

.1
G

PL
12

61
(Z

ho
u 

et
 a

l. 
20

11
)

m
ou

se
 (

C
57

B
L

/6
)

E
10

w
ho

le
 e

m
br

yo
7:

4

G
SE

95
45

.2
G

PL
33

9
(Z

ho
u 

et
 a

l. 
20

11
)

m
ou

se
 (

C
57

B
L

/6
)

E
10

w
ho

le
 e

m
br

yo
4:

4

G
SE

34
46

9
G

PL
62

46
(L

au
fe

r 
et

 a
l. 

20
13

)
m

ou
se

 (
C

57
B

L
/6

J)
P7

0
w

ho
le

 b
ra

in
4:

4

G
SE

34
54

9
G

PL
62

46
(L

au
fe

r 
et

 a
l. 

20
13

)
m

ou
se

 (
C

57
B

L
/6

J)
P6

0
w

ho
le

 b
ra

in
2:

2

G
SE

34
30

5
G

PL
62

46
(K

le
ib

er
 e

t a
l. 

20
12

)
m

ou
se

 (
C

57
B

L
/6

J)
P7

0
w

ho
le

 b
ra

in
5:

5

G
SE

23
10

5
G

PL
68

87
(K

am
in

en
-A

ho
la

 e
t a

l. 
20

10
)

m
ou

se
 (

C
57

B
L

/6
J)

P2
8

ki
dn

ey
6:

6

G
SE

23
10

6
G

PL
68

87
(K

am
in

en
-A

ho
la

 e
t a

l. 
20

10
)

m
ou

se
 (

C
57

B
L

/6
J)

P2
8

liv
er

3:
4

G
SE

19
96

G
PL

34
1

un
pu

bl
is

he
d

ra
t (

Sp
ra

gu
e-

D
aw

le
y)

P1
00

hi
pp

oc
am

pu
s

8:
10

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 February 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rogic et al. Page 20

Ta
b

le
 2

O
ve

rl
ap

 b
et

w
ee

n 
pu

bl
is

he
d 

ge
ne

 li
st

s 
an

d 
re

su
lts

 o
f 

ou
r 

re
-a

na
ly

si
s 

of
 in

di
vi

du
al

 d
at

a 
se

ts
. T

he
 O

ve
rl

ap
 c

ol
um

n 
sh

ow
s 

th
e 

fr
ac

tio
n 

of
 s

ig
ni

fi
ca

nt
 

pr
ob

es
et

s/
ge

ne
s 

re
po

rt
ed

 in
 th

e 
or

ig
in

al
 p

ap
er

 th
at

 o
ve

rl
ap

 w
ith

 th
e 

re
-a

na
ly

si
s 

hi
t l

is
ts

 (
se

e 
Su

pp
le

m
en

ta
l M

at
er

ia
ls

 f
or

 m
or

e 
de

ta
ils

).
 F

or
 G

SE
34

46
9 

th
er

e 

ar
e 

se
pa

ra
te

 p
ro

be
se

t l
is

ts
 a

va
ila

bl
e 

fo
r 

ea
rl

y 
(t

op
) 

an
d 

la
te

 e
xp

os
ur

e,
 a

nd
 w

e 
co

m
pa

re
d 

bo
th

 to
 o

ur
 r

es
ul

ts
 o

bt
ai

ne
d 

on
 th

e 
un

if
ie

d 
da

ta
. ‘

?’
 in

di
ca

te
s 

th
at

 

th
e 

nu
m

be
r 

of
 g

en
es

 o
r 

pr
ob

e 
se

ts
 w

as
 n

ot
 r

ep
or

te
d 

by
 th

e 
au

th
or

s.

D
at

a 
se

t
# 

of
 s

ig
ni

fi
ca

nt
 p

ro
be

se
ts

/g
en

es
 r

ep
or

te
d 

in
 p

ap
er

G
en

e/
pr

ob
es

et
 li

st
 a

va
ila

bl
e

# 
of

 s
ig

ni
fi

ca
nt

 p
ro

be
se

ts
 (

F
D

R
<0

.0
5)

 in
 o

ur
 a

na
ly

si
s

O
ve

rl
ap

A
U

C

up
do

w
n

up
do

w
n

D
ow

ni
ng

28
3/

50
ye

s
62

2
6/

7
28

/4
3

0.
99

0.
92

G
SE

10
74

23
40

/?
no

0
-

-
-

-

G
SE

95
45

.1
25

19
/?

pa
rt

ia
l (

87
)

2
0/

38
0/

49
0.

76
0.

87

G
SE

95
45

.2
85

0/
?

pa
rt

ia
l (

87
)

1
0/

38
1/

49
0.

74
0.

90

G
SE

34
46

9
19

5/
19

5
ye

s
0

0/
61

0/
13

4
0.

61
0.

73

23
1/

23
1

ye
s

0/
54

0/
17

7
0.

48
0.

79

G
SE

34
54

9
37

6/
37

4
ye

s
0

0/
15

0/
36

1
0.

79
0.

73

G
SE

34
30

5
?/

16
1

ye
s

0
0/

73
0/

90
0.

73
0.

91

G
SE

23
10

5
14

8/
13

8
ye

s
0

0/
46

0/
10

2
0.

52
0.

90

G
SE

23
10

6
?/

11
ye

s
14

0/
2

0/
9

0.
99

7
0.

81

G
SE

19
96

-
no

12
86

-
-

-
-

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 February 15.


	Abstract
	Introduction
	Materials and Methods
	Data set selection
	Data Acquisition and Quality Control
	Differential Expression Analysis of Individual Data sets
	Meta-analysis
	Functional enrichment analysis
	Network analysis

	Results
	Data set selection and pre-processing
	Differential expression analysis of individual data sets and comparison with published results
	Meta-analysis of differential expression
	Identification of robust core signatures
	Network analysis
	Functional characterization of core and meta-signatures

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

