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Nr3C1-Bhlhb2 Axis Dysregulation Is Involved
in the Development of Attention Deficit Hyperactivity
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Abstract Attention deficit hyperactivity disorder (ADHD) is
a child developmental and behavioral disorder which serious-
ly hinders their education and development. To investigate the
key regulators in the prefrontal cortex (PFC), the major affect-
ed areas of ADHD, microRNA (miR)-138,138%*, 34¢*, 296,
and 494, were noted for their significant downregulation in
ADHD model rats spontaneously hypertensive rats (SHRs)
compared to Wistar Kyoto (WKY) rat control. Based on pro-
moter sequence analysis and activity assay, glucocorticoid re-
ceptor (Nr3c1) was identified for the inhibition of the promot-
er activity of miR-138-1, 34c¢*, 296, and 494 genes and their
transcription. In the PFC of ADHD model rats SHR, Nr3cl
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expression was abnormally elevated and reversely correlated
with the levels of miR-138-1, 34c¢, 296, and 494 expression.
Luciferase report assays indicated that all miR-138, 138%,
34c*, 296, and 494 targeted the 3’ untranslated region of tran-
scription factor Bhlhb2 (Bhlhe40) messenger RNA (mRNA)
in common and ectopic expression of miR-138,138%, 34c*,
296, and 494 further suppressed the expression of Bhlhb2
gene. Consistently, Bhlhb2 expression was significantly
higher in PFC of ADHD model SHR than control.
Overexpressed Bhlhb2 in vitro significantly suppressed
PC12 cell differentiation, and silence of Bhlhb2 enhanced
the growth of neurite axon and dendrite. To observe the roles
of Bhlhb2 further in vivo, Bhlhb2 was silenced in the PFC of
nine SHR rats. Interestingly, knockdown of Bhlhb2 signifi-
cantly improved the hyperactivity behaviors in SHRs com-
pared to control. These findings show that Nr3c1-Bhlhb2 axis
dysregulation was involved in the development of attention
deficit and hyperactivity.

Keywords miRNA - Glucocorticoid receptor - DEC1 -
ADHD

Introduction

Attention deficit hyperactivity disorder (ADHD) is a child
behavioral and developmental disorder characterized by age-
inappropriate inattention, impulsiveness, and hyperactivity.
The disorder might persist to adult and hence seriously hinder
their education and psychology during the development. Per-
sistent deficits in attention are often linked with academic
underachievement, underemployment, and interpersonal com-
municating problems [1]. Patients with ADHD often show
substantial impairment in social functioning, academic attain-
ment, and cognitive functioning [2] which are important for
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the development of children and their future career. ADHD is
thus a developmental and behavioral disorder in childhood,
which needs extensive study to understand its development
with variable clinic outcomes and to improve the treatment
response. Although recent advances in molecular genetics un-
derlying ADHD, the heterogeneous symptoms of ADHD still
cannot be explained only based on current understanding and
the key molecules with dysregulation and malfunction in the
brain and responsible for the attention deficit hyperactivity
remains largely unknown. A study with new strategy forward
to reveal the core mechanisms that underpin and robustly ex-
plain the variable symptoms of ADHD [3] is thus a public
health priority. MicroRNAs (miRNAs) have been implicated
in several neuronal processes, such as behaviors and biologi-
cal rhythms. In the children and adolescents with ADHD,
there are several circulating miRNAs which are differentially
expressed compared to control healthy children [4]. The de-
velopment of human brain especially PFC may be related with
the gene expression controlled by miRNAs that are rich in the
brain [5]. Our previous study showed that miRNA let-7d was
abnormally expressed in the prefrontal cortex (PFC), the ma-
jor affected brain area in ADHD, in spontaneously hyperten-
sive rats (SHRs), a well-established animal model of ADHD
with similar therapy response to human [6], and the abnormal
expression of let-7d was associated with the regulation of
tyrosine hydroxylase [7]. In the central nervous system
(CNS), miRNAs are particularly abundant and are very impor-
tant in regulation of neuronal activity, inking them to nerve
diseases. Brain-derived neurotrophic factor (BDNF), on the
other hand, modulates the strength of existing synaptic connec-
tions and helps form new synaptic contacts [8] and is thought to
be related with the susceptibility to ADHD [9]. The expression
of BDNF is, however, controlled by basic helix-loop-helix tran-
scription factor Bhlhb2 (Bhlhe40), which is highly expressed in
the brain. Bhlhb2 binds to class B E-box sites on its gene
promoter DNA, either as heterodimers or homodimers, and
regulates gene expression [10]. However, the regulation of
Bhlhb2 expression and its roles are not well understood, espe-
cially in the brain, although abnormal regulation of BDNF is
important in neuronal activity and locomotor control. Based on
our previous observation, in this study, we identified Bhlhb2 as
the critical player in the gene expression network regulated by
miRNAs through analyzing and screening the intercross of
differential miRNA, messenger RNA (mRNA), and protein
expression profiles in the PFC of ADHD model rats.

Materials and Methods
Animals

Six-week-old juvenile male SHR and age- and sex-matched
control Wistar Kyoto (WKY) rats weighing from 120 to 150 g

were obtained from Shanghai Slac Laboratory Animal CO.
LTD (Shanghai, China). SHR has been a well-established an-
imal model for ADHD (at this age, SHRs do not develop
hypertension) [6, 11] when WKYs have been used as the
closest genetic control for the SHR. All the experiments were
performed according to the Guidelines for the Care and Use of
Laboratory Animals and approved by the Animal Ethics Com-
mittee of Fudan University Shanghai Medical College with
the permit number of 20120302-003.

ADHD-Related Behavioral Assessments
The Open-Field Test

General activity levels and anxiety were measured with the
open-field test [7]. Briefly, the open field
(90 cm =90 cm x50 cm) was divided into 81 squares, each
10 % 10 cm and illuminated by a white, cold 4-W lamp 100 cm
above the floor. Rats (n=6) were placed in the center and
allowed to move freely for 60 min, from 11:00 a.m. to 12:00
noon. The behavior was recorded by a video camera. Ambu-
lation and rearing were defined as the number of squares
crossed with all four paws and the number of times the ani-
mals stood upright on their hind limbs, respectively.

The Lat Maze Test

Locomotor activity levels and non-selective attention were
analyzed in Lat maze test according to previous report [11].
A 60 x60x40-cm black cage contained a 30 x 30 x 40-cm
transparent plastic smaller box in the middle to result a
60 % 15 x40-cm corridor. Both six SHR and six WKY rats
were allowed to explore the corridor around the periphery of
cage. The rat’s movements were tracked over 30 min from
4:30 a.m. to 5:00 a.m. by a video camera. The frequencies
of rearings (the number of times the rats stood upright on their
hind limbs) and corner crossings (the number of times the rats
passed by the corner) were recorded.

The Step-Down Test

The step-down test according to Rezayof [12] was con-
ducted in a 30 x 30 x40-cm-high box, the floor of which
consisted of parallel stainless steel bars, 0.3-cm diameter
spaced 1 cm apart. A 4x4x4-cm wood block was
placed in the corner on the floor. The animal was
placed on the grid floor for 3 min, and it received a
continuous electrical shock (50 Hz, 0.3 mA, 48 V) for
5 min through the grid floor. When shocked, the num-
ber of times that the rat jumped off the block in the
5 min was recorded. Twenty-four hours after the train-
ing, the animal was placed on the block and the interval
from being on the block to jumping off by placing four

@ Springer



1198

Mol Neurobiol (2017) 54:1196-1212

paws on the grid floor was measured as latency time.

The numbers of jumps onto the platform were measured

as a learning score to reflect memory activity. The an-
imals included in this observation consisted of six SHR

and six WKY rats.

Fig. 1 Outcomes of the
behavioral tests. a Square
crossing and rearing analysis in
open-field test. b Behavior
analysis in Lat maze test. ¢ Step-
down analysis. Data are the
average of four independent
experiments with standard
deviation. Ns not significant at the
005 level. **##P<0.001,
*#P<0.01, *P<0.05
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The target mRNA of all miRNA was searched through the
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mRNAs and miRNAs were negatively associated to construct
a miRNA-mRNA network. Transcription factor binding con-
sensus was then analyzed in the upstream sequence of all
miRNA precursor genes and the differentially expressed
protein-coding genes based on previous complementary
DNA (cDNA) array [13] and proteomics profiles [14]. The
richest transcription factors were then identified after integra-
tion analysis of either differentially expressed miRNA or pro-
tein coding genes.

Vector Construction

Rat Nr3cl and Bhlhb2 full-length ¢cDNAs
(NM_012576.2; NM_053328.1) were obtained by reverse
transcription—polymerase chain reaction (RT-PCR) from
rat brain RNA. The primers for Nr3cl consisted of 5’
AATGGACTCCAAAGAATCCT3' (sense 1) and 5’
CATGCCTCCACGTAACTGT3' (antisense 1); 5’
ATGGACTCCAAAGA3’' (sense 2) and 5’
TTTTTGATGAAACA3' (antisense 2). The amplified
cDNA was cloned into pcDNA3.1B at the sites of Bam
HI and Xba I. The primers for Bhlhb2 consisted of
5'"ATGGAGCGGATCCCC3' and 57
GTTTAGTCTTTGGTTTCTAAGTTT3'. The amplified
cDNA was cloned into pcDNA3.1B at the sites of EcoR
I and Xba I. Neurofibromin plasmid was kindly provided
by professor Shibahara [15].

The precursors of miR-138, miR-138*, miR-296,
miR-34c*, and miR-494 were obtained by PCR from rat
genomic DNA and cloned into Hpa I and Xho [ sites of
lentivirus pLL3.7. The upstream sequence of Bhlhb2
(2.5 kb) and the pre-miRNA genes (3 kb) were amplified by
PCR and cloned into pGL3-Basic firefly luciferase report
plasmid at the Kpn I and Xho I, or Mlu I and Hind III sites.
The 3’ untranslated region sequences of Bhlhb2 mRNA were
cloned into psiCHECK-2 dual-luciferase report plasmid. All
constructs were confirmed by DNA sequence analysis.

RT-PCR

cDNA was obtained by specific reverse transcription. PCR
was performed with a cycler (BS-196, Dongsheng, Beijing,
China), and the band density after electrophoresis was
analyzed for semiquantification. Real-time PCR was
performed with an iQ5 cycler (Bio-Rad, Hercules, CA,
USA) and quantitative analysis was achieved by delta Ct
method (specific primers for miRNAs are listed in
Supplemental Table 1). All reactions were run in triplicate.
The data were obtained by normalizing to the interior control
[RNUG6 for miRNA, glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) for mRNA] and shown as the relative level to
the control.

Immunofluorescence

Immunofluorescence was performed as described [7].
The brain sections were permeabilized, blocked by goat
serum, and then incubated with the primary antibodies
against Nr3cl, Bhlhb2, and BDNF (Santa Cruz, CA,
USA), respectively. The secondary antibody was
rhodamine-conjugated goat anti-rabbit antibody. The nu-
clei were stained with 4',6-diamidino-2-phenylindole
(DAPI). Sections were then observed under an Olympus
fluorescence microscope. The relative fluorescent inten-
sities were semiquantified with the Imagel software
package. At least 200 cells were analyzed in each
group, and data were shown as means+ SD.

Luciferase Assay

The cotransfection for luciferase assay was based on our pre-
vious report [7] and performed in highly differentiated rat
kidney pheochromocytoma PC12 (PC12H) cells, human em-
bryonic kidney HEK-293T cells or rat hepatoma CBRH-7919
cells. Luciferase activity was analyzed with the Luciferase
Reporter Assay kit (Promega, USA) according to the manu-
facturer’s instructions. The data of relative luciferase activities
were normalized to the control. At least three independent
assays were performed.

Fig. 2 Transcription factor network analysis and confirmation. a The P>
miRNA and their related mRNA network based on the microarray
results of the prefrontal cortex (PFC) in SHR and WKY rats. Red
indicates increased miRNA; blue indicates decreased miRNA in SHR;
the gray indicates the putative target mRNAs. b Transcription factor and
miRNA gene network. Triangles represent a transcription factor, and the
area of the triangle indicates the degree that the transcription factor binds
to the putative promoters of miRNA genes. ¢ The network of transcription
factors and the related proteins that were differentially expressed in SHR.
Red spheres indicate the increased proteins, and blue spheres indicate
decreased proteins in SHRs compared to WKY rats. The area of the
triangle (transcription factors) represents their degree in regulation of
the protein expression. d The upstream sequence of Bhlhb2 gene
contains Nr3cl binding consensus. The 3’ untranslated region of
Bhlhb2 mRNA can be targeted by miR-138, 138*, 34c*, and 296. e
Expression analysis of miRNAs and Nr3cl. The relative expression of
the miRNAs and miRNA precursors (Pre-miRNA-138-1, Pre-miRNA-
138-2) in the PFC of SHR and WKY rats was measured by real-time PCR
(top). The expressions of Nr3c1, Bhlhb2, and BDNF were detected in the
PFC by RT-PCR and real-time PCR (left and central middle panel).
Bhlhb2 and BDNF in the aorta (AO) and liver (LV) of both SHR and
WKY rats were detected by semiquantitative RT-PCR (right middle
panel). The expressions of Nfl, Poulfl, Spl, and Cuxl were also
detected in the PFC by real-time PCR (bottom panel upper) and
semiquantitative RT-PCR (bottom panel lower). f The expression and
phosphorylation of transcription factor CREB were observed in PC12H
and CBRH-7919 cells transfected with Nr3cl or Nfl construct and its
control vector pcDNA3.1b or PRC. Data are representative of three
independent experiments. ***P <0.001, **P<0.01, *P<0.05
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miRNA Mimics

Oligoribonucleotide was synthesized by GenePharma Com-
pany (Shanghai, China) according to mature miRNA se-
quence and used as the miRNA mimics. The negative control
(NC) was also provided by the manufacturer.

Western Analysis

The cell and tissue lysates were loaded onto and resolved by
10 % sodium dodecyl sulfate—polyacrylamide gel electropho-
resis (SDS-PAGE). After electrophoresis, the proteins were
blotted to a polyvinylidene difluoride membrane. After
blocking with 5 % milk protein, the membrane was incubated
with primary antibody and horseradish peroxidase-conjugated
anti-rabbit or anti-mouse antibody. The band was visualized
with enhanced chemiluminescence kit according to the man-
ufacturer instruction, and the image was captured by an
EMCCD Imaging System (Tenon, Shanghai, China). The pro-
tein levels were determined with Lowry method.

For immunoprecipitation (IP) assay, tissues were lysed in
cold IP lysis buffer (50 mM Tris—HCI, pH 7.5, 150 mM NaCl,
1 % NP-40, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluo-
ride, 5 mM NaVO04,10 pg/mL leupeptin, and 10 pg/mL
aprotinin) and treated with ultrasonication on ice for 20 min.
The lysates were centrifuged (12,000 rpm, 20 min, 4 °C), and
the supernatant was precleared with normal rabbit IgG and
protein A/G-agarose beads. Then, the lysate was incubated
with Nr3cl or Bhlhb2 primary antibody and protein A/G-
agarose beads and rotated overnight at 4 °C. After washing
with IP buffer, the beads were added with loading buffer and
boiled to release the bound proteins for Western analysis.

PFC Microinjection

The SHR rats were anesthetized and then placed on a standard
stereotaxic device with the skull flat. After the scalp was in-
cised, a bilateral guide was placed through an indwelling
stainless steel cannula (interior diameter, 0.33 mm; external
diameter 0.63 mm) to reach the right PFC with the co-
ordinates +3.0 A, —0.8 L, and —0.2 V measured from the dura.
Then, 25 pmol siRNA oligonucleotide:
GCACGUGAAAGCAUUGACAdATAT,
UGUCAAUGCUUUCACGUGCATAT with cholesterol and
2'-O-methylated modification (Biomics Biotechnologies,
Nantong, China) were injected into each of seven SHRs
through an inner cannula (interior diameter, 0.08 mm; external
diameter, 0.3 mm, which protruded from the guide cannulae
by 1.6 mm) by a microprocessor pump at a rate of 250 nL/min
for 2 min. The injection needle was left in the tissue for an-
other 2 min after the infusion until diffusion was complete.
Seven SHRs were injected with the same amount of scramble
oligonucleotide as the NC. Coordinates for rat brains were

@ Springer

based on the atlas by Paxinos and Watson [16]. The behavioral
changes of all rats were closely observed after the operation
except one rat died during the operation.

Differentiation Morphology Analysis

PC12 cells were plated onto 60-mm tissue culture plates at a
relatively low level of density. Two or three hours after plat-
ing, the medium was replaced with fresh medium containing
1 % fetal bovine serum and 10 ng/mL nerve growth factor
(NGF) for 24-36 h. The cells were fed on days 2, 4, and 6
by the addition of fresh medium containing 10 ng/mL NGF.
After treatments, neurite outgrowth was observed and the cells
were photographed on days 0, 2, 4, and 6. Five fields were
randomly selected and observed under a microscope. The cells
bearing neurite outgrowth longer than 10 um and more than 3
were counted as one with branching. The percentage of the
cells with branching was calculated over total cells observed.
The neurite length was measured by analyzing 150 cells from
more than three randomly selected fields in each assay. Ex-
periments were repeated at least three times independently.

Corticosterone and Cortisol Measurements

Corticosterone in plasma samples collected from 12 SHR and
9 WKY rats at 8:30 a.m. was measured by ELISA assays
according to the manufacturer’s instructions (Elabscience,
Wuhang, China). Cortisol concentrations were measured from
30 Chinese Han boys between 6 and 10 years old with a
diagnosis of ADHD [17] who were recruited between Septem-
ber 2010 and October 2012 from the psychiatric outpatient’s
clinic at Yu Ying Children’s Hospital. Informed consent was
obtained from their parents.

Statistical Methods

All experiments were conducted independently at least three
times. Data are expressed as the means and standard errors.
Group means were compared with Student’s ¢ test for two
groups and with one-way ANOVA for three or more groups.
Post hoc analysis was also performed. All data met the as-
sumptions of the tests used to analyze them. Alpha was set
at 0.05, and all tests were two-tailed.

Results

Behavioral Assessment of the Animals

In the open-field test, SHRs were more active than the WKY
rats. The total number of square crossings and the number of

rearings were significantly higher in SHRs than in WKY rats
(Fig. 1a). In the Lat maze test, the numbers of corner crossings
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and rearings were analyzed in every 10 min and were signif-
icantly higher in SHR (Fig. 1b), especially in 10-min group.
Mean learning scores from the step-down test did not differ
significantly between groups, but the latency time was signif-
icantly shorter in SHRs (Fig. 1c), and the number of wrong
jumps from the platform onto the grid floor was significantly
higher in SHRs. These results validated the SHR as ADHD
model, which was then used in the following experiments.

Screening Analysis of miRNAs and Related Gene Network

In our previous study [7], microarray hybridization prelimi-
narily identified 32 miRNAs as the differential expression
between SHRs and WKY rats. Among these miRNAs, one
miRNA was upregulated, and 31 miRNAs (Fig. 2a) were
downregulated, respectively, in the PFC of SHRs compared
to WKY rats. We further identified the miRNA-associated
genes through integration analysis of mRNAs that were all
differentially expressed in the PFC of SHRs according to the
results of cDNA array [13]. We then obtained a miRNA—
mRNA network (Fig. 2a). Further analysis of the upstream
sequence of the miRNA precursor genes and the miRNA-
associated genes revealed that glucocorticoid receptor Nr3cl
and transcription factors (Poulfl, Spl, Nfl, and CUX1) had
their highest degree in binding of the putative regulation
elements (Fig. 2b). Using the differential proteomic profiles
in the PFC [14], the transcription factors that could poten-
tially regulate the genes encoding the differentially
expressed proteins were identified (Fig. 2c). Among these
factors, Nr3cl, Poulfl, Spl, Nfl, and CUXI1 had the
highest degree in having the binding consensus in the up-
stream of the genes encoding the proteins differentially
expressed in SHRs. All these factors overlapped with the
putative regulators for the miRNA genes. The common po-
tential target of miR-138%, miR-138, miR-296, miR-34C*,
and miR-494 focused on the mRNA of Bhlhb2 (Fig. 2d),
which encodes a basic helix-loop-helix domain-containing
protein. Nr3cl and transcription factors (Poulfl, Spl, Nfl,
and CUX1) all have putative binding sites upstream of either
the miR-138*, miR-138, miR-296, miR-34C*, or miR-494
genes or the Bhlhb2 gene (Supplemental Table 2, Fig. 2d).
We then tested this regulatory network in the SHR brain.

miR-138, 138%, 296, 34C*, and 494 in PFC

Expression levels of the miRNAs were confirmed with mea-
surements in the PFC by qPCR. Compared to their expression
in WKY rats, miR-138, miR-138*, miR-296, miR-34C*, and
miR-494 expressions were significantly downregulated
(Fig. 2¢) in SHRs, results consistent with those of the miRNA
microarray. Mature miR-138 is encoded by both miR-138-1
and miR-138-2 genes, whereas miR-138* is only encoded by
the miR-138-1 gene. Further analysis of the precursors of

miR-138 with qPCR showed that miR-138-1 was significant-
ly downregulated in SHRs, but miR-138-2 not, suggesting
that mature miR-138 was mostly from the miR-138-1 gene
(Fig. 2e).

Nr3cl Expression Is Elevated in SHR

Bioinformatics analysis predicted that the upstream sequences
of miR-138-1, miR-138-2, miR-296, miR-34¢*, and miR-494
genes would have putative binding sites of Nr3cl and tran-
scription factors including CUX1, Poulfl, Nfl, and Spl
(Fig. 2b). Thus, we measured the expression levels of those
factors in the PFC of both SHRs and WKY rats with qRT-PCR
and semiquantitative RT-PCR. Nr3cl expression was signifi-
cantly higher in the SHRs (Fig. 2e); CUX1 expression in-
creased slightly (Fig. 2¢). The expressions of Nfl and Spl
were, however, downregulated, and Poulfl did not change
significantly (Fig. 2e). cAMP response element binding pro-
tein (CREB) also did not change significantly (Fig. 2f). Nr3c1
was highly expressed in the PFC, hippocampus, midbrain, and
striatum, but not in the hypothalamus (Fig. 3a, b). These sug-
gested that there was a strong reverse correlation between the
expressions of Nr3cl and the miRNA (miR-138, miR-138%,
miR-296, miR-34C*, and miR-494) and that Nr3c1 might be
the main molecule responsible for the regulation.

Nr3cl Suppresses miR-296, 34c*, 494, and 138*
Expressions

To investigate the regulatory effect of the elevated Nr3cl in
the brain on the miRNAs, we transfected PC12H cells and
CBRH-7919 cells with Nr3cl construct and measured the
expression level of these miRNAs. The levels of all miR-
296, 34c* 494, and 138%*, except miR-138, were consistently
suppressed in Nr3cl transfectants in either RT-PCR or qRT-
PCR measurements (Fig. 3¢). To observe the direct regulatory
effect of Nr3cl on these miRNA genes, we constructed the
reporter plasmid containing their promoters and cotransfected
them into PC12H, HEK-293T, and CBRH-7919 cells with
Nr3cl expression plasmid. Nr3cl significantly suppressed

Fig. 3 The miRNA gene regulation. a Immunofluorescent staining of p
Nr3cl, Bhlhb2, and BDNF in the PFC of SHRs vs WKY rats and
measured by the signal intensity analysis (righf). b Protein levels of
Nr3cl, Bhlhb2, and BDNF were analyzed by Western analysis in the
hippocampus (HIP), midbrain (MB), prefrontal cortex (PFC), striatum
(STR), liver (LV), cerebellum(CB), and hypothalamus (HYP).
Quantitative analysis in PFC is on the right. ¢ miRNA-138, 138%*, 296,
34c*, and 494 were detected by either semiquantitative RT-PCR (lef?) or
quantitative PCR (middle and right) in PC12H and CBRH-7919 cells
24 h after transfection with Nr3cl construct. d Reporter assay for the
promoter of miRNA-138-1, 138-2, 296, 34c*, and 494 genes. The
reporter activities were analyzed in Nr3c1-transfected cells and compared
to those in the control vector. Data are representative of three independent
experiments. ***P<0.001, **P<0.01, *P<0.05
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the promoter activities of all miR-296, 34c*, 494, and 138-1
genes, but not of the miR-138-2 gene (Fig. 3d).

miR-296, 34c*, 494, 138, and 138* Target Bhlhb2

To investigate the roles of the miRNAs that were screened out
in the SHR brain, we next analyzed the potential target of them
and interestingly found that the 3'untranslated region of
Bhlhb2 mRNA contained the target sequence of all
miR-494, 34c*, 296, 138%*, and 138 (Fig. 2d). Therefore, the
lentivirus pLL3.7 vectors containing miRNA precursors were
transfected into both PC12H and CBRH-7919 cells and the
overexpression of miR-494, 34c*, 296, 138*, and 138 was
confirmed (Fig. 4a). Then, the luciferase reporter, psi-Check
2.0 containing Bhlhb2-3'UTR, was cotransfected with either
the miRNA precursor or a control vector, pLL3.7 (Fig. 4b),
indicating that all the miRNAs transfected significantly
suppressed the report luciferase activities in both cells.

After transfection with a miRNA-138-1, 138-2, 296, 34c*,
or 494 precursor, Bhlhb2 mRNA (Fig. 4c) and protein
(Fig. 4d) expressions were consistently suppressed. In con-
trast, BDNF expression was greatly elevated in both PC12H
and CBRH-7919 cells (Fig. 4c, d), suggesting that these
miRNAs targeted Bhlhb2 mRNA. To further confirm the ac-
tion of the miRNAs, we employed synthetic miRNA mimics
to transfect cells and observed their direct effects on Bhlhb2-3'
UTR reporter activity. All the miRNAs except miR-494 sig-
nificantly inhibited the reporter activity (Fig. 4e). The miRNA
mimics also inhibited the mRNA and protein levels of Bhlhb2
(Fig. 4f) but enhanced BDNF expression. Among them, miR-
138 and 296 inhibited Bhlhb2 the most and miR-494 the least.

Nr3cl Enhances Bhlhb2 Expression

The miR-138, 296, 138*, 34c*, and 494 were downregulated
in SHRs, a finding consistent with the high expression of
Nr3Cl1 and Bhlhb2. Apart from the PFC, Nr3C1 and Bhlhb2
were also highly expressed in the hippocampus, midbrain, and
striatum, but not in the hypothalamus or cerebellum (Fig. 3a,
b). In all these sites, the expression of Nr3cl was associated
with that of Bhlhb2 (Fig. 3b). Importantly, overexpression of
Nr3cl (Fig. 5a) significantly stimulated Bhlhb2 expression in
both PC12H and CBRH-7919 cells, as measured by both qRT-
PCR and Western analysis (Fig. 5a). Nr3cl also significantly
stimulated the Bhlhb2 promoter report luciferase activities in
three different cell types (Fig. 5b).

To further verify that Nr3cl was an important regulator of
the Bhlhb2 gene, we investigated the expression of BDNF, the
downstream effecter of Bhlhb2 (Fig. 5c). We found that
BDNF was suppressed after Nr3cl was overexpressed in both
PC12H and CBRH-7919 cells (Fig. 5a). We further investi-
gated the phosphorylation of the transcription factors in the
brain. The phosphorylation levels of Bhlhb2 protein in the

PFC of SHR were almost similar to this in WKY, but Nr3c1
tyrosine phosphorylation was significantly strengthened in the
PFC of SHR (Fig. 5d).

Bhlhb2 Suppresses BDNF Expression

In cells transfected with the Bhlhb2 expression plasmid, the
protein overexpression of Bhlhb2 was confirmed (Fig. 5S¢ low-
er), and BDNF expression was significantly reduced in both
PC12H and CBRH-7919 cells. The negative relationship be-
tween Bhlhb2 and BDNF expressions was also seen in the
PFC (Fig. 3b). Bhlhb2 mRNA and protein levels were signif-
icantly higher in the PFC of SHRs than in that of the WKY
rats (Figs. 2e and 3a, b), but BDNF expression in the PFC of
SHRs was downregulated, which is related to recognition be-
haviors [18]. However, neither BDNF nor Bhlhb2 mRNA
expression levels in the aorta or liver differed significantly
between SHRs and WKY rats (Fig. 2¢). Therefore, the regu-
lation of Bhlhb2 and BDNF expression in SHRs was not
systemic, but region-specific.

Knockdown of Bhlhb2 Reduces Hyperactivity in SHR

The common target of the miRNA, Nr3c1, and Nfl regulation
network focuses on Bhlhb2 in the PFC of SHRs. To determine
the causative functions of Bhlhb2 in ADHD, we established
Bhlhb2 expression silence cells and confirmed the effective-
ness of the silencing oligonucleotide (Fig. 6a). The oligonu-
cleotide modified with cholesterol was then microinjected into
the PFC of seven SHRs. Results indicated that Bhlhb2 was
downregulated in the PFC of these rats compared to NC
injected with scramble nucleotide (Fig. 6a). The behaviors of
all animals were then evaluated with the open-field and Lat
maze tests within 7 days after the microinjection operation. In
the open-field test, the total number of square crossings and
rearings was significantly lower (Fig. 6a) in the Bhlhb2

Fig.4 miRNA regulation of Bhlhb2 and BDNF. a The overexpression of P>
miR-494, 34c*, 296, 138*, and 138 was validated by RT-PCR in PC12
and CBRH-7919 cells 24 h after transfection of the miRNA precursors. A
lentivirus vector pLL3.7 containing unrelated sequence was used as a
control. b Relative luciferase activities of Bhlhb2-3"UTR report
plasmids were measured in PC12H and CBRH-7919 cells 36 h after
cotransfection with miRNA expression vectors. ¢ The expression levels
of Bhlhb2 (left) and BDNF (right) were measured by RT-PCR 24 h after
transfection with the indicated miRNA expression vector. d The protein
levels of Bhlhb2 and BDNF were measured in both cell types after
ectopic expression of the miRNA and quantified via densitometry
(right). e The luciferase activities of the reporter encoding Bhlhb2-3'
UTR were measured in three types of cells after the transfection of
miRNA mimics (fop). The levels of Bhlhb2 mRNA (middle) measured
in PC12H cells after the transfection of miRNA mimics. Protein levels of
Bhlhb2 and BDNF (bottom) measured by Western blot analysis in
PCI12H cells and measured with densitometry on the right. NC negative
control. Data are representative of three independent experiments.
*#xP<0.001, **P<0.01, *P<0.05
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knockdown group than in NC. In the Lat maze test, the num-
ber of corner crossings was also significantly lower in Bhlhb2
knockdown SHRs (Fig. 6a), although the number of corner
rearings was not significantly different. The effects became
more apparent from the second day after the microinjection
operation and persisted to seventh day.

Interestingly, highly differentiated pheochromocytoma
PC12H cells expressed much lower levels of Nr3c1 but higher
Bhlhb2 proteins than PCI12L cells. Knockdown of Bhlhb2 in
PC12L cells however enhanced neurite outgrowth and
branching. Overexpression of Bhlhb2 by transfection in
PC12H cells resulted in significant reduction of neurite length
and branching cells (Fig. 6b). The staining of axonal markers,
Tau and GAP-43, was significantly suppressed in the cells
with Bhlhb2 overexpression (Fig. 6¢). Microtubule-
associated protein 2 (MAP2), preferentially found in dendrites
and neuronal somata, was also significantly reduced after
Bhlhb2 overexpression.

ADHD Is Characterized by Lower Plasma Cortisol
Concentrations

Glucocorticoids work through the glucocorticoid receptor
(Nr3cl), which modulates target gene transcription. There-
fore, we further investigated the blood glucocorticoid in ani-
mal model of ADHD and human beings with ADHD. Our
results revealed that mean plasma corticosterone concentra-
tion was significantly lower in 12 SHRs than in nine WHY
rats. In the 30 boys with a diagnosis of ADHD, the plasma
cortisol concentration was significantly lower than in the con-
trol group (Fig. 6d), indicating that glucocorticoid concentra-
tions were decreased in ADHD.

Discussion

Attention deficit hyperactivity disorder is characterized with
inattention, impulsivity, and hyperactivity that affect approxi-
mately 5.3 % of children worldwide. However, the key factors
with dysregulation and malfunction in the brain for the devel-
opment of hyperactivity still remain unknown. Through a
large scale screen, we identified a regulatory network in the
PFC which is implicated in planning complex cognitive be-
haviors and the major affected brain area in ADHD. Based on
the miRNA and ¢cDNA microarray and proteomic data,
miR-138, 138%, 296, 34c*, 494, CUXI1, Poulfl, Spl, Nfl,
and Nr3cl were highly focused as a result of their strong
connection to the differentially expressed genes and proteins
in the PFC of SHR brain. The downregulated expressions of
miRNA-138-2, 296, 34c*, and 494 were all confirmed in the
PFC of SHR, a well-established animal model of ADHD [6,
11]. However, the expression of Nr3cl which helps mediate
executive functions, including depression and stress-related

emotion [19] and biochronometer activities [20], was signifi-
cantly higher in the PFC of SHRs than in WKY rats. Interest-
ingly, the promoter regions of all miR-138, 138%, 296, 34c*,
and 494 precursor genes contain the binding consensus of
Nr3cl, a glucocorticoid receptor, and the ligand-activated
transcription factors. Nr3cl was elevated in the PFC, and ec-
topic expression of Nr3cl indeed suppressed the promoter
activity of all miR-138-1, 296, 34c*, and 494 genes, except
for miR-138-2, and downregulated miR-138%*, 296, 34c*, and
494 expression, not only in PC12H cells, but also in non-
neuron cells, which suggests that Nr3cl regulates the tran-
scription of these miRNAs. miR-138 is rich in brain tissue
and is encoded by either the miR-138-2 or the miR-138-1
gene, but the expression of miR-138 in the PFC was mainly
from miR-138-1 gene in SHRs.

After analysis of these miRNA targets, we surprisingly
noted that all of these miRNAs have a common target Bhlhb2
mRNA. Overexpression of these five miRNAs, on the other
hand, downregulated Bhlhb2 mRNA. Therefore, the abnor-
mally high expression of Nr3cl suppressed miRNA-138%,
296, 34c*, and 494 and enhanced Bhlhb2 expression in SHRs.
Bhlhb2 is a member of the basic helix-loop-helix (BHLH)
superfamily of transcription factors, an important transcription
suppressor for BDNF, which links it to neuronal activity and
locomotor control. In PC12 cells, we observed that Nr3c1 and
Bhlhb2 were highly expressed in lowly differentiated PC12L
cells. Silence of Bhlhb2 expression enhanced the neurite out-
growth and branching in PC12L, while overexpression of
Bhlhb2 significantly suppressed the differentiation of
PCI12H cells. To further demonstrate the roles of Bhlhb2 in
hyperactivity regulation, we knocked down the expression of
Bhlhb2 in the PFC of SHR and interestingly observed that in
vivo knockdown of Bhlhb2 in the PFC indeed significantly
improved the inattention hyperactivity behaviors of SHRs,
which provided the first evidence that Bhlhb2 is important
in hyperactivity development. Bhlhb2 should be the common
downstream key molecule of Nr3cl and miRNA regulatory
pathways responsible for the dysregulation involving atten-
tion deficit hyperactivity (Fig. 7). Nr3cl and Bhlhb2 may

Fig.5 Nr3cl regulation of Bhlhb2. a Nr3c1, Bhlhb2, and BDNF mRNA P>
levels were detected by RT-PCR (fop) and real-time PCR (middle) in two
cell types, 24 h after transfection with Nr3cl vector. Nr3cl, Bhlhb2, and
BDNF protein levels were measured by Western analysis (lower) 48 h
after transfection and measured with densitometry analysis (botfom). b
Luciferase activities of Bhlhb2 promoter reporter plasmid were measured
in PCI12H, CBRH-7919, and HEK293T cells 36 h after cotransfection
with Bhlhb2 promoter and Nr3cl or Nfl vectors. ¢ BDNF and Bhlhb2
were measured by Western blot analysis and measured with densitometry
in PCI12H cells and CBRH-7919 cells transfected with either Bhlhb2 or
Nfl plasmid. d Phosphorylated Nr3cl and Bhlhb2 were measured by
coimmunoprecipitation with Nr3cl or Bhlhb2 antibody. The
precipitation was detected by the antibodies against phospho-tyrosine
(p-Tyr) or phosphor-serine (p-Ser), and the quantitative analysis is in
the lower panel
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Fig. 6 (continued)

constitute an important regulatory axis in the brain. Distur-
bance of this axis may become the mechanism involving at-
tention deficit and hyperactivity. Abnormal expression or ty-
rosine phosphorylation of Nr3c1 may be the cause of the dis-
turbance of Nr3c1-Bhlhb2 axis.

Since Nr3cl and Bhlhb2 are also biochronometer-related
[21], abnormal expression of these molecules may disturb
circadian rhythms and sleep patterns, both of which are actu-
ally often found in patients with ADHD. In particular, distur-
bances in the circadian variations of cortisol concentrations
and lower cortisol concentrations in children with ADHD,
especially those with the hyperactive-impulsive type ADHD,

Fig. 6 Bhlhb2 regulation neuron activity. a Bhlhb2 protein was
detected by Western analysis in both PCI12 cells and the
prefrontal cortex after microinjection with interfering Bhlhb2
oligonucleotide (fop left). Representative images of
immunochemical staining of Bhlhb2 in PFC (bottom left). The
behavior test results of SHR microinjected with small interfering
Bhlhb2 oligonucleotide were summarized on the right. b The
proteins of Nr3cl and Bhlhb2 were analyzed by western (upper)
and quantification (right). The neurite length or branching was
analyzed (lower) after Bhlhb2 overexpression or target silence
(siBhlhb2). Representative images of differentiated PC12 cells
after incubation 10 ng/mL NGF are shown on /eft and
quantitative analysis on right. d day, Mock vector control. ¢
Representative micrograph of immunofluorescent staining of
Bhlhb2-transfected PC12H cells with Tau, GAP-43, and MAP2
antibodies, respectively. The nucleus was stained with DAPIL. d
Plasma corticosterone and cortisol levels were measured in rats
(lefty and ADHD patients (right)
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have been documented [22]. Dysfunction in the hypothalamo-
pituitary-adrenal (HPA) axis is generally considered to be re-
sponsible for low blood cortisol concentrations, which in turn
might be related to the core ADHD symptoms of attention
deficit, hyperactivity, and impulsive behavior [23]. Elevated

ﬂasma cortisol\
\

miR-138*
miR-296

miR-34c*
miR-138-1

—> stimulatory regulation
— inhibitory regulation
== => tentative stimulation

Fig. 7 The regulation model of Nr3cl and Bhlhb2 in ADHD. Nr3cl,
miR-138, 138%, 296, 34c*, and Bhlhb2 constitute a regulatory network in
the brain. Nr3c1-Bhlhb2 axis is the center of the network, and its
disturbance is involved in the development of ADHD



Mol Neurobiol (2017) 54:1196-1212

1211

expression of Nr3cl in the PFC and hippocampus enhances
the sensitivity of the response to glucocorticoid negative feed-
back and reduces the release of cortisol [24, 25]. Children with
ADHD have a blunted cortisol response to psychosocial
stressors, a decreased cortisol awakening response, and lower
plasma daytime cortisol concentrations. Family-based associ-
ation tests indicate that Nr3cl single-nucleotide polymor-
phism is associated with HPA axis reactivity [26] and ADHD
morbidity rate [27]. The disturbance in the HPA axis in
ADHD has been thought to be related with an excessive ex-
posure to glucocorticoids in the fetal and early postnatal pe-
riods. Current data indicate that higher levels of Nr3cl in the
PFC and hippocampus strengthen negative feedback regula-
tion of the HPA axis. Whether excessive exposure to gluco-
corticoids in early postnatal period will cause overexpression
of Nr3cl in the PFC needs future investigation.
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