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or form DNA adduct, which generally leads to destruction 
of genetic material. This process may explain the synergis-
tic effect of smoking and estrogens on estrogen-dependent 
lung cancer development.
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Introduction

The lung cancer (LC) remains the leading cause of can-
cer death worldwide [1]. Despite current improvements in 
treatment methods and molecular diagnostics, LC stands as 
the most frequently appearing type of tumor [1]. The low 
survival rate of patients suffering from LC is caused mainly 
by delayed diagnosis and late detection, resulting in identi-
fication of disease in advanced stadium and limited treat-
ment options [2]. Clinical classification of LC divides it 
into two main histopathological types non-small cell lung 
cancer (NSCLC), recognized in 80% of cases, and small 
cell lung cancer (SCLC), which occurs less frequently 
(20%).

LC is very complex disease, related to many environ-
mental, molecular and genetic factors. It is well known 
that main threats responsible for the development of lung 
tumors are associated with long-term xenobiotic inhala-
tion, including organic solvent vapors, paints, asbestos, 
and above all the tobacco combustion [2, 3]. Although 
the connection between LC development and exposure to 
cigarette smoke is well documented, current research has 
also provided evidence that the presence and progression of 
LC can be affected by gender-dependent factors, especially 
by estrogens [3–7]. Disturbed expression of the enzymes 
involved in estrogen synthesis in  situ [i.e. aromatase 

Abstract  It is well known that a connection between 
xenobiotics inhalation, especially tobacco combustion and 
Lung Cancer development is strongly significant and indis-
putable. However, recent studies provide evidence indicat-
ing that another factors such as, estrogens are also involved 
in lung carcinoma biology and metabolism. Although the 
status of estrogen receptors (ER), in both cancerous and 
healthy lung tissue has been well documented, there is 
still inconclusive data with respect of which isoform of 
the receptor is present in the lungs. However according 
to several studies, ERβ appears to be predominant form. 
Apart from ERs, estrogens can work through a recently 
discovered G-coupled estrogen receptor. Binding with 
both types of the receptors causes a signal, which leads to 
i.e. enhanced cell proliferation. There are many published 
reports which suggest that estrogen can be synthesized 
in situ in lung cancer. Some disturbances in the activity and 
expression levels of enzymes involved in estrogen synthe-
sis were proved. This suggests that increased amounts of 
sex-steroid hormones can affect cells biology and be the 
reason of the accelerated development and pathogenesis 
of lung cancer. There also exist phenomena which associ-
ate estrogenic metabolism and tobacco combustion and 
its carcinogenic influence on the lungs. Compounds pre-
sent in cigarette smoke induce the activity of CYP1B1, the 
enzyme responsible for estrogenic metabolism and synthe-
sis of their cateholic derivatives. These structures during 
their redox cycle are able to release reactive oxygen species 
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(CYP19A1) and 17-beta-hydroxysteroid dehydrogenase 
type 1 (HSD17β1) and 2 (HSD17β2)] may lead to changes 
in intracellular level of 17β-estradiol (E2) and thus lead to 
the enhanced tumorigenesis. Many reports confirm this 
phenomenon and point to the fact that, LC tissue (com-
pared to histopathologically unchanged material) is char-
acterized by elevated concentrations of E2 [7–9]. Addition-
ally, some evidence suggests that E2 induces proliferation 
of several LC cell lines in vitro [7, 8, 10]. This data cor-
responds to the number of population-based studies which 
emphasize an inductive effect of sex-hormones on the LC 
development. The application of hormone replacement 
therapy is associated with poor survival rate in LC patients, 
especially post-menopausal women [11, 12]. Lastly, the 
proven presence of estrogen receptor (ER) in lung tumor 

tissues (mainly ERβ) suggests that estrogens can exert their 
effect on cells through ER-mediated effects [13–15].

Estrogens, trough binding with ERs, may affect cells in 
two different ways: the genomic and the non-genomic man-
ner (Fig.  1). In the non-genomic pathway, estrogens cre-
ate a complex with cell membrane isoforms of ERs, which 
trigger an immediate effect, such as activation of non-
receptor tyrosine kinases (Src), mitogen activated protein 
kinases (MAPKs), phosphatidylinositol-3 kinase (PI3K), or 
releasing intracellular calcium ions (Fig. 1) [16, 17]. In the 
genomic pathway, estrogens connect to ERs (ERα, ERβ). 
This action causes the dimerization of ERs, their transloca-
tion to the nucleus, and binding with DNA regions known 
as estrogen response elements (ERE) (Fig. 1). Afterwards, 
the estrogen-dependent genes are transcribed [16, 18]. 

Fig. 1   Simplified diagram of estrogen signaling pathways, including 
non-genomic (red lines) and genomic (blue lines) response structures 
(grey field) and processes (cyan field). Blue/red arrows indicate the 
direction of the reaction. ER estrogen receptor, ERE estrogen respon-
sive elements, E estrogen, TF transcription factor, MAPK mitogen-

activated protein kinase, ERK1/2 extracellular regulated kinases, SRC 
proto-oncogene, non-receptor tyrosine kinase, PI3K phosphatidylin-
ositide 3-kinase, Ca2+ calcium ions, cAMP cyclic AMP, PKA protein 
kinase A, AKT protein kinase B. (Color figure online)
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Some studies indicate that the recently discovered G-cou-
pled estrogen receptor (GPER, GPR30) can also partici-
pate in estrogen response. After connection to the receptor 
MAPK pathway is activated, which subsequently leads to 
enhanced cell proliferation. In addition, GPER can also 
affect the transcription of genes involved in cell cycle and 
cell growth (Fig. 2) [19–21].

By acting through ER, estrogens may also induce can-
cer development trough formation of genotoxic metabolites 
such as 4-hydroxyestrogen (4-OHE2), 4-hydroxyestrone 
(4-OHE1) or estrogen’s quinone derivatives [22–24]. This 
process is strongly connected with cytochrome P450 1B1 
(CYP1B1) activity (Fig.  3) which is responsible for the 
metabolism of E2 as well as present in tobacco smoke 
carcinogens, to compounds which further transformations 
results in reactive oxygen species formation (ROS). In 
addition, the long-lasting tobacco combustion leads to an 

overexpression of CYP1B1. Subsequently, an increased 
amount of free radicals is released which may lead to alter-
nated tumorigenesis (Fig. 4) [22–26].

The main aim of this brief review is to focus on possible 
ways of estrogen action in LC with particular mention on 
disturbed expression of genes and proteins involved in this 
process and its association with LC development.

Estrogen synthesis in normal and malignant lung tissue

There are several important metabolic pathways leading to 
the formation of estrogens in peripheral tissues. The first 
one is related to activity of CYP19A1 (cytochrome P450 
19A1, aromatase), an steroidogenic enzyme responsi-
ble for aromatization of androstenedione and testosterone 
to estrone (E1) or estradiol, respectively [15]. Another 
crucial protein that participates in local synthesis of 

Fig. 2   Simplified diagram of GPER response pathways. including 
structures (grey field), processes (cyan field). Blue arrows indicates 
the direction of the reaction. GPER G-coupled estrogen receptor, E 
estrogen, MAPK mitogen-activated protein kinase, PI3K phosphati-

dylinositide 3-kinase, PKA protein kinase A, AKT protein kinase B, 
EGFR epidermal growth factor receptor, CREB cAMP response ele-
ment binding protein, CTGF connective growth tissue factor, EGR1 
early growth response 1, TF transcription factor. (Color figure online)
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estrogen is hydroxysteroid (17-beta) dehydrogenase type 
1 (HSD17β1). This particle catalyzes the reduction of E1 
to the biologically most active E2 [8]. Level of peripheral 
estrogens is also dependent on the activity of sulfatase 
(STS) and sulfotransferase (EST). STS task is to hydrolyze 
inactive sulfur derivatives of estrogens to free E1, while 
EST conducts the opposite reaction of binding sulfur moie-
ties to hormones which subsequently leads to their inactiva-
tion (Fig. 5) [27].

Aromatase (CYP19A1)

CYP19A1 catalyzes the conversion reaction of androsten-
edione and testosterone to E1 and E2, respectively (Fig. 5). 
CYP19A1 is widely expressed in the placenta, ovary, 
breast, brain and liver [28, 29]. It can also be found in adi-
pose tissue, where it regulates extragonadal estrogen syn-
thesis. This process is also crucial pathway responsible for 
E2 synthesis in men [8, 30, 31]. The CYP19A1 transcript 
and protein has also been detected in normal and neo-
plastically changed lung tissues where its expression was 
found to be higher. Moreover aromatase is also present in 
metastatic leisons, which are generally characterized by 
its increased level (compared to primary sites) suggesting 

carcinogenic influence of estrogens produced in metastatic 
tissue [14, 32–34]. Through inhibition of aromatase by 
exemestane in LC cell lines Giannopoulou et  al. demon-
strated how important CYP19A1 is for cell. Lack of aro-
matase influenced not only cell migration and invasion but 
affected cells’ mechanical features too [35].

Many studies confirm that aromatase in LC can be found 
mainly in the cytoplasm of epithelium cells, which sug-
gests the possibility of producing their own estrogen [29, 
36]. These results seem to be similar with data concerning 
breast cancer, where in situ estrogen synthesis is one of the 
main factors responsible for tumor growth and its devel-
opment [28, 37]. However in contrast to breast cancer, in 
LC aromatase was found mostly in parenchymal cells as 
compared to stromal site [33]. Nevertheless, by perform-
ing experiments of coculturing stromal and carcinoma 
cells, Miki et al. have shown the stimulating effect of fac-
tors secreted by the stroma on CYP19A1 activity. It is very 
important to note that, the results demonstrated in the same 
research clearly points also at inductive potential of com-
pounds secreted by NSCLC cells for proliferation and dif-
ferentiation of stromal cells [33]. This mutual interdepend-
ence reveals how many factors have to be considered in the 
studying of tumor development.

Fig. 3   Reaction of O-quinones synthesis including structures (blue field) and processes (pink field). Blue arrows indicates the direction of the 
reaction. CYP1B1 cytochrome 450 1B1. (Color figure online)
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The enhanced activity of CYP19A1 in primary LC tis-
sue has been associated with a high intratumoral concen-
tration of estrogens. This may suggest a potential role of 
sex-steroid hormones in lung carcinogenesis [13, 14, 33]. 
The substantial influence of CYP19A1 on growth of the 
lung tumor was demonstrated by Weinberg et al. The pre-
sented data shows the CYP19A1 activity was essentially 
higher in tumors than in non-histopathologically changed 
tissue. Additionally in  vitro studies showed aromatase 
impact on lung carcinogenesis. Trough application of the 
known aromatase inhibitor-anastrozole-enzyme activity 
has been significantly reduced. This procedure resulted 
in the expected effect of eradication of lung tumor 
cells in  vitro and inhibited growth of implanted nude 
mice xenografts [36] Stabile et  al. by exposing mice to 
tobacco carcinogens confirmed this process. Addition-
ally, they have shown that the application of fulvestrant 

(ER antagonist) enhanced the effect caused by anastro-
zole [38]. Mah et  al. also demonstrated important role 
of CYP19A1 on the progress of LC. Mice after andros-
tenedione (known substrate of CYP19A1) treatment 
were presenting more advanced tumor development in 
comparison to the mice which did not receive the com-
pound. The same effect was observed trough application 
of E2, thus showing androstenodione may be converted to 
E2 and support lung carcinogenesis [29]. It is also very 
important to note that intratumoral levels of CYP19A1 
demonstrate a significant association with ER expression 
and tumor grade. Lower amounts of CYP19A1 in LC are 
correlated with better prognosis for long term survival 
(Table  1) [29, 39–41]. All of this data clearly indicate 
that high level of tumoral aromatase and resultant the 
high amount of intratumoral estrogen level are essentially 
connected with LC presence and may affect its progress.

Fig. 4   Simplified diagram demonstrated the effect of estrogen metab-
olites produced by CYP1B1 in cells including structures (grey field) 
and processes (cyan field). Blue arrows indicate the direction of the 

reaction. EM estrogen metabolites, ER estrogen receptor, ROS reac-
tive oxygen species, CYP1B1 cytochrome P450 1B1. (Color figure 
online)
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Fig. 5   Estrogen metabolism pathway including enzymes (blue field) 
and chemical compounds. Blue arrows indicate the direction of the 
reaction catalyzed by proper enzymes. HSD17β hydroxysteroid 17β 

dehydrogenase, EST estrone sulfotransferase, STS steroid sufatase. 
(Color figure online)
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Steroid sulfatase (STS) and estrogen sulphotransferase 
(EST)

STS and EST play an important role in the regulation of 
steroid hormone synthesis, especially in maintaining bal-
ance between active and inactive forms of estrogens. STS 
conducts desulfulyration reaction of estrone sulfate (E1S) 
and dehydroepiandrosterone sulfate (DHEAS), which 
subsequently leads to the formation of their active forms 
(respectively E1 and dehydroepiandrosterone; DHEA) 
[27, 32, 42, 43] (Fig.  5). This reaction, except of aroma-
tization is the main pathway of E2 production, since both 

of aforementioned steroids can be transformed to E2 and 
androstenedione (respectively) and afterwards may enhance 
the development of sex-hormone dependent tumors, such 
as breast or prostate cancer [27, 32, 43, 44]. STS activity 
has been also identified in the liver, testis, adrenal glands, 
ovary, breast, prostate, skin and brain [27, 32, 43]. EST, 
on the other hand, usually participates in the inactivation 
of the E1 or E2. Binding with sulfates makes the estrogens 
more soluble and extends their half-life, thus making them 
ready to use, and when needed they can be easily converted 
to their active forms by removal of sulfate groups through 
STS activity [45]. Although the presence of both EST and 

Table 1   Summary of available results concerning the status of aro-
matase in lung carcinoma tissues, including number of patients, year 
of publication and applied methodology (IHC immunohistochemistry, 

RT-PCR reverse transcriptase polymerase chain reaction, WB western 
blot) and obtained results

[References]
main authors

Year No. of patients 
samples

Methodology Obtained results

Total Female Male

[34] Olga K.Weinberg, Diana C. 
Marquez-Garban

2005 53 33 20 IHC, cell culturing, RT-PCR, 
WB, animal model

Aromtase was present in NSCLC and 
lung cancer cell lines. Stronger IHC 
staining was observed in tumor tissue 
compared to normal epithelium of 
bronchioles. Application of aromatase 
inhibitor results in tumor xenograft 
suppression and inhibited cell growth

[38] Richard J. Pietras, Diana C. 
Marquez

2005 ? ✓ ✗ IHC Significant expression of aromatase in 
lung cancer tissue in postmenopausal 
woman

[29] Vei Mah, David B. Seligson 2007 422 ✓ ✓ IHC, radioassay Better survival in >65 years old woman 
with lower expression of aromatase, 
especially in those who were charac-
terized by earlier stage of tumor (I/II)

[9] Hiromichi Niikawa, Takashi 
Suzuki

2008 59 26 33 RT-PCR, liquid chromatography Intratumoral level of estradiol was sig-
nificantly connected with aromatase 
expression. Estradiol enhanced 
proliferation of expressing aromatase, 
ERα(+) and ERβ(+) cell lines

[32] Diana C. Márquez-Garbán, 
Hsiao-Wang Chen

2009 10  ? ? IHC, animal model Aromatase is expressed in primary and 
metastatic lesions. Tumor suppression 
after application of steroidal aro-
matase inhibitor alone and synergistic 
effect with cisplatin application

[40] Keiko Abe, Yasuhiro Miki 2009 105 38 67 IHC ERβ expression was associated with 
aromatase expression and some clin-
icopathological features

[33] Yasuhiro Miki, Takashi Suzuki 2010 9 6 3 IHC, RT-PCR Aromatase is present in carcinoma cells 
but not in the stromal cells, although 
some compounds excreted by stroma 
can affect aromatase activity

[16] Vei Mah, Diana Marquez 2011 377 192 185 IHC Expression of ERβ with aromatase 
has predictive value for survival in 
NSCLC patients

[34] E. Giannopoulou, K.E. Siatis 2014 – – – Cell culturing Application of exemenstane, demon-
strates that modulation of CYP19A1 
affects cells migration, invasion and 
mechanical features
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STS has been demonstrated in sex-hormone dependent can-
cers, i.e. breast [46] and endometrial cancer [47, 48] there 
are few studies showing their role in LC. Firstly, data pro-
vided by Iida et  al. presented status and function of EST 
and STS in NSCLC [27]. During these investigations, 
mRNA and protein levels as well as immunoreactivity of 
STS and EST and concentration of intratumoral estrogens 
were measured and correlated with some clinicopathologi-
cal features. Obtained data showed some significant results. 
STS-positive patients (especially women with adenocar-
cinoma) were characterized by smaller tumor size, lower 
cancer cell proliferation and better overall survival. How-
ever, the study data showed no statistical differences in 
mRNA levels between cancerous and histopathologically 
unchanged tissue, wherein it should be noted that mRNA 
of EST was detected in ~10% examined cases, in contrast 
to STS which was widely detected. On the other hand, the 
immunoreactivity of STS and EST was marked in 49.5 
and 27.8% of the samples, respectively. STS activity was 
not detected in morphologically normal lung, in contrats to 
EST which has been weakly indicated in bronchial epithe-
lial cells. Correlation between STS immunoreactivity and 
intratumoral level of E1 or E2 was not found, in opposite 
to EST-immunopositive samples, wherein level of intratu-
moral E2 was significantly higher [27]. These results do not 
correspond to established by researchers theory about con-
sidering the LC as exemplary hormone-dependant tumor 
i.e. breat cancer [44]. Because of obtained data which was 
inconsistent with established hypothesis, authors suggest 
the possibility of different biological roles of STS and EST 
in NSCLC and emphasize the role of aromatase, which may 
be more substantial for estrogen synthesis in LC [9, 14, 29, 
33–36]. However, in  vitro experiments performed by Iida 
et  al. clearly show the possible, important role of STS in 
LC development. STS-expressing NSCLC cells exposed to 
E1S were characterized by induced proliferation [27]. This 
phenomenon presents ability of STS to desulfate estrogens 
to their active forms, allowing them to accelerate cell pro-
liferation, thereby enhancing the carcinogenesis.

Another, more recent work published by Wang et  al. 
demonstrates very important role of EST in regulation of 
intratumoral estrogen in LC [42]. Researchers tested poten-
tial utility of dexamethasone (DEX) as an endocrine ther-
apeutic factor in treating NSCLC. For this purpose they 
compare activity of DEX and tamoxifen (known anties-
trogenic drug) on NSCLC cell lines and tumor xenograft 
development. Application of DEX resulted in dose-depend-
ent up-regulation of EST in cells, as well as in tumor tis-
sue. DEX exerted antiproliferative effect, inhibited cell 
migration in  vitro and reduced intratumoral level of E2. 
To determine, whether the foregoing phenomena resulted 
from the increased expression of EST, researchers applied 
very efficient sulfation inhibitor—triclosan. As expected, 

application of triclosan reduced the effect caused by DEX, 
what consequently increased cell survivability, thus show-
ing the major role of EST in LC development and indicat-
ing DEX as a potential anti-estrogenic drug in lung tumor 
treatment.

The results presented by [27, 42] provides important evi-
dence about the role of EST and STS in LC development. 
Trough the ability of changing balance between active and 
inactive forms of estrogens, these enzymes can be indicated 
as the potential prognostic factors or the target proteins in 
LC therapy.

Hydroxysteroid (17‑beta) dehydrogenase type 1 
(HSD17B1)

Another important steroidogenic protein, HSD17B1, 
belongs to group of enzymes which catalyze the revers-
ible reaction of E1 reduction to its most biologically 
active metabolite, E2 (Fig. 5). An increased expression of 
HSD17B1 has been noted in many estrogen-dependent 
cancers i.e. endometrial [49], breast [50] or ovarian tumors 
[51]. Due to its function, abnormalities in E2/E1 ratio were 
also noted in these cancer patients [50, 52]. This made 
HSD17B1 one of the main factors connected with increased 
levels of E2 in estrogen-dependent cancers [51, 52]. Despite 
this data, it is presumed that HSD17B1 plays an important 
role in enhancing the metabolism of E1, and has inductive 
influence on LC development. Niikawa et al. reported, that 
NSCLC tissues, compared to morphologically normal tis-
sues, are characterized by increased level of E2, which has 
been associated with overexpression of aromatase in these 
tissues [9]. However, studies which have shown a potential 
contribution of HSD17B1 in disturbed E2/E1 ratio were 
performed by Verma et  al. Immunohistological analyses 
have confirmed the presence of HSD17B1 in the cytoplasm 
of carcinoma cells in 85% of the investigated samples, 
while immunostaining of normal bronchial epithelial cells 
has rarely shown a weak positive signal. The increased 
immunoreactivity of HSD17B1 in NSCLC tissues was 
associated with greater tumor grade, and increased level of 
ERβ and aromatase. Moreover, the enhanced immunointen-
sity of HSD17B1 was correlated with lower E1 concentra-
tions in patient’s cancerous tissues. Nonetheless, no distinct 
differences between HSD17B1 status and increased E2 
amounts were observed but a significant association with 
higher intratumoral E2/E1 ratio was noted. Furthermore, the 
high immunoreactivity status of HSD17B1 was substan-
tially connected with poor overall survival ratio [53]. The 
data provided by Drzewiecka et al. confirmed the putative 
cencerogenic influence of HSD17B1. Western blot immu-
nochemistry and transcript analysis of HSD17B1 showed 
its statistically significant overexpression in cancerous 
samples compared to histopathologically unchanged lung 
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tissues, especially among male patients above age 60 who 
were diagnosed SCC. In addition, in  vitro experiments 
demonstrated that, LC cells are able to transform E1 to E2 
through HSD17B1 activity [8, 54]. These studies clearly 
show that an increased activity of HSD17B1 could contrib-
ute in NSCLC growth and can have inductive influence for 
estrogen-dependent LC development.

Estrogen receptor (ER) expression in LC

ERα and ERβ are two different forms of the estrogen recep-
tor, encoded by the ESR1 and ESR2 genes, respectively. 
Both of them have been detected in a variety of hormone 
responsive tissue, such as breast, ovary and endometrium 
[13]. In addition, ERs are expressed in the normal lung as 
well as many NSCLC cells. There are a lot of reports con-
cerning the presence of ER (Table  2) in normal lungs as 
well as LC, and after many studies which considered ER 
status, it appears that ERβ is the main functional form of 
ER in healthy as well as cancerous lung tissue [13–15, 
55, 56]. According to Jill M. Siegfried and Laura P. Sta-
bile [13, 15], attention should be paid to research carried 
out by Brandenberger et  al. [109] and Patrone et  al. [58]. 
The first data demonstrates differences between mRNA lev-
els of ERα and ERβ in human tissues during fetal devel-
opment, showing that ERβ is the only expressed form of 
ER in the lungs [57]. The second studies used the murine 
model to present that ERβ in  vivo, as well as in  vitro, is 
widely expressed in the epithelium of lungs and is the func-
tional form of the ER. Moreover, the ERβ knockout (−/−), 
3 month aged female mouse exhibited a reduced amount of 
alveoli and surfactant accumulation, which was connected 
with decreased expression of key regulatory enzymes of 
surfactant homeostasis and alveoli formation. No such 
changes were noticed in the ERβ knockout (−/−) male 
mouse, which was explained by smaller amounts of circu-
lating estrogen [58]. However, Morani et  al. showed that 
female, as well as male, ERβ knockout (−/−), mice lungs 
at age 5 months were characterized by inefficient alveoli 
and disturbance in collagen distribution [59], thus display-
ing that estrogen can play a crucial role in physiological 
processes of pulmonary diffusion ability and in the devel-
opment and regeneration of lungs [60]. Moreover micro-
array data provided by Kerr et al. reveals that the tumoral 
expression of ERβ is associated with alterations of nearly 
500 genes, (while ERα was connected only with 20 genes) 
which highlighted the importance of ERβ in LC intracellu-
lar transformations [61].

The ERβ protein has 5 isoforms, though only ERβ-1 is 
fully functional and able to bind ligand structure, while 
the rest of them are inactive, however they can form 
heterodimers with ERβ-1, increasing its transcriptional 
activity [10, 62]. The ERβ protein is detected, regardless 

of gender, in primary LC tissues as well as in NSCLC cell 
lines, both in the cellular cytoplasmatic and nuclear com-
partments [9, 10, 41, 63–67]. Increased amounts of ERβ 
can be distinguished in neoplastically changed lung tissue 
compared to histologically unchanged tissue [16, 65, 68]. 
Numerous published reports concerning the association 
between ERβ status and patient survival present differ-
ent results (Table 2). In most cases, immunohistological 
analysis of NSCLC samples has indicated an association 
between ERβ presence and better clinical outcome, espe-
cially in men or patients with EGFR mutation [63, 65, 
68]. Also, an association between positive nuclear ERβ 
immunostaining and better survival has been observed, 
while the presence of the cytoplasmic form of ERβ-1 has 
been indicated as a negative prognosis marker for patient 
survival [41, 62–69], especially when associated with 
increased level of aromatase [16]. It is easy to notice that, 
there exist many investigations concerning ERβ status. 
Unfortunately each of them considers not enough number 
of cases to draw any clear conclusion. Because of this, 
Luo et  al. decided to perform a meta-analysis of 2279 
cases from 14 rated studies. The obtained results of uni-
variate analysis suggest that ERβ is associated with better 
overall survival in NSCLC patients, while the multivari-
ate analysis showed no influence of ERβ levels on sur-
vival. The provided data confirmed that overexpression 
of nuclear ERβ is related with better survival, whereas 
presence of the cytoplasmatic form of ERβ does not pre-
dict the survival [70].

There are many reports considering the ERα status in 
healthy and neoplastically changed lung tissue (Table  2). 
Most studies show no, or very small amounts of detectable 
ERα [57, 64, 65, 71–73], though when it was demonstrated 
more frequently in the cytoplasm than in the nucleus [18, 
56, 65, 66], especially in patients with EGFR mutation 
[66, 72]. Immunobloting of cell lines did not detect the full 
length ERα form, but its 42 and 54  kDa isoforms, which 
still form a functional protein but characterized by lack of 
protein amino-terminus [10, 56, 66, 72]. By testing selected 
agonists of the ERs (α and β), Hershberger et  al. proved 
that ERβ is main receptor responsible for activating both 
genomic (ERE transcription) and non-genomic pathways 
(MAPK phosphorylation) [66]. It is also difficult to define 
the influence of ERα on the overall survival of patients. The 
existing research indicates that the presence of ERα does 
not affect survivability [16, 65], nor it is associated with 
a poor prognosis [66], notably when linked with absence 
of ERβ [56] or EGFR disturbances, especially in Japanese 
patients with adenocarcinoma [56, 68, 74].

According to this data, ERβ seems to be the primary 
receptor expressed by LC and control processes, which may 
lead to estrogen-related carcinogenic actions. ERβ may 
be the more apparent isoform of the ER in LC (especially 
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Table 2   Summary of available results concerning status of ERα and 
ERβ in lung carcinoma tissues, including number of patients, year of 
publication and applied methodology (IHC immunohistochemistry, 

RT-PCR reverse transcriptase polymerase chain reaction, WB western 
blot) and obtained results

[References]
main authors

Year No. of cases Methodology ERα/Erβ status

Total Female Male

[55] Alfred W. Branderbeger, Meng Kian 
Tee

1997 – – – RT-PCR, Southern blot Erβ status confirmed in fetal lungs. No ERα 
detected

[56] Cesare Patrone, Tobias N. Cassel 2003 – – – Animal model, IHC Erβ is functional in lungs. Erβ knockout 
resulted in disturbances in lung homeo-
stasis, which suggests estrogen can play 
important role in lung development

[57] Andrea Morani, Rodrigo P. A. Barros 2008

[18] Diana C. Marquez-Garban, Hsiao-
Wang Chen

2007 65 45 20 Animal model, IHC Positive staining
Nuclear fraction: 45% for ERα/52% for ERβ
Extracellular fraction: 75% for ERα/69% 

for ERβ
[ER 16] Vei Mah, Diana Marquez 2011 377 142 185 IHC, RT-PCR ERα: strong signal—nucleus/weak signal—

cytoplasm
Slight but significant differences between 

cancerous compared to histologicaly 
unchanged tissue

ERβ: strong signal—nucleus and cytoplasm. 
More evident differences in expression 
between examinated tissues. Elevated 
amounts associated with higher tumor 
grade. Increased level of ERβ + aromatase 
predicts worse survival

[54] Hideki Kawai, Akira Ishii 2005 132 56 76 IHC 76% of ERα found in the cytoplasm of 
poorly or moderate differenciated cancers. 
Predictor of poor overall survival

51% ERβ found in the nucleus and associ-
ated with better overall survival

[69] Mohit Kumar Verma, Yasuhiro Miki 2012 169 66 103 IHC, Cell culturing Positive staining: 87% samples for ERβ/19% 
samples for ERα. High cooexpresion of 
aromatase and ERβ was detected. High 
ERβ + high aromatase expression predicts 
worse survival

[62] Ann G. Schwartz, Geoffrey M. Prysak 2005 278 214 64 IHC Positive ERβ staining: 58.4% for female 
samples/70% for male samples. No ERα 
detected. Different nuclear expression of 
ERβ between cancerous and histopatho-
logically unchanged tissue. More frequent 
nuclear ERβ expression in adenocarci-
noma in male samples, associated with 
survival status

[63] Birgit Guldhammer Skova, Barbara 
M. Fischer

2007 104 33 71 IHC Positive nuclear ERβ and cytoplasmic ERα 
signal occurred in 69% and 55% sam-
ples, respectively. Significantly reduced 
mortality rate in men ERβ(+) compared to 
ERβ(−) was noted. No clinicopathological 
features connected with ERα presence

[66] Hideki Kawai, Akira Ishii 2005 132 55 67 IHC 51.6% samples overexpressed cytoplas-
mic ERα; ERα linked with poor overall 
survival. Patients with high level of EGFR 
associated with elevated amounts of ERα 
were characterized by worse survival com-
pared to those with low EGFR and ERα



45Mol Biol Rep (2017) 44:35–50	

1 3

NSCLC), thus it could have similar effects on cell growth 
and signaling as ERα in model estrogen dependent breast 
cancer [75].

G‑coupled estrogen receptor (GPER, GPR30)

GPER is present in many different kinds of tissues. Its syn-
thesis has been observed in i.e. ovaries, placenta, testis, 
uterus, bone narrow, heart, kidneys, liver, and lungs [20, 
21]. In response to the cell signal, GPER through a rapid 
non-genomic mechanism, is able to regulate many physi-
ological functions irrespective of ER classical activity. 
GPER can induce MAPK, PI3K signaling, affects the regu-
lation of adenylate cyclase and, can activate transcription 
of cyclin A, D, E, CTGF and EGR1 via EGFR-dependant 
mechanisms (Fig. 2) [20, 76–79]. Recent studies, concern-
ing the expression and activity of GPER in LC have dem-
onstrated increased amounts of GPER mRNA and protein 
levels in lung tumors compared to histopathologically 
unchanged lung tissue [19, 20]. Jala et al. showed elevated 
transcript and protein amounts of GPER in NSCLC cell 
lines compared to normal bronchial epithelial cells. In addi-
tion, immunohistological staining of human as well as mice 
LC samples demonstrated an increased activity of GPER 
in the tumor relative to surrounding non-tumor tissue 
[20]. These results were confirmed by Liu et al. Moreover, 
immunohistological analysis of 350 samples showed GPER 
is more associated with cytoplasmic (80, 49% samples) 
than the nuclear (53, 05% samples) compartment. Addi-
tionally, the expression of cytoplasmic GPER was con-
nected with LC stages IIIA–IV, lymph node metastasis, and 

poor differentiation of NSCLC. In vitro and animal model 
studies have shown that the application of E2 and selective 
agonist G1 caused promotion of cell proliferation, migra-
tion, and invasion. The opposite effect was obtained by 
using fulvestrant and G15 inhibitor [19]. Presence of GPER 
in lung cell allows us to conclude that estrogens may work 
not only through classic ER. These compounds are able to 
exert a potential carcinogenic effect through other mecha-
nisms such as GPER activation.

Smoking and estrogen carcinogenesis

It is well known that the correlation between smoking 
tobacco and LC (especially squamous cell carcinoma) 
remains indisputable, while the emerging data suggest the 
influence of estrogen on LC development. Apart from the 
genomic or non-genomic response triggered through the 
connection with ER, estrogen, due to its A-ring-contain-
ing structure, can be metabolized by cytochrome P450 
enzymes, including cytochrome CYP1B1. CYP1B1 cata-
lyzes hydroxylation at the 2- and 4-position of E1 and E2, 
respectively (Fig. 3) [22–24]. Whereas 2-hydroxylated cat-
echol derivatives show no effect, 4-hydroxylated metabo-
lites were found to be carcinogenic factors [80, 81]. In 
addition, once created, the endogenous catechol estrogens 
can be oxidized by any enzyme with oxidative activity. 
This process subsequently leads to the generation of reac-
tive electrophilic estrogen o-quinones and semiquinones, 
which induce the formation of ROS through redox-cycling 
process [7, 25, 26, 82]. All of these compounds can affect 
cells in several, harmful ways. Firstly, the metabolism of 

Table 2   (continued)

[References]
main authors

Year No. of cases Methodology ERα/Erβ status

Total Female Male

[67] Laura P. Stabile, Sanja Dacic 2010 183 92 91 IHC ERα and ERβ present in the cytoplasm and 
nucleus in over 50% samples. Tumors have 
expressed higher amounts of ERα and 
ERβ in comparison to histopathologically 
unchanged tissues. Correlation between 
ERα, ERβ, Progesterone Receptor and 
EGFR were examined

[68] Zhuang Luo, Rongrong Wu 2015 2279 ✓ ✓ Statistical metanalysis Positive status of ERβ was associated with 
better survival (except Japan and Ameri-
can population). Overexpression of nuclear 
form of ERβ predicts better survival

[71] Yoko Omoto, Yasuhito Kobayashi 2001 30 8 22 IHC, WB Positive staining: 100% ERβ in normal 
bronchiolar epithelial cells, 67% of tumors 
were ERβ positive. No expression of ERα 
was noted. Significant difference in ERβ 
expression between adenocarcinoma and 
squamous cell carcinoma, which suggests 
potential contibution of estrogens in 
adenocarcinoma development
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O-quinones, through cytochrome P450 activity may indi-
rectly results in the formation of free hydroxyl radicals, 
which are generally considered as the most harmful oxi-
dizing agents. These undesirable molecules are capable to 
cause DNA damage, such us single strand breaks, chro-
mosomal aberrations and formation of 8-oxo-dG (8-Oxo-
2′-deoxyguanosine)—most frequent DNA oxidative dam-
age. In addition, estrogen quinones and semiquinones, by 
forming adducts, can directly cause cellular DNA damage, 
which results in genotoxic effects (i.e. depurination). There 
are some reports indicating that catechol estrogens, o-qui-
nones or their metabolites are able to bind to the ER, and 
then subsequently are transported to ERE in the nucleus 
resulting in DNA mutation and damage caused by free radi-
cal emission (Fig. 4) [7, 82–86].

CYP1B1 is a known enzyme responsible for the metabo-
lism of estrogens and procarcinogenic compounds inherent 
in tobacco smoke (Fig. 3), to carcinogenic derivatives [87]. 
Several studies have also demonstrated significant associa-
tion between LC risk and polymorphism of the CYP1B1 
[88, 89]. The presence of CYP1B1 has been demonstrated 
in the lung. Moreover its expression level is different in 
smokers and non-smokers which has allowed to establish 
that the CYP1B1 is constantly induced by ongoing tobacco 
smoke exposure [87, 89–92]. Meireles et  al. showed that 
the CYP1B1 transcript and protein expression is inducted 
early during lung tumorigenesis, and its stable increase is 
maintained over the entire duration of tobacco exposure. 
There was also a significant amount of E2 present in the 
lung, during this investigation. This phenomenon suggests 
that CYP1B1 may play a crucial role in tobacco smoke 
induced carcinogenesis, especially in the presence of 
estrogens, and provide some evidence that tobacco smoke 
affects estrogen level within the lungs by altering CYP1B1 
[92]. In the comprehensive study by Peng et  al. the pro-
file of estrogen metabolites in smokers’ lungs, impact of 
tobacco smoke and Cyp1B1 deletion on pulmonary estro-
gen metabolism were examined. The obtained data con-
firmed the ability of tobacco smoke compounds to increase 
the levels of carcinogenic estrogen metabolites, and high 
levels of carcinogenic estrogen metabolites in female mice 
were associated with lung tumor promotion by estrogens. 
Moreover, the deletion of Cyp1B1 caused a significant drop 
of carcinogenic estrogen metabolites [7]. According to the 
aforementioned data, it is presumed that estrogen hormo-
nal environment may synergize with the mutagenicity of 
tobacco components through the induction of CYP1B1 
expression, and may lead to enhanced tumorigenesis.

Clinical significance of estrogens

LC disease has been intensively over the few past decades. 
This has allowed researchers to determine, that a history of 

smoking tobacco is considered as the main harmful factor 
responsible for its development [5]. However, number of 
evidence also emphasize the role of gender as the impor-
tant LC risk factor [4, 93–95]. According to current litera-
ture, the risk of all major histopathological types of LC is 
almost three times higher for smoking women than men, 
irrespectively on the number of cigarettes smoked per day 
[93–95]. Additionally, there is a large distinct group of peo-
ple (approximately 15% men and 53% women) who suffer 
with LC but have never smoked [1, 96, 97]. It is apparent 
that, among never-smokers, women also appear to be more 
vulnerable for LC occurrence (with adenocarcinoma as the 
most common type) [4, 96]. Because one of the main dif-
ferences between men and women is the presence of female 
sex hormones, including estrogens, their commitment in 
lung cancerogenesis process seems to be suggestive.

Along this line, a significant issue that should be taken 
into consideration is the use of hormonal replacement 
therapy (HRT). Studies performed by Adami et  al. dem-
onstrated that women who used HRT had slightly elevated 
risk of developing LC compared to those who were not 
using HRT. However, the results might be not representa-
tive because no adjustment was made for a large group of 
smoking women [98]. Similarly, a case-control study, per-
formed by Taioli et  al. showed that, in a group of never-
smoked women, the use of HRT caused no additional risk 
of LC. However, statistically significant correlation with 
LC occurrence was observed among the group of smoking 
women who used HRT. Furthermore, it was found a sig-
nificant association between HRT use and the incidence of 
adenocarcinoma. On the other hand, more recent studies 
demonstrate the opposite effect indicating that, HRT exerts 
protective action and decreases the risk of LC development 
[99–103].

Apart from an association with morbidity, estrogens may 
also affect LC outcomes. Moore et al. found that premeno-
pausal women were characterized by higher frequency of 
adenocarcinoma occurrence and the cancer was diagnosed 
at more advanced stadium in comparison to postmenopau-
sal women. Moreover, they establish that postmenopausal 
women had a slightly decreased death ratio than older men 
[104]. Despite the fact, that certain important factors, such 
as age or the use of HRT were omitted during statistical 
analysis, the results of Moore et al. seem to be confirmed 
by Ross et al. Because the male concentration of E2 (which 
is synthesized from testosterone via the aromatase path-
way) often occurs at higher levels than in postmenpopau-
sal women [105]. Ross et al. decided to examine the asso-
ciation of E2 amounts with prognosis in male patients with 
advanced NSCLC. They demonstated that high serum free 
E2 levels were associated with a decrease in thr survival 
rate in men corresponding to a shorter survival observed in 
NSCLC premenopausal women [31].
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There are a lot of contradictory studies which present 
impact of HRT on LC outcome i.e. Ganti et al. and Chle-
bowski et al. observed that, the lower survival rate among 
group of women who used hormonal treatment in compari-
son to patients who did not use it [11, 12]. On the other 
hand, certain reports show no association between HRT 
and NSCLC outcomes [106–108]. Certainly, further more 
extensive studies are needed to elucidate the possible rela-
tionship between HRT use and the different type of LC. 
More detailed data on factors such us, the type of HRT 
used, gynecologic history, hormonal disturbances, smoking 
history and age of LC diagnosis is needed to evaluate the 
impact that estrogens may have on the development of LC, 
which would be invaluable in disease prognosis and selec-
tion of proper therapy.

Conclusion

Many studies have demonstrated the inductive effect of 
estrogens on lung carcinogenesis. Growing tumor xeno-
grafts and induced cell proliferation clearly show estrogen 
influence on a cell. A large body of evidence consider-
ing gene and protein expression and steroid concentration 
has demonstrated disturbances in the levels of estrogen 
and amounts of proper enzymes involved in estrogen syn-
thesis, showing enhanced hormone production in cancer 
cells. Moreover, the presence of ER, with the dominant 
ERβ form, demonstrates the possible course of action and 
influence of estrogens on the cells’ existence. Further, the 
application of ER antagonists has had an expected effect of 
inhibition of tumor growth in vivo as well as in vitro, when 
they exerted a negative effect on LC cell proliferation. The 
effect of estrogens can be induced not only via ER binding, 
but also through association with another estrogen-sensitive 
receptor, GPER, of which the increased activity may lead to 
enhanced tumorigenesis. Furthermore, the enhanced estro-
genic synthesis in LC tissues and its hormonal environ-
ment can synergize with the mutagenity of tobaccos smoke 
components. The combined effect of disturbed estrogenic 
synthesis in cancer cells and inductive influence of tobacco 
smoke compounds on estrogen metabolizing enzymes can 
explain the more aggressive and faster lung tumorigenesis. 
Synergistic effect of these risk factors is an interesting area 
of further research.

The amounts of factors which affects the LC develop-
ment, progression or outcome is enormous, so it is very 
important to remember that every case of lung tumor is 
different, just like people are different from each other. 
This aspects force the detailed molecular examination of 
the patients which certainly would help with effective and 
proper treating of the LC.
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Creative Commons Attribution 4.0 International License (http://
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link to the Creative Commons license, and indicate if changes were 
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