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Field metabolic rate (FMR) links the energy budget of an animal with the

constraints of its ecosystem, but is particularly difficult to measure for small

organisms. Landscape degradation exacerbates environmental adversity

and reduces resource availability, imposing higher costs of living for many

organisms. Here, we report a significant effect of landscape degradation

on the FMR of free-flying Apis mellifera, estimated using 86Rb radio-isotopic turn-

over. We validated the relationship between 86Rb kb and metabolic rate for

worker bees in the laboratory using flow-through respirometry. We then

released radioisotopically enriched individuals into a natural woodland and a

heavily degraded and deforested plantation. FMRs of worker bees in natural

woodland vegetation were significantly higher than in a deforested landscape.

Nectar consumption, estimated using 22Na radio-isotopic turnover, also differed

significantly between natural and degraded landscapes. In the deforested land-

scape, we infer that the costs of foraging exceeded energetic availability, and

honeybees instead foraged less and depended more on stored resources in the

hive. If this is generally the case with increasing landscape degradation, this

will have important implications for the provision of pollination services and

the effectiveness and resilience of ecological restoration practice.

1. Background
Energetic expenditure is fundamental to many aspects of species biology, conser-

vation management, and agricultural production [1–3], particularly in the

provision of pollination services [2,4]. Field metabolic rate (FMR) is a crucial

index of energetic expenditure that quantifies the cost of living in an ecological con-

text. Measured in the ecosystem in which the individuals live, FMR encompasses

all the constraints imposed on the animal by different ecological conditions. Fur-

thermore, in altered ecosystems these costs can change unpredictably as the

realized niche shifts in response to interacting biotic and abiotic factors [5]. Altered

cost of living may have cascading influences through the ecosystem in the case

where the study organism provides a critical ecological service, such as insect-

mediated pollination [2]. In reinstating insect-mediated pollination in heavily

altered landscapes, it is critical to understand how the cost of living has been altered

by environmental degradation that may elevate the FMR and restrict food intake.

We quantified the energetic cost of environmental degradation to a globally

significant hymenopteran pollinator, the honeybee (Apis mellifera L.) by measur-

ing the FMR of free-flying workers. Although the doubly labelled water (DLW)

method [6] facilitated the first FMR measurements of free-ranging vertebrates,

technical limitations have made it less useful in the measurement of invert-

ebrate FMR, but see exceptions: [7–11]. Among the alternatives to DLW for

measuring FMR, Odum & Golley [12] proposed measuring the elimination

rate of radioactive isotopes directly related to energy turnover. Of the many

radionuclides tested to date [13–17], the elimination rate of rubidium-86

(86Rb kb) has the highest correlation with the rate of carbon dioxide production

(VCO2) [16,17].
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Rubidium is an alkali metal that appears to be handled by

the body in a similar manner to Kþ [18], and recent work has

shown that the Na/K ATPase that is ubiquitous to the cell

membranes of all organisms, and contributes substantially to

the energy budget of an organism [19], has a strong affinity

for Rbþ [20]. On this basis, the theorized mechanism linking
86Rb kb to VCO2 is that 86Rbþ ions are subsumed into the intra-

cellular pool, and the remaining isotope is excreted within the

first 24 h of enrichment [17], leading to a rapid loss of radioac-

tivity in the first day [14,16,17]. Subsequent 86Rb kb is

dependent on the substitution of Kþ ions into the intracellular

pool proportional to the metabolic activity of the Na/K

ATPase. As such, increased metabolic activity in general has

been shown to have predictable influences on 86Rb kb in both

endotherms and ectotherms [16,17]. It is the sequestration of
86Rb into the intracellular pool that facilitates the use of 86Rb

kb to measure metabolic rate, rather than food intake or

elimination [13,14].

Additional to information on energy use, the food intake

required to supply the energetic cost of living is also critically

important [12,21,22], which can theoretically be measured for

insects [23] using the biological turnover of radioactive

sodium-22 (22Na kb). Unlike 86Rb, 22Na remains predominantly

in the extracellular body pool and input of cold sodium from

the diet can be deduced from the decline in specific activity

of the isotope (22Na/23Na). This requires repetitive sampling

of the haemolymph of the bees, however, which would have

seriously compromised their fitness and food intake was

instead estimated from the biological elimination rate of the
22Na kb. Assuming that all 23Na intake is from dietary sources

(i.e. food, rather than water), then volumes of food consumed

can be estimated from the 23Na content of the most common

food sources available [24–26]. Hence, using the two radioiso-

topes in combination allows measurement of both VCO2 and

food intake.

We aimed to establish a workable radio-isotopic enrich-

ment protocol for insects as small as honeybees, and also that

the relationship between VCO2 and 86Rb kb conformed to

expectations established for a broader range of ectotherms

[2]. By releasing honeybees enriched with 86Rb and 22Na

into a natural woodland, and into adjacent cleared pine planta-

tion, we tested whether a degraded landscape with lower

resource availability per unit area provided a more substantial

energetic challenge to honeybees than a naturally resour-

ced landscape. Our data suggest that bee behaviour was

modified when challenged by a less biodiverse, nutritionally

depauperate landscape.
2. Methods
(a) Laboratory calibrations of radioisotopic turnover

with metabolic rate
For the laboratory validations between 31 July and 16 August

2012, 80 honeybee (A. mellifera linguistica) workers were collected

from two domesticated hives (40 per hive) maintained in a

natural forage environment at the University of Western Austra-

lia (UWA) Shenton Park Field Station (31.98 S, 115.88 E). They

were transferred to the laboratory within 1 h of collection to

establish the correlation between radioisotope turnover and

metabolic rate. For the duration of the calibration study, the

bees were kept in JZBZ queen cages (John L. Guilfoyle Pty.

Ltd., Bellevue, New South Wales, Australia) in groups of five
workers from the same hive. During radio-isotopic enrichments

the feeding tube of the queen cages was packed with a candy

composed of honey mixed into powdered sucrose (confectioners’

sugar or icing sugar; Sugar Australia (CSR), Yarraville, Victoria,

Australia). Water was provided by painting water drops onto the

queen cage [27]. When VCO2 was measured by flow-through

respirometry, greater volumes of water and food were provided

by packing the lower half of the JZBZ queen cages with cotton

wool and submerging this in a 10% honey solution.

To enrich the bees with radioactive 86Rb, each cage of five bees

was provided with the candy described above, enriched with 0.05

MBq ml21 of 86RbCl (Perkin Elmer, Brisbane, Queensland, Austra-

lia) for 24 h. To calibrate the isotope turnovers with metabolic rate

and food intake, 16 cages (80 bees) were maintained for two days

in a flow-through respirometry system measuring VCO2 (see [28]).

Low metabolic rates were imposed by measuring eight of the cages

at 208C, and higher metabolic rates with eight of the cages at 308C
[29] in a custom-built incubator. Temperature within the system

was measured by DS1921H iButtons (Maxim Integrated Products,

Inc. San Jose, CA, USA). The bees from two cages at the cooler

temperature were excluded due to insufficient radioactive enrich-

ment. The average enrichment, based upon disintegrations per

minute, was approximately 3 000% of the background, and the

two excluded cages were less than 500% which is insufficient

above background for measurement reliability.

Compressed air flow through the respirometer was regulated at

100 ml min21 (ATPD) by an Aalborg DFC 26S (Aalborg, New York,

USA) mass flow controller, passed through a glass chamber of

approximately 250 ml volume. Incurrent air was not dried (aver-

aging approximately 7% RH), but CO2 was removed from the

incurrent air stream using Sodasorb CO2 scrubber (calcium hydrox-

ide granules; Sigma-Aldrich, Castle Hill, NSW, Australia).

Excurrent air was dried by a Drierite column (anhydrous calcium

sulfate; W.A. Hammond Drierite Co. Ltd. Xenia, OH, USA), and

passed through a Qubit S151 gas analyser (Qubit Systems, Inc.

Kingston, Ontario, Canada) to measure CO2 concentrations.

Although Drierite has been suggested to cause errors in respirome-

try systems, following the guidelines of [30] mitigates these errors

during steady-state measurements such as those described here.

The gas analysers were calibrated to zero using a Sodasorb and

1 500 ppm CO2 calibration gas mixture (BOC Gases, Welshpool,

Western Australia, Australia). All data were collected using a DI-

710 data acquisition board (DATAQ Instruments Inc., Akron,

OH, USA) and recorded using custom-written Visual Basic

(v. 6.0) software (Microsoft). Baseline readings of background

FiCO2 were established for 1 h before and after metabolic trials.

Metabolic data were analysed by a custom-written Visual Basic

program (P Withers 2007, personal communication) to determine

the average VCO2 for the entire exposure period at each ambient

temperature (Ta). All calculations and calibration of the metabolic

system were after Withers [28]. Importantly, during respirometry

trials, food and water were available ad libitum, and the bees were

not post-absorptive. All results were averaged over the total

respirometry trial (in hours) and so are representative of average

daily metabolic rate (ADMR). Following all experimental pro-

grammes the bees were dispatched by terminal chilling and

disposed of as radioactive waste.
(b) Isotope counts
At the beginning and the end of the respirometry period at least

three, 60 s whole body counts of 86Rb gamma emissions were

made of each cage of five bees using multi-channel analyser

(MCA) software coupled to a Gamma-Rad5 portable gamma

counter (Amptek Inc. Bedford, MA., USA) with a 76 � 76 mm

sodium iodide (NaI) crystal, until the coefficient of variation of

the average count was less than 5%. 86Rb activity was detected

and counted using the 1.0766 MeV emission peak (range 1.008–
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1.143 MeV). For the laboratory calibration, each individual

queen cage (containing five bees) was chilled until all bees were

immobilized, and the radiation present was measured within a

5 cm diameter plastic vial placed directly over the NaI crystal.

Counting of radioactivity in the free-ranging bees followed an

identical procedure, except that each bee was measured individu-

ally. Additional to measuring the 1.0766 MeV 86Rb gamma

emission peak, 22Na activity was detected and counted using the

511 keV peak (range 463–559 keV). Typically, the bees had

regained coordination by the end of the counting procedure.

Two sets of counts were made, an equilibration set following

enrichment, and a recapture set following the experimental

treatments. The recapture counts were corrected for isotopic

decay (T1
2
of 86Rb ¼ 18.66 days and 22Na ¼ 2.60 years) by dividing

all equilibration sample counts by the exponential decay constant

of each isotope (e2kp�t; [15]). The biological turnover (kb) of the

isotopes between equilibrium and ‘recapture’ was calculated as

kb¼ ln(EC) 2 ln(RC)/t, where EC and RC are the corrected equili-

brium and ‘recapture’ counts respectively and t is the elapsed time

in days.

(c) Measurement of free-ranging isotope turnovers
For the field trial, six nucleus hives were populated by unrelated

queens bred from captive lines maintained by the UWA Centre

for Integrative Bee Research (CIBER). Each hive was established

identically with two frames of brood, one frame of honey and

pollen, and one foundation frame. These were established outdoors

for two weeks at the UWA Shenton Park Field Station to grow

to suitable colony size to tolerate experimental disturbances

(T Bates 2015, personal communication). As all six nucleus hives

were established at the same time, in the same manner and then

allowed to mature for 14 days in the same location, we assume

that their condition was standardized prior to radio-isotopic enrich-

ment and transport to the field locations. Ten to 15 worker bees (70

in total) returning to each hive from foraging bouts were collected

and enriched for 24 h prior to release with honey candy (honey

mixed with confectioners’ sugar) enriched with a solution of

0.05 MBq ml21 of 86RbCl and 0.01 MBq ml21 22NaCl (Perkin

Elmer, Brisbane, Queensland, Australia). Each enriched bee was

marked with a unique queen bee marker (Honeybee Australis &

CB Palmer & Co., Ipswich, Queensland, Australia), and gamma

emissions were counted from each individually.

Three randomly selected nucleus hives were placed in each of

two fenced enclosures maintained by the Western Australian

Water Corporation (Aroona Resources) on the Gnangara Mound,

north of Perth. The Gnangara Mound defines a large, elevated

area of sand north of Perth, Western Australia, subtended by

an aquifer, which is currently the chief source of potable water

for the city. Although the native vegetation is predominantly

Banksia-dominated woodland [31], the area was extensively clear-

felled in the late 1920s for the establishment of commercial pine

plantations [32,33], and has also been exploited for commercial

extraction of construction sands since the 1980s [31]; sub-urban

and semi-rural residential estates were developed in the early

1990s. The two study locations represent a large, undisturbed

remnant of Banksia woodland (31.588 S, 115.818 E), and a tract of

long-term pine plantation monoculture that had been clear-felled,

and subsequently severely burned approximately two months

prior to the present study (31.638 S, 115.828 E). The combined eco-

logical degradation of these impacts caused drastic and lasting

reductions in floral diversity in this region, although data are

deficient (A Ritchie 2016, personal communication). We sub-

sequently refer to the undisturbed Banksia woodland as our

natural site, and the degraded, burned area as our deforested site.

Location summaries can be found in electronic supplementary

material, figure S1.

Basic ecological data were collected during the field measure-

ments, including temperature and relative humidity, measured
every 5 min using data loggers (El-USB2, Lascar Electronics White-

parish, UK) encased in black plastic canisters (Safecap picket safety

caps, Hickson Industries Rylstone, New South Wales, Australia),

mounted on top of each hive. The relative productivity of each

landscape was determined by counting the number of Banksia
menziesii and B. attenuata inflorescences within 5 m either side of

five, 1 km transects laid parallel across each 1 km2 site. These

two species are the most prolific and conspicuous nectar sources

in the region during the austral autumn, when these measure-

ments were made. As nectar is difficult to extract from Banksia
inflorescences, two, 10 ml nectar samples were collected from

B. menziesii, by manually centrifuging [34,35] four inflorescences

from one tree, and five from another. Nectar from B. attenuata
would also have been collected this way, had enough inflores-

cences been available. An additional potential nectar source,

Calothamnus quadrifidus was noted in the region, and while not sur-

veyed, six 10 ml nectar samples were collected from three plants

(two samples each) by inserting glass microcapillary tubes into

the nectary. The 23Na content of these nectar samples was

measured by flame photometry for subsequent calculations of

nectar intake by the bees.

Following their enrichment, equilibration counts of gamma

emissions were recorded for each individually marked honeybee

worker prior to their being returned to their natal hive. The hives

were all placed at the two Gnangara locations for six days during

the austral autumn (8–14 May 2015), after which the hives were

collected and destroyed, and the remaining isotope in the

marked bees was counted. Using the established relationship

between VCO2 and 86Rb kb, the FMR was estimated for each indi-

vidual. The total sodium content of each bee was measured by

ashing each bee and suspending the ash in 1 ml of distilled

water. Sodium concentrations of 100 ml aliquots were determined

using an IL143 flame photometer (Instrumentation Laboratories,

Bedford MA, USA) with internal lithium standardization.

Nectar intake of free-ranging bees was estimated from the

sodium turnover of each bee, calculated from the total 23Na con-

tent of each bee, multiplied by the 22Na kb. Assuming that the

bees are in sodium balance, daily nectar intake can then be esti-

mated by calculating the amount of nectar of known sodium

concentration needed to account for the observed 22Na kb.

(d) Statistics
Metabolic rate and radioisotope kbs measured during the laboratory

calibration were compared at both experimental Tas using Student

t-tests. Reduced major axis (RMA) regression analyses, using the

lmodel2 package [36], were used to calibrate VCO2 obtained from

flow-through respirometry with 86Rb kb by incorporating all

measurements from both experimental Tas into a single regression

set. Radioisotope kbs and climatic conditions (average daily Ta

and RH) were compared between field sites by analysis of variance

(ANOVA) where hive identity was nested within habitat types, and

blossom counts were compared between field sites using Student t-
tests. Average daily metabolic rates were estimated for both sites by

applying the RMA regression equations derived from laboratory

trials to the 86Rb kb measurements made in the field, and food

intake was calculated based on 22Na kb and nectar sodium concen-

trations. All statistical analyses were conducted using R v. 3.0.3 [37].

Values are given as mean+ s.e.m., and regressions were performed

using metabolic rates of cages as independent data points. The

number of independent samples is represented by n, while the

number of individual bees is represented by N.
3. Results
(a) Laboratory calibrations
Metabolic rate ( _VCO2) of the honeybees increased between

208C (3.94+ 0.631 mlCO2 d21, n ¼ 6, N ¼ 30) and 308C
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Figure 1. (a) Reduced major axis regression relationships of radio-isotopic
turnovers to V̇CO2 measured by respirometry against 2-day averaged 86Rb
kb of honeybees (r2 ¼ 0.67). Black points represent data collected at
208C, and white points at 308C. The line represents the average RMA
regression relationship, and dashed lines represent the 95% CI of the pre-
dicted V̇CO2, n ¼ 14, N ¼ 70. (b) Comparisons of honeybee 86Rb kb

correlation with metabolism (open circle) to the generalized relationship for
ectotherms adapted from [17] for Diposaurus dorsalis (diamond, r2 ¼ 0.74;
[14]), Bufo terrestris ( filled circle, r2 ¼ 0.73; [13]), and Xylotrupes gideon
(square, r2 ¼ 0.89; [17]). The solid line represents the previous regression
published for ectotherms (V̇CO2 ¼ 101�86 Rb kb –0:017, r2 ¼ 0.76), and
the dashed line represents the fit across all species with the inclusion of hon-
eybees (V̇CO2 ¼ 98:1�86 Rb kb –0:010, r2 ¼ 0.96, p ¼ 4.0 � 10237).
The two lines are not significantly different in slope, (F1,39 ¼ 1.42 �
1024; p ¼ 0.991), but have different intercepts (F1,41 ¼ 4.71; p ¼ 0.036).
All published regressions used to compile this figure were significant.
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(7.43+0.526 mlCO2 d21, n ¼ 8, N ¼ 40; t11 ¼ 4.2, p ¼ 0.001).

Over the two-day respirometry period, the 86Rb kb was sig-

nificantly higher at 0.18+0.02 per day at Ta ¼ 308C (n ¼ 8

replicates, N ¼ 40 individuals), than 0.03+0.01 per day at

Ta ¼ 208C (n ¼ 6, N ¼ 30; t11 ¼ 5.13, p ¼ 3.75 � 1024). The

calibration relationship between _VCO2 and 86Rb kb in the

honeybee was positive and significant (r2 ¼ 0.67, p ¼ 3.30 �
1024; figure 1a). The slope of this relationship was not signifi-

cantly different from the general ectotherm relationship noted

in [17] (F1,39 ¼ 1.42 � 1024; p ¼ 0.991; figure 1b).

(b) Field measurements
The hive locations were similar in their climate (table 1), and so

would impose similar thermo-energetic demands on workers’

foraging. The deforested landscape had fewer Banksia menziesii
inflorescences per kilometre transect (t ¼ 3.36, p ¼ 0.0100;
figure 2b), and no B. attenuata inflorescences. Nectar 23Na

concentration was measured for only two species for which

significant nectar volumes could be collected: B. menziesii
(21 mmol l21) and Calothamnus quadrifidus (18 mmol l21).

From the 13 recaptured bees that retained their individual

identification labels (20% recapture in the deforested land-

scape, and 13% in the natural landscape), we found a

significantly higher 86Rb kb and FMR in the undisturbed land-

scape than in the deforested landscape (9.9+0.94 ml CO2 d21

versus 6.8+1.08 ml CO2 d21; table 1). Similarly, the nectar

intake estimated from the turnover of 22Na kb was significantly

higher in the undisturbed than in the disturbed landscape

(164.6+31.0 ml d21 versus 65.9+27.4 ml d21 see table 1).
4. Discussion
We found that increased metabolic rates were associated with

increased radioisotope turnovers in the laboratory. Given that

VCO2 measurement by flow-through respirometry provides

the most accurate quantification of metabolic rate [38], and

that our respirometry data are consistent with previously pub-

lished honeybee metabolic rates [29,39,40], we conclude that

our laboratory calibration is accurate for honeybees. The corre-

lation between _VCO2 and 86Rb was statistically significant but

the correlation coefficient was lower than measured in studies

on larger ectotherms [13,14,17]. Enriching the bees via ingestion

resulted in lower levels of 86Rb enrichment than by injection

[17]. Future studies enriching their subjects this way should

increase the activity of 86Rb provided in the diet to ensure

higher enrichments and facilitate improved measurements,

because a more powerful enrichment increases the signal to

noise ratio of the gamma counter. During several pilot studies

we noted substantial re-enrichment of our laboratory bees

throughout the respirometry trials, and presume that this

resulted from excreted isotope being re-ingested. In a respiro-

metry chamber, where the bees were maintained on a liquid

diet, this was difficult to avoid, and probably contributed sub-

stantially to the lower r2 of our data compared with previous

reports, which nevertheless maintained a significant corre-

lation between 86Rb kb and _VCO2. The consensus between

our data and previous reports [17] suggests that 86Rb kb is a

useful and reliable method to infer FMR in invertebrate sys-

tems, and that the functional basis of the technique does not

differ between vertebrates and insects.

During the austral autumn in southwestern Australia

there are few floral nectar resources available, the most

obvious being two Banksia species. Assuming that honeybee

foraging activity does not change with landscape context

[41], lower floral abundance implies greater foraging effort

(higher FMR) by individual worker bees in the deforested

landscape in order to collect equivalent nectar resources to

those in the natural setting. Counter to our expectations, we

measured lower FMR in the deforested landscape than in

the natural woodland, and lower food intakes: both sugges-

tive of reduced levels of activity. There are two critical

caveats on this interpretation that bear future investigation.

While honeybee foraging activity appears consistent in differ-

ent landscape contexts [41], it is well known to fluctuate in

response to the quantity and quality of resources stored in

the hive [42–44]. While we assumed that our hives were

equivalently provisioned following their identical establish-

ment at the Shenton Park facility, we did not quantify this



Table 1. Ecophysiological correlates of the natural landscape and the deforested landscape. While there was no difference in the temperature (Ta) or relative
humidity (RH), there were more Banksia blossoms in the natural landscape on which the bees could forage. Very few other flowering resources were available.
As a result, both rubidium (86Rb) and sodium (22Na) isotope turnovers were higher in the natural landscape, suggesting that the honeybees were more active,
energetic foragers in this habitat. n.s. indicates non-significant comparisons.

Ta (88888C) RH (%)

Banksia blossom 86Rb kb
22Na kb

B. menzesii B. attenuata (ml CO2 d21) (ml nectar d21)

natural

25.5+ 0.15 40.8+ 0.26 157.2+ 39.43 2.4+ 1.03 0.28+ 0.008 (9.91+ 0.94) 0.49+ 0.02 (164.6+ 31.0)

deforested

19.0+ 0.11 56.9+ 0.28 19.8+ 10.80 0 0.15+ 0.013 (6.82+ 1.08) 0.21+ 0.03 (65.9+ 27.4)

n.s. n.s. t ¼ 3.36

p ¼ 0.0100

n.s. F1,9 ¼ 5.25

p ¼ 0.048

F1,9 ¼ 13.4

p ¼ 0.005
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Figure 2. Comparisons of natural (white bars) and deforested (black bars)
landscapes during the field trial of (a) predicted field metabolic rate based
on 86Rb kb, and (b) predicted nectar intake based on 22Na kb. Error bars
are 1 s.e.m. and significant differences ( p , 0.05) are represented by an
asterisk.
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(although all hives did have over three full frames of honey

and brood upon return to the laboratory). While it seems

unlikely, our random sampling of hives could have placed

the three most well-resourced hives in the deforested land-

scape, and the results may have been influenced to an

unknown extent in this way. Secondly, it is important to

bear in mind that our data suggest reduced levels of activity

by individual worker bees in the deforested landscape,

whereas at the hive level it is plausible that greater numbers

of workers could have been foraging at lower per capita rates.

Future studies could incorporate measurement of FMR with

measurements of hive activity (sensu [45,46]). While the be-

haviour of the colony as a ‘super-organism’ may (or may

not) offset the energetic constraint imposed by the environ-

ment upon its constituent individuals in ways that offer
rewarding scientific opportunites, our understanding of the

ecological energetic impacts of land-use change at the level

of the individual worker bee still offers some useful insights

and comparisons.

Few studies exist reporting the FMR of insects, but the FMR

that we measured for honeybees was higher than allometric

expectations for a ‘reptile’ the same size as our bees (cf. [47])

in both the undisturbed (673+45.8%) and the deforested land-

scapes (448+63.5%). Hymenopteran FMR may, however, be

substantially greater than expected for a ‘reptile’ of similar

size because nectivory and flight are rare or non-existent traits

in reptiles, but common in the Hymenoptera, and are typically

associated with high metabolic rates [48,49]. The FMR that we

measured for honeybees was much lower than that reported

in [50] for the bumblebee Bombus terrestris measured using

the DLW method. The FMR of the bumblebee was 16 000%

of allometric expectations. Similarly, in the validation study

underpinning their FMR data, [9] report metabolic rates that

are far in excess of those of our honeybees and are even twice

the FMR reported for hummingbirds [9,51]. Comparing our

data with bumblebees [50] implies that bumblebees have

very much higher energy requirements, foraging costs and

costs of transport than honeybees [52], which is plausible

on the basis of their wing loading being approximately

four times that of honeybees, depending upon which bee

populations are compared [53,54].

Sodium-22 kb has been used to measure food intake in a

number of vertebrate species [21,22,24,26,55–61], but ours is

only the second invertebrate reported [23]. We estimated

nectar intakes ranging from 65.9 to 164.6 ml d21 in deforested

versus natural habitats, respectively, which translates to daily

nectar intake ranging from 67 to 202 mg. This equates to food

intakes of roughly twice the body mass of the bees each day,

which is similar to the required intake of other, high-energy

nectivores [21,62]. Although consistent with other findings,

this intake rate requires verification with measurement of

honeybee foraging activity in different landscape contexts,

and with different floral resources.

The cost of living has always been quantified in terms of

metabolic rate [1,3,63], but projections from laboratory measure-

ments to ecological contexts have been based upon complex

statistical models, subtended by critical assumptions [64–67].

Although rarely undertaken, measuring FMR can test some

of these model projections [2]. Recent niche-envelope modelling
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[68] predicted an ADMR of 9.5+0.003 ml CO2 d21 in the 1 km

buffer of natural vegetation surrounding the hives, and 12.9+
0.005 ml CO2 d21 in the deforested landscape under similar cli-

matic conditions to our field study. The FMR that we measured

for honeybees in the natural landscape was 104.6% of model

projections of ADMR in the same landscape [68]. In natural

habitats, therefore, the model expectations of energetic require-

ment appear consistent with the actual energy expenditure of

actively foraging honeybees. In the deforested habitat, however,

the estimates from model projections were less consistent with

measured FMR and our actual measurements were only

52.5% of the model projections of ADMR [68]. These model pro-

jections, however, did not incorporate the social behavioural

adaptations that allow honeybees to accumulate stored

resources and modify their foraging activity on the basis of eco-

logical patterns of resource availability. We therefore conclude

that the use of radio-isotopic turnover can be a powerful tool

to test model estimations [2]. Testing model estimations with

field measurements in this way provides the means to identify

model uncertainties that otherwise may not be evident, even

in very high-resolution mechanistic models. Where modelling

approaches are used to inform conservation management,

field tests measuring FMR should be explored to improve extra-

polations of ecological energetics from the energetics of

individual animals [69,70].

(a) Methodological considerations
With greater societal awareness of the importance of undertak-

ing research with as little environmental and ecological impacts

as possible [71], it may be difficult to procure permits to release

radioactive animals into the wild. One of the great advantages

noted in previous reports of this technique is that the levels of

enrichment required to measure small animals constitute a frac-

tion of the internationally recognized safe limits of exposure of

1 mGyd21 [14,16,72]. In order to measure the FMR of free-

ranging insects, the levels of enrichment required are lower

again. Indeed, by the standards of the Radiation Council of

Western Australia, individual bees in this study did not reach

high enough levels of enrichment to be considered ‘radioactive’

under the legislation to which the Radiation Council is answer-

able. Furthermore, the rapid physical decay rate of the isotopes

that we used specify that no significant 86Rb would remain in
the dead bees after six months of storage, and 22Na levels

would deplete to background within 2 years. These advantages

of the technique have been discussed since the technique was

first explored [12–17].
5. Conclusion
Our data suggest that the bees behaved differently when

challenged by a less biodiverse, nutritionally depauperate

landscape. This provides some evidence to support speculations

that landscape context may have ecological energetic impacts

upon honeybee pollination capacity [2]. Questions remain

with regard to the landscape-level influences on the FMR of

solitary insect pollinators that may be prohibitively high in

heavily impacted landscapes for species unable to depend on

stored resources. We foresee that the future application

of radio-isotopic turnover techniques to study invertebrate

systems, particularly that of pollinators, has the potential to

revolutionize our current understanding of the energetics of

these vital ecosystem service providers.
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