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Abstract

More and more large cohort studies have conducted or are conducting genome-wide association 

studies (GWAS) to reveal the genetic components of many complex human diseases. These large 

cohort studies often collected a broad array of correlated phenotypes that reflect common 

physiological processes. By jointly analyzing these correlated traits, we can gain more power by 

aggregating multiple weak effects and shed light on the mechanisms underlying complex human 

diseases. The majority of existing multi-trait association test methods are based on jointly 

modeling the multivariate traits conditional on the genotype as covariate, and can readily 

accommodate the imputed SNPs by using their imputed dosage as a covariate. An alternative class 

of multi-trait association tests is based on the inverted regression, which models the distribution of 

genotypes conditional on the covariate and multivariate traits, and has been shown to have 

competitive performance. To our knowledge, all existing inverted regression approaches have 

implicitly used the “best-guess” genotypes, which is not efficient and known to lead to dramatic 

power loss, and there have not been any proposed methods of incorporating imputation uncertainty 

into inverted regressions. In this work, we propose a general and efficient framework that can 

account for the imputation uncertainty to further improve the association test power of inverted 

regression models for imputed SNPs. We demonstrate through extensive numerical studies that the 

proposed method has competitive performance. We further illustrate its usefulness by application 

to association test of diabetes-related glycemic traits in the Atherosclerosis Risk in Communities 

(ARIC) Study.
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1 Introduction

Genetic studies often collect multiple phenotypes, which could be analyzed jointly to 

increase power by aggregating multiple weak effects and provide additional insights into the 

etiology of complex human diseases (Solovieff et al., 2013). Existing multi-trait association 
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test methods (see, e.g., Ferreira and Purcell, 2009; Liu et al., 2009; Yang et al., 2010; 

Rasmussen-Torvik et al., 2010; O’Reilly et al., 2012; Tang and Ferreira, 2012; van der Sluis 

et al., 2013; He et al., 2013; Schifano et al., 2013; Stephens, 2013; Seoane et al., 2014) can 

be broadly classified into two categories. The first one is based on jointly modeling the 

multiple correlated outcomes with some multivariate regression models. Another novel 

approach is based on the inverted regression model, where the genotypes are regressed on 

the covariates and multivariate outcomes to estimate and test the multi-trait associations and 

typically some ordinal multinomial regression model is used. For example, O’Reilly et al. 
(2012) adopted the proportional odds model (POM), and Wu and Pankow (2015) proposed 

the adjacent category logit (ACL) model. For the multivariate regression based approach, it 

is straightforward to accommodate the imputed SNPs by using their imputation dosages as 

the covariate. While for the inverted regression approach, to our knowledge, all existing 

methods have implicitly used the “best-guess” genotypes, which is not efficient and known 

to lead to dramatic power loss, and there have not been any proposed methods in the 

literature that can incorporate the imputation uncertainty into inverted regressions. We 

propose a general and efficient GEE modeling approach to extending the inverted regression 

model to multi-trait association test of imputed SNPs.

2 Materials and Methods

2.1 Genotype based multinomial regression model

Consider a collection of continuous traits Y = (y1, … , ym)T, a p-vector of covariates X to be 

adjusted (which could contain both ancestry and non-ancestry covariates, e.g., ancestry 

principal components, age and gender), and a genotype score G (number of minor alleles). 

Assume the multivariate normal trait model, (Y |G,X) ~ N(γ0 + γXX + γG, Σ), where γ0 is 

a m-vector, γX is a m × p matrix, γ is a m-vector, and Σ is a m × m covariance matrix. The 

null hypothesis of multi-trait association is H0 : γ = 0. When modeling the population 

genotype distribution Pr(G|X) with a logistic regression model (it holds when, e.g., the 

genotypes follow the Hardy-Weinberg equilibrium within each ancestry population), we can 

derive an adjacent-category logit model (ACL) (Wu and Pankow, 2015)

(1)

where ϕg = Pr(G = g|X, Y ) is the conditional genotype distribution probability, βX is a p-
vector, and β is a m-vector (specifically β = Σ−1γ). The multi-trait association amounts to 

testing H0 : β = 0. A closely related approach is the MultiPhen method (O’Reilly et al., 
2012), which assumed the proportional odds model (POM) for analyzing the three genotypes

(2)
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The multi-trait association amounts to testing H0 : β̃ = 0. In general the POM provides a 

good approximation to the ACL, and two approaches have similar performance for directly 

genotyped/observed SNPs (Wu and Pankow, 2015). We want to remark that the inverted 

regression approach has assumed that the genotypes are directly observed, and all existing 

methods have implicitly used the “best-guess” genotypes for imputed SNPs. For both the 

inverted regression and multivariate regression models, the main parameters of interest are a 

vector of length m. The inverted regression model has smaller number of nuisance 

parameters, p+2, compared to the multivariate regression model, m+mp+m(m+1)/2.

2.2 Genotype imputation

To facilitate SNP association studies and across studies meta-analysis, many ungenotyped 

SNPs are typically imputed based on outside reference panel of existing samples, e.g., the 

HapMap and 1000 genome project (Browning and Browning, 2009; Howie et al., 2009; Li et 
al., 2010). These imputation approaches rely on the intuition that individuals can share short 

stretches of haplotypes inherited from distant common ancestors. Once these stretches are 

identified using those genotyped SNPs, alleles for intervening SNPs that are not genotyped 

in the individuals can then be imputed based on those individuals with measured SNPs (i.e., 

reference panel samples) (Li et al., 2009, 2010). The typical imputation takes as input those 

haplotypes for polymorphic markers in the reference panel (e.g., the phased HapMap or 

1000 genome chromosomes), and those directly genotyped markers in the individuals to be 

imputed. The sequence of markers are modeled as a mosaic of the set of reference 

haplotypes based on a Hidden Markov Model (HMM) (Li and Stephens, 2003; Stephens and 

Scheet, 2005). In the HMM, the reference haplotypes are treated as the hidden states, and the 

genotyped markers are treated as the observed signals. The HMM parameters are estimated 

iteratively and missing genotypes are sampled at each iteration based on the current HMM 

estimates. The sampled genotype counts over all iterations are aggregated together to give an 

indication of the relative probability of observing each possible genotypes (Li et al., 2010). 

The relative fractions of three genotypes comprise the imputation scores for an imputed 

SNP.

In the following, we develop two modeling approaches to incorporating the imputation 

scores into the inverted regression. The first approach is rooted in the weighted multinomial 

regression approach with robust GEE covariance estimates (Lipsitz et al., 1994; Preisser et 
al., 2002). The second approach is based on the fractional multinomial regression modeling 

(Murteira and Ramalho, 2014), which is very suited to model the imputed genotype 

proportions. We will further show that these two modeling approaches are equivalent.

2.3 Association test of imputed SNPs: weighted multinomial regression

We develop a computationally fast weighted regression approach, where the imputation 

scores are treated as weights. Since the same sample will be used three times (for the three 

genotype scores), we need to take into account their dependence in the estimation of 

parameter covariance. The model-based covariance estimate from the independent weighted 

regression will under-estimate the variation. We propose to use the robust GEE sandwich 

covariance (Liang and Zeger, 1986). Specifically here we adopt the approach of Lipsitz et al. 
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(1994) for modeling the multinomial outcomes, and the modeling framework of Preisser et 
al. (2002) for incorporating weights in the GEE.

For a collection of n unrelated individuals, denote Xi as the covariate, and Yi as the m-vector 

of outcomes for sample i = 1, … , n. Consider testing association of an imputed SNP. For the 

i-th sample, denote (pi0, pi1, pi2) as the imputation scores (posterior probabilities) of 

genotype 0, 1, 2. Denote Pr(Gi = k|Xi, Yi) = ϕik, i = 1, … , n,k = 0, 1, 2. We convert the 

genotype score into a bivariate indicator of being the first two genotypes: the genotype 

scores 0/1/2 are coded as (1,0), (0,1), (0,0) respectively. For the i-th sample, the three 

imputed genotypes (0,1,2) are represented by the working vector Gi = (1, 0, 0, 1, 0, 0)T. We 

define a probability vector μi = (ϕi0, ϕi1, ϕi0, ϕi1, ϕi0, ϕi1)T. Denote the imputation score 

matrix Wi = diag(pi0, pi0, pi1, pi1, pi2, pi2). Assume a block-diagonal working covariance 

matrix Vi with the 2×2 diagonal blocks equal to diag(ϕi0, ϕi1)–(ϕi0, ϕi1)T (ϕi0, ϕi1), which is 

the multinomial covariance matrix. Denote θ as the collection of all model parameters. We 

use the following estimating equations for model estimation and inference

(3)

The robust sandwich covariance of θ̂ can then be computed as , 

where  and we plugin the estimated θ̂.

Let θ2̂ denote the m-vector of estimated regression parameters of main interest for the 

multivariate traits Y (i.e., β in the ACL and β̃ in the POM). Denote the corresponding 

covariance of θ̂2 as V. The statistic , which asymptotically has a null m-DF chi-

square distribution, can be used to test the multi-trait association. When genetic effects are 

similar across traits, we can further improve the multi-trait association test power using a 1-

DF statistic to test linear combinations of θ2 following the line of O’Brien (1984). To test 

the similar or similar scaled effects across different traits, we propose the test statistics: 

, where 1m is a column vector of m ones, S = [diag(Σ̂0)]½, and Σ̂0 is computed as the sample 

covariance matrix of residual vector of regressing Y on X (see Appendix for details). Their 

significance p-values can be computed based on the standard normal distribution. This 

generic GEE modeling approach can be readily generalized to analyze imputed SNPs using 

any inverted regression methods.

In the following, we show that the proposed GEE modeling approach is equivalent to a 

fractional multinomial regression model, which provides more intuitive justifications to 

model the imputed genotype scores.
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2.4 Genotype based fractional multinomial regression model

For the ith individual, note that its imputation scores (pi0, pi1, pi2) tell the relative fractions 

of three genotypes under ideal repeated sampling: for N individuals with the same 

characteristics (including covariate values) as the ith individual, N(pi0, pi1, pi2) will be the 

observed counts of three genotypes, and naturally we can model them with a three-category 

multinomial distribution. Thus we can model the imputation scores with a multinomial 

distribution based quasi-likelihood, , and study the following quasi-

likelihood for parameter estimation, . This model is also known as the fractional 

multinomial regression model (Murteira and Ramalho, 2014). We maximize L to obtain the 

quasi-maximum likelihood estimates (QMLE) for parameters, θ̃ = arg maxθ L, and compute 

its asymptotic covariance matrix based on the GEE as follows. Denote 

. The estimator θ̃ is obtained by solving estimating equations 

, and its robust sandwich covariance matrix can then be computed as Ṽ = 

B̃−1ΩB̃−1, where , and  and we plugin the estimated 

θ̃. We can show that this QMLE will lead to the same estimates as the previous weighted 

GEE approach. Specifically we can show that Ũi = Ui (see appendix for technical 

derivations). This QMLE can be cast into a weighted multinomial regression model and can 

be readily and quickly solved using existing software.

Previous derivations have assumed the additive genetic model, and they can be easily 

extended to recessive and dominant genetic models (see Supplementary materials).

In the following we conduct simulation studies to investigate the performance of the 

proposed methods for testing the multi-trait association of imputed SNPs.

3 Simulation study

We simulate a standard normal covariate X1 and an ancestry Bernoulli covariate X2 with 

probability of 0.5 (population indicator). The SNP genotype G is simulated from a Binomial 

distribution, Binom(2,f0), where the minor allele frequency (MAF) f0 = p0 + p1X2. We 

conducted simulations for testing m related traits of 1,000 unrelated individuals. Each time 

we simulate the m traits from a multivariate normal distribution with a compound symmetry 

correlation matrix with correlation ρ. The first trait has a variance of 2 and all the other traits 

have unit variance, . We set E(Yk) = 1 + 0.5X1 + 0.5X2 + γkG for odd index 

k, and E(Yk) = 1+X1 + X2 + γkG for even index k. For a given SNP G, we simulate its 

imputation probabilities from the Dirichlet distribution with parameters (α0, α1, α2), where 

αG = τ and αg = (1 − τ )/2 for g ≠ G, with larger τ reflecting higher imputation accuracy. We 

used 106 experiments to evaluate the type I error, and 104 experiments to evaluate the power 

under various combinations of (γ1, … , γm). We conducted simulations for various 

parameter settings. Here we reported the results for m = 4, p0 = 0.3, p1 = 0.1, ρ = 0.2, 0.5, 

and τ = 0.8, 0.95. The conclusions remain the same for other settings.
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We studied the two inverted regression methods, the ACL and POM based GEE tests. For 

comparison we included the multiple linear regression model (MLM) based efficient GEE 

score tests (Avery et al., 2011; He et al., 2013), which have been shown to appropriately 

control the type I errors and have the overall best performance compared to the other 

methods (e.g., TATES of van der Sluis et al., 2013 and other univariate test based methods) 

in extensive numerical studies. All methods reported three p-values based on the m-DF 

omnibus test and two 1-DF tests assuming common or common scaled effects. Denote the 

respective three tests as (Qa, Ta, ) for ACL GEE test, (Qo, To, ) for POM GEE test, and 

(Qs, Ts, ) for the MLM GEE test. We use the imputed dosage as a covariate in the MLM 

GEE tests. In the appendix, we technically show that the MLM GEE tests are essentially 

based on a joint model of the multivariate traits with the imputation dosage as a covariate. 

As a by-product, we derive very fast numerical algorithms for genome-wide association test. 

For illustration, we also include the naive approach of modeling the “best-guess” genotypes 

for the two inverted regression methods, denoted as (Q̃
a, T̃

a, ) for the ACL, and (Q̃
o, T̃

o, 

) for the POM respectively.

Table 1 summarizes the estimated type I errors. Overall we can see that for the two inverted 

regression (ACL and POM) based tests, using the “best-guess” genotypes leads to slightly 

conservative type I errors compared to their corresponding GEE tests that properly account 

for the imputation uncertainty. The ACL “best-guess” tests are generally more conservative 

compared to the corresponding POM “best-guess” tests, which control the type I error rate 

reasonably well. All ACL based tests appropriately control the type I errors. The POM GEE 

tests have slightly inflated type I errors at small significance level. The MLM GEE tests have 

well-controlled type I errors.

Table 2 and 3 summarize the power under τ = 0.8 and τ = 0.95 respectively. The 1-DF tests 

are the most powerful when either γj or γj/σj are close to each other. Not surprisingly using 

the “best-guess” genotypes leads to power loss for the two inverted regression (ACL and 

POM) based tests especially under lower imputation accuracy. The ACL GEE tests have 

comparable performance as the MLM GEE tests under relatively high imputation accuracy 

(τ = 0.95). For imputed SNPs with less accuracy (τ = 0.8), the ACL GEE tests have 

improved power compared to the MLM GEE tests. Overall the POM GEE tests have the 

largest power among all methods, which need to be interpreted with caution since POM 

GEE tests have slightly inflated type I errors as we have shown in Table 1. Under the same 

imputation uncertainty, when multiple traits have similar genetic effects, all tests have larger 

power under ρ = 0.2 compared to ρ = 0.5; while when genetic effects are different across 

traits, all tests have larger power under ρ = 0.5 compared to ρ = 0.2. Here joint multi-trait 

association test works well when combining highly correlated traits with heterogeneous 

genetic effects or lowly correlated traits with similar genetic effects.

We also performed simulation studies for less frequent and rare MAF (0.1, 0.05, and 0.01). 

The complete results are available at the supplementary materials. The overall conclusions 

remain the same.
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4 ARIC GWAS of diabetes-related glycemic traits

The Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators, 1989) is a 

multi-center prospective investigation of atherosclerotic disease in men and women aged 45–

64 years at baseline. They were recruited from four U.S. communities: Forsyth County, 

North Carolina; Jackson, Mississippi; suburban areas of Minneapolis, Minnesota; and 

Washington County, Maryland. A total of 15,792 individuals participated in the baseline 

examination in 1987–1989. The vast majority of ARIC participants are of European (73%) 

or African ancestry (26%). Among 15,792 ARIC participants, we jointly analyzed the four 

fasting glucose levels of 5947 genotyped ARIC white participants who were non-diabetic at 

four visits measured approximately three years apart. Excluded from the analysis are a total 

of 9845 participants due to the following reasons: (1) 4314 participants are non-white; (2) 

2751 participants do not complete all four visits; (3) 1556 participants have diabetes 

diagnosis or unknown diabetes status at any of the four visits; (4) 373 participants have no 

fasting glucose measurements for at least one of the four visits; (5) 851 participants do not 

have GWAS data. All ARIC participants have complete information on age, gender, and 

study center. The ARIC Study design, plasma glucose measurement, genotyping and other 

covariates have been described previously (Rasmussen-Torvik et al., 2010). The glucose 

levels had an average correlation of 0.55 between visits. We applied an additive genetic 

model and adjusted for age, gender and study center (population indicators).

For illustration, we analyze those typed and imputed SNPs in chromosome 1 and 2. We test 

those common SNPs with MAF ≥ 0.05 and imputation R2 ≥ 0.3, which leads to 163,048 and 

189,023 SNPs in chromosome 1 and 2 respectively. There were no identified genome-wide 

significant SNPs (p-value ≤ 5 × 10−8) for chromosome 1, and multiple significant SNPs for 

chromosome 2. Specifically for the three tests: the m-DF omnibus test, and two 1-DF tests 

assuming common or common scaled effects, the ACL GEE tests (Qa, Ta, ) identified 56, 

60, and 60 significant SNPs, the POM GEE tests (Qo, To, ) identified 56, 56, 59 SNPs, and 

the MLM GEE tests (Qs, Ts, ) identified 56, 59, 60 SNPs. All the identified SNPs are 

genome-wide significant in a meta-analyses of 21 fasting glucose GWAS with around 

46,186 non-diabetic participants conducted by the MAGIC Consortium (Dupuis et al., 

2010). Compared to the MLM test , the ACL test  identified one additional genome-

wide significant SNP, rs1260326, with p-value of 3.3 × 10−8. The p-value reported by the 

MAGIC meta-analysis of fasting glucose was 4.3 × 10−13. Compared to the POM test To, 

the ACL test Ta identified four additional genome-wide significant SNPs, rs1260326, 

rs574981, rs549410 and rs550151, with p-values of 3.3×10−8, 9.1×10−9, 9.1×10−9, and 

7.5×10−9 respectively. Their respective p-values reported by the MAGIC meta-analysis of 

fasting glucose were 4.3 × 10−13, 8.6 × 10−14, 1.7 × 10−13, and 1.2 × 10−13.

All identified significant SNPs in chromosome 2 are imputed with imputation R2 in the 

range of 0.90 to 0.9998. To our knowledge, all previous inverted regression approaches have 

implicitly used the “best-guess” genotypes. When using the “best-guess” genotypes, 

missed one significant SNP, rs1260326,  missed three significant SNPs, rs574981, 
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rs549410 and rs550151, and  missed one SNP, rs1260326, at the genome-wide 

significance level, compared to their corresponding GEE tests using the imputation scores.

The QQ-plots of p-values for chromosome 1 and 2 SNPs are shown in figure 1 and 2 

respectively. We also compute the genomic control (GC) parameters, which are the mean of 

the 1-DF chi-square test statistics, and the mean of the 4-DF chi-square test statistics scaled 

by four. The three methods have similar GC values: 1.01–1.02 for chromosome 1 and 1.04–

1.10 for chromosome 2.

5 Discussion

Most existing GWAS have primarily focused on testing single trait associations, which have 

led to discovery of many genome-wide significant variants for many human diseases and 

traits. However for most complex human diseases and traits, the explained heritability or 

trait variance by these identified variants still remain very small, which indicates significant 

“missing heritability” and yet more variants with small or moderate effects to be discovered. 

Recently there have been many efforts of conducting joint association test of correlated traits 

that reflect common physiological processes to identify more interesting genetic variants and 

provide additional insights into the disease etiology. Testing multiple correlated traits can 

aggregate weak variant effects to improve the genetic association test power. Among the 

existing multi-trait association test methods, the inverted regression approach models the 

conditional distribution of genotypes on covariates and multivariate traits, and provides a 

convenient and powerful approach with competitive performance. However it is not 

straightforward to analyze imputed SNPs for the inverted regression models in contrast to 

the trait based regression modeling approach, which can readily use the imputed dosage as 

covariate. In this paper, we proposed a general GEE based inverted regression modeling 

method to appropriately and efficiently test the multi-trait association of imputed SNPs. We 

show that the naive approach of analyzing “best-guess” genotypes could lead to dramatic 

power loss, while the proposed GEE based modeling approach offers much improved power 

and has comparable or larger power compared to the dosage based trait regression modeling 

approach.

For genome-wide association analyses, speed and robustness are both key issues. The 

proposed GEE modeling approach is robust and computationally fast. It is worthwhile to 

explore the likelihood based approach (e.g., mixed effects modeling approach or more 

generally likelihood ratio test based approach), which could bring more power under correct 

model assumptions than the typically Wald test based GEE modeling approach.

In this paper, we have focused on the multiple continuous traits association test of single 

variants. It is worthwhile to extend the inverted regression methods to association test at the 

gene level (Guo et al., 2013; van der Sluis et al., 2015), and generally to joint association test 

of mixed outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Equivalence of QMLE and weighted GEE estimates

In the weighted GEE approach, the three imputed genotypes (0,1,2) are represented by the 

working vector Gi = (1, 0, 0, 1, 0, 0)T for the i-th sample. Denote a probability vector μi = 

(ϕi0, ϕi1, ϕi0, ϕi1, ϕi0, ϕi1)T. Denote the imputation score matrix Wi = diag(pi0, pi0, pi1, pi1, 
pi2, pi2). Assume a block-diagonal working covariance matrix Vi with the 2 × 2 diagonal 

blocks equal to Ai = diag(ϕi0, ϕi1) − (ϕi0, ϕi1)T (ϕi0, ϕi1), which is the multinomial 
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covariance matrix. Denote θ as the collection of all model parameters. The weighted GEE 

for the i-th sample is defined as , where . First note that

and we can check that , and 

. Therefore we have

Note that ϕi2 = 1 − ϕi0 − ϕi1, and hence we have

GEE score test of multiple continuous traits

Here we show that for multiple continuous traits, the MLM GEE test of He et al. (2013) is 

essentially based on a joint model of the multivariate traits with imputation dosage as a 

covariate. Given the observations, denote the n × p covariate matrix as X (intercept 

included), the genotype dosage vector as G, and the kth outcome vector as Yk, k = 1, … , K. 

Consider the following joint multivariate linear regression model, Yk = Xαk + Gβk + Ek, 

where Ek = (εk1, … , εkn)T. We model the error vector with a zero-mean multivariate normal 

distribution with  and Corr(εki, εli) = ρkl. Denote the n × n projection matrix H 
= X(XTX)−1XT. The scaled score statistic for testing βk is uk = (Yk − HYk)TG/σ̂

k. Denote the 

score vector U = (u1, … , uK)T. Note that we can equivalently write . 

Hence we have asymptotically Var(uk) = ||G−HG||2, and Cov(uk, ul) = ||G−HG||2ρkl. The 

MLM GEE test is based on U and its estimated covariance, , which 

asymptotically follows a K-DF chi-square distribution under null. He et al. (2013) 

consistently estimated  based on the efficient score vectors (Lin, 2005a,b). We can 

easily verify that the efficient score vectors are Zk = (Yk − HYk) ∘ (G − HG)/σ̂
k, where ∘ is 

the Hadamard product (matrix element-wise product). Note that the residual vectors Yk – 
HYk and H can be pre-computed, and we just need to compute G – HG to test the genome-

wide multi-trait associations.
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1-DF multi-trait association test

Consider U = aT θ̂2. U asymptotically follows a normal distribution, U ~ N(aT η, aTV a), 

where η is the true value of θ2. For the ACL (1), we have θ2 = Σ−1γ, where Σ is the 

covariance matrix of Y and γ is the corresponding marginal genetic effects. For the POM 

(2), we assume θ2 ≈ Σ−1γ since the POM approximates the ACL. Assuming a common 

genetic effect for all traits, we have η = νΣ−11m. The effect size of U is then proportional to 

ν(aTΣ−11m)/(aTV a)½ = νbTV −½Σ−11m, where b = V ½a/(aTV a)½ (note bT b = 1). Taking b 
∝ V −½Σ−11m will maximize the effect size. Therefore we use the following statistic 

. With a common scaled genotype effect for 

all traits, we have η = νΣ−1S, where S = [diag(Σ)]½. Similarly we can derive T′ = 

STΣ−1V−1θ̂2/(STΣ−1V−1Σ−1S)½. In practice we estimate Σ by Σ̂0, the sample covariance 

matrix of Ỹ, the residual vector of regressing Y on X.
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Figure 1. 
QQ-plot for SNPs in chromosome 1.
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Figure 2. 
QQ-plot for SNPs in chromosome 2.
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