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Most bacterial habitats are topographically complex in the micro scale. Impor-

tant examples include the gastrointestinal and tracheal tracts, and the soil.

Although there are myriad theoretical studies that explore the role of spatial

structures on antagonistic interactions (predation, competition) among

animals, there are many fewer experimental studies that have explored, vali-

dated and quantified their predictions. In this study, we experimentally

monitored the temporal dynamic of the predatory bacterium Bdellovibrio
bacteriovorus, and its prey, the bacterium Burkholderia stabilis in a structured

habitat consisting of sand under various regimes of wetness. We constructed

a dynamic model, and estimated its parameters by further developing the

direct integral method, a novel estimation procedure that exploits the separ-

ability of the states and parameters in the model. We also verified that one

of our parameter estimates was consistent with its known, directly measured

value from the literature. The ability of the model to fit the data combined with

realistic parameter estimates indicate that bacterial predation in the sand can

be described by a relatively simple model, and stress the importance of prey

refuge on predation dynamics in heterogeneous environments.
1. Introduction
The topography of most bacterial habitats is complex in the micro scale. The

gastrointestinal, tracheal tracts and the soil are important examples. Previous

studies showed that heterogeneous habitat may alter the interaction between bac-

teria and their prey and promote coexistence, mainly due to prey refuge [1–3].

Prey refuge may occur due to the existence of bacterial post-predation debris

[1], the existence of habitat fixed structures (soil particles, [2]), or self-organized

ones, such as variable prey and predator densities and biofilms [2–4]). Thus,

exploring the role of spatial structures in the interaction between sympatric micro-

organisms such as bacteria and their predators/parasites can be of fundamental

importance to microbial ecology, epidemiology and agronomy [5,6].

Although there are a myriad of theoretical (mathematical modelling) works

that explore the role of complex spatial structures on antagonistic interaction

among animals (e.g. competition, predation and parasitism), there are many

fewer experimental studies that explore, validate and quantify their predictions

[7–9]. For example, most evidence of the effect of prey refuge on the temporal

dynamics of predator–prey systems are based on theoretical works and
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simulations [1,2,7,8], while only few experimental set-ups have

found evidence that refuge indeed promotes coexistence [3,4].

One of the main reasons for this mismatch is the practical dif-

ficulty in terms of resources and time needed to manipulate

natural habitats into experimental set-ups, which enable

quantification and hypothesis testing. In this context, microbial

habitats can be much easier to control compared with macro

ecological systems due to their smaller size and the shorter

generation time of microorganisms [10].

In this study, we quantify the dynamics of the predatory

bacterium Bdellovibrio bacteriovorus and its prey, Burkholderia
stabilis st.2 in soil. Bdellovibrio bacteriovorus belongs to the

Bdellovibrio and like organisms (BALOs), a group of bacterial

predators that prey upon Gram-negative bacteria and can be

found in various environments like soil, fresh and marine

water, and animal guts [11]. The life cycle of BALOs includes

a highly motile free-living phase that searches for an appropri-

ate prey. Upon encounter, the predator penetrates the prey

periplasm and converts it into a bdelloplast that provides nutri-

ent and shelter to the predator during its growth and division

to progeny cells, that finally burst out to start a new cycle. Pre-

dation by BALO has a lot in common with bacteriophage

parasitism: in both cases, infectious particles invade a host

cell, which finally dies while emitting more infectious particles

into the environment. However, unlike BALOs, which typically

kill and consume their victims, phages can either engage in a

lytic cycle or stay inactive for a long period.

During the past decades, several mathematical methodolo-

gies have proposed ways to incorporate spatial heterogeneities

into population dynamics models. The most important ones

include the use of partial differential equations (e.g. reaction–

diffusion models), coupled map lattices, spatial moments and

metapopulation models [7,12–15]. These models are usually

difficult to analyse and parametrize, and it is difficult to draw

general conclusions. Consequently, attempts have been made

to formulate simpler frameworks, also known as ‘strategic

models’ [16] which use low dimensional ordinary differential

equations (ODEs) that have fewer parameters, and are thus

easier to analyse and interpret. These models capture some

features regarding the complex role of space in population

dynamics by using implicit spatial parameters [17]. In addition,

the limited number of parameters in strategic models facilitates

their estimation even in cases of a limited amount of data.

Fitting models to time-series data has become standard

practice in epidemiology [18–26], while in ecology it is much

less used, due mainly to the lack of sufficient data. Nevertheless,

some important theoretical and practical contributions include

[27–30]. Fitting a differential equation model to empirical data

is usually done by maximum-likelihood, nonlinear least-

squares or Bayesian methods. Although maximum-likelihood

estimation has desirable statistical properties, currently, there

is no method (either numerical or analytical) which can

assure optimal parameter estimates. The likelihood function

is often multivariable, and may have complicated surfaces

with several local minima, maxima and saddle points, all of

which (provided that they are interior points) may lead to

local convergence by the optimization algorithms. Finding the

maximum-likelihood estimators can therefore be highly depen-

dent on the chosen initial values used in the optimization

algorithm, thus making the search for acceptable optimum

computationally demanding and complex.

To quantify the dynamics of the predatory bacteria

B. bacteriovorus and its prey, Bu. stabilis st.2 in soil, we
constructed a ‘strategic’ dynamic model, fitted it to data in

order to study its dynamical behaviour in different soil humid-

ity and estimated its parameters. The model describes the

predation between a predator and a bacterial prey strain, and

more generally, explores the role of complex spatial structures

on predator–prey interaction in a microbial system. The

model is relatively simple, and captures the effect of spatial

structures implicitly via a special refuge parameter (see model

description for further information). The model was fitted to

the experimental data by further developing and optimizing a

novel statistical procedure; specifically, we used a direct integral

approach that exploits the separability of state equations

and parameters, thus overcoming the difficulty of exploring

complex likelihood parameter space. Model validation was

done by fitting the model to data and contrasting some of our

estimated parameters with their known values from the litera-

ture, thus providing additional confidence to both model

representative and statistical methodology abilities.
2. Data and experimental design
Soil microcosm experiments: 10 g of fine sand was used to con-

struct microcosms in flasks. Each flask was inoculated with a

suspension of the B. bacteriovorus 109 J predator (2 � 106

plaque forming units, PFU �ml21) and of the Bu. stabilis st.2

prey (1� 108 colony forming unit, CFU �ml21) and water to

create microcosms with different water contents (WC, w/w)

ranging from 100% (fully saturated) to 20%. Treatments were

in triplicate. The vials were sealed and incubated at 288C. At

selected time points (8, 12, 24, 36, 48, 96 and 168 h), the total

volume of water in each flask was adjusted with HEPES

buffer by weight, to reach 100% WC, mixed and the liquid

was removed from the flask to a sterile test-tube. In total,

50 ml from this was taken for dilution plating to measure the

concentration of the predator and of the prey in each sample.
3. Model description
As noted earlier, the interaction between the BALO and its

prey resembles the dynamics of phage–bacteria. We therefore

adopted a designated modelling framework developed

previously for this type of system [31–34], and further devel-

oped it to fit the above experimental set-up. In this

framework, ODEs are used to model the dynamics of

the system which includes free predators, P, prey, N, and

predator–prey complexes (the bdelloplast), C. In ours and

similar systems (like phage–bacteria), the time it takes the

predator to handle its prey (i.e. searching and invading it to

form bdelloplast) is of the same order as the time it takes for

the consumed prey items to be converted into new predators

(i.e. reproduction). To account for this dynamics, we explicitly

modelled them in a separate compartment.

The separate complex compartment therefore models the

delay between the predator invasion and the burst of the

bdelloplast (which releases the predator progeny) as was pro-

posed in some earlier models [31,33,34]. The dynamics of

these compartments are described by

P0ðtÞ ¼ ksCðtÞ � dPðtÞ,
C0ðtÞ ¼ aðNðtÞ � rÞPðtÞ � sCðtÞ

and N0ðtÞ ¼ �aðNðtÞ � rÞPðtÞ,

9>=
>; ð3:1Þ
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where the notation P0(t) stands for dP/dt, and the same for C
and N. In equation (3.1), the predators are produced at the rate

ksC (first equation in (3.1)), where k is the number of predatory

bacteria emitted by one bdelloplast (multiplication factor) and

s is the bdelloplast decay rate. We assume for simplicity that

the predator has a density-independent death rate, d, and

the complex formation rate can be approximated using the

classical mean field assumption, i.e. it is equal to aNP [35].

To account for the prey refuge dynamics, we add an additional

new parameter, r, denoting refuge prey density, which is not

available to the predator. Prey refuge may occur in our set-

up due to habitat spatial heterogeneity consisting of soil

grains [1,2]. The formation rate of bdelloplast complexes is

therefore updated here to be a(N 2 r)P, where a is the inter-

action (contact) rate. Because in our system the prey is not

supplied with nutritional substrate, it neither reproduces nor

dies (its death rate is too low to be accounted for in our exper-

imental timescale). Thus, the only prey loss in the model is due

to predation, i.e. a(N – r)P.

In order to assess whether the model can capture the

predator–prey dynamics in a heterogeneous environment

and to estimate the model parameters, we further develop

the direct integral approach [36,37]. Indeed, testing the model

both qualitatively and quantitatively (i.e. estimating the para-

meters based on experimental data) is of interest to several

disciplines, including microbial ecology, theoretical ecology

(modelling) and statistics. Furthermore, in our case, the con-

version ratio k, has been previously measured directly and

independently in designated experiments. Our estimations

can therefore be contrasted with a ‘gold standard’ value, thus

enabling the validation of the model and its proper interpret-

ation (i.e. that the model parameters indeed represent what is

commonly believed).
4. Estimating model parameters using the direct
integral method

4.1. Background
We denote a system of ODEs by

x0ðtÞ ¼ FðxðtÞ; uÞ, t [ ½0,T�
and xð0Þ ¼ j,

)
ð4:1Þ

where x(t) takes values in Rd,j in J , Rd, and u in Q , Rp:

Given known values of j and u the solution of (4.1) is

denoted by

xðtÞ ¼ xðt; u, jÞ, t [ ½0, T�:

The common statistical model assumes that measurements

are collected at a series of time points t1, . . . ,tn, each of

them includes a signal and an additive error term,

YjðtiÞ ¼ xjðti; u, jÞ þ eij, i ¼ 1, . . . ,n,j ¼ 1, . . . ,r, r � d, ð4:2Þ

where the random variables eij are independent measurement

errors (not necessarily Gaussian) with zero mean and finite var-

iance. As is the case with the experimental study considered in

this work, we allow the system to be only partially measured

and thus r� d. Based on the observation Yj(ti), i¼ 1, . . . ,n, j¼
1, . . . ,r one could estimate the parameters u. In cases where the

initial values j are not known, one would also like to estimate

them. However, here the initial values are known and therefore

are not discussed further in this paper.
As in most biological models, the ODEs (4.1) are non-

linear and therefore numerical integration techniques are

required in the estimation process. For instance, the nonlinear

least-squares estimator of u is defined as a minimizer of the

least-squares criterion function

Xr

j¼1

Xn

i¼1

ðYjðtiÞ � ~xjðti; u, jÞÞ2:

Here, ~x is a numerical solution (e.g. using Runge–Kutta) of the

ODEs equation (4.1) for a given parameter and initial values.

Thus, estimation methods such as nonlinear least-squares or

maximum-likelihood require the system to be solved numeri-

cally for a large set of potential parameters values, and then

choosing an optimal parameter using some nonlinear optimiz-

ation technique. However, the combination of sparse and noisy

data, nonlinear optimization and the need for numerical inte-

gration makes the parameter estimation a complex task (even

for systems of low dimensions, e.g. [38]), and in many instances

requires heavy computation. In recent years, the inverse pro-

blem of parameter estimation for ODEs has received growing

attention in the statistical literature. In particular, much focus

has been given to developing estimation methods that bypass

the need for numerical integration (see [39] and the discussion

therein; [40–44], and more recently [36,37,45,46]).
4.2. The direct integral approach
Below, we further develop the direct integral approach. The

method is an extension of ‘two-step’ approaches [47,48] that

include step (i): bypassing numerical integration by using

non-parametric smoothing of the data, and step (ii): estimating

the parameters by fitting the ODEs model to the estimated

functions, as explained below. Let x̂ðtÞ, and x̂0ðtÞ stand for

non-parametric estimators (e.g. smoothing the data using

splines or local polynomials) of the solution x of the ODEs

equation (4.1), and its derivative x0, respectively. The criterion

function of the two-step approach for a fully observed system

of ODEs takes the formðT

0

kx̂0ðtÞ � Fðx̂ðtÞ; uÞk2wðtÞ dt, ð4:3Þ

where w is an appropriate weight function and k � k denotes the

standard Euclidean norm. The estimator of the parameter will

be the minimizer of the criterion function (4.3), with respect

to u. The direct integral approach takes advantage of linear fea-

ture of the ODEs system as explained now. Consider the

Lotka–Volterra system of ODEs [49], a classical population

dynamics model that describes evolution over time of the

populations of two species, predator and its prey. The system

takes the form

x01ðtÞ ¼ u1x1ðtÞ � u2x1ðtÞx2ðtÞ
and x02ðtÞ ¼ �u3x2ðtÞ þ u4x1ðtÞx2ðtÞ:

)
ð4:4Þ

Here, x1 and x2 represent the prey and predator population,

respectively. One can view (4.4) as a regression where the ‘covari-

ates’ variables are the solutions of the ODEs on the right-hand

side of the equations, while the ‘response’ variables are the

derivatives x0(t) on the left-hand side. We refer to such systems

as ‘linear in the parameter’ u ¼ ðu1, . . . ,u4Þ` (as in a linear

regression model), where ` stands for the matrix transpose.

Thus, when using the criterion equation (4.3), the parameter u

can be estimated in an ordinary least-squares fashion where
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nonlinear optimization is not required. More generally, consider

the case where the model is linear in the parameters, namely, that

FðxðtÞ; uÞ ¼ gðxðtÞÞu, ð4:5Þ

where the measurable function g : Rd ! Rd�p maps the

d-dimensional column vector x into a d � p matrix (typically

d � p). For instance, model (4.4) has d ¼ 2 equations and p ¼ 4

parameters and the 2 � 4 matrix g(x(t)) from (4.5) is given by

x1ðtÞ �x1ðtÞx2ðtÞ 0 0
0 0 �x2ðtÞ x1ðtÞx2ðtÞ

� �
:

Further, note that by integration, (4.1) and (4.5) yield the

system of integral equations

xðtÞ ¼ jþ
ðt

0

gðxðvÞÞ dv u, t [ ½0, T�: ð4:6Þ

Here, xðtÞ ¼ xðt; u, jÞ is the true solution of the ODE. Let

ĜðtÞ ¼
Ð t

0 gðx̂ðvÞÞdv. Motivated by (4.6), one can consider

minimizing with respect to u the criterion functionðT

0

jjx̂ðtÞ � j� ĜðtÞujj2dt: ð4:7Þ

Let B̂ ¼
Ð T

0 Ĝ`ðtÞĜðtÞdt. Minimizing the criterion function

(4.7) with respect to u yields the direct integral estimator

û ¼ B̂�1

ðT

0

Ĝ`ðtÞðx̂ðtÞ � jÞ dt: ð4:8Þ

Necessary and sufficient conditions for
ffiffiffi
n
p

-consistency

of the direct integral estimator (4.8) are provided in [36].

Furthermore, the extensive simulation study in the aforemen-

tioned paper has demonstrated that using integrals as in (4.8)

instead of derivatives as in (4.3) yields more accurate esti-

mates. Indeed, it is well known (see [50] and [51]) that

estimating derivatives from noisy and sparse data may be

rather inaccurate. An application of the direct integral

method to a variety of synthetic and real data was shown

to yield accurate and stable results in [45] and [46].

The methodology discussed so far is aimed at cases where all

the equations of the ODEs can be measured. Recall that in our

experiment x ¼ (P, C, N), and one variable (the complex C) is

unobserved. The direct integral methodology for dealing with

partially observed systems linear in the parameters was pro-

posed in [37] and its consistency was proven in [52]. However,

in the case of equation (3.1) there are two main challenges

(i) the system is partially unobserved, and (ii) equation (3.1) is

not fully linear in all the parameters. Thus, below we further

develop the direct integral method to enable parameter esti-

mation in such a case. Note that our notation in the sequel

resembles the specific case where only one equation of the

system is unmeasured; however, the method can be used for

more general cases. We first describe the model we have in mind

FðxðtÞ; uÞ ¼ gðxðtÞ; uNLÞuL, ð4:9Þ

where u ¼ ðu`
NL, u`

L Þ
`. Here, uNL stands for the ‘nonlinear’ par-

ameters that cannot be separated from the equations, while uL

are the ‘linear’ parameters, as above in equation (4.5). More

details regarding the above abstract form equation (4.9) are

given in the electronic supplementary material. Now, denote

the measured equations of x by m and the unmeasured ones

by u. Using the observations we have for m, we first generate

an estimator using non-parametric smoothing, denoted by

m̂ð�Þ. In order to deal with the unmeasured states, we continue

as follows. Define for some function uð�Þ the quantity
x̂uðtÞ :¼ ðm̂`ðtÞ, u`ðtÞÞ`, t [ ½0, T� (the vector x is assumed

to be arranged such that its first equation is the measured

one m). Let

Ĝuðt; uNLÞ ¼
ðt

0

gðx̂uðvÞ; uNLÞ dv, t [ ½0, T�:

Motivated by equation (4.7), we define the criterion function

MðuNL, uL, uÞ ¼
ðT

0

jjx̂uðtÞ � j� Ĝuðt; uNLÞuLjj2dt: ð4:10Þ

Minimizing MðuNL,uL,uÞ with respect to uL yields

ûLðuNL,uÞ :¼ B̂�1
u

ðT

0

Ĝ`
u ðv; uNLÞðx̂uðvÞ � jÞdv,

where

B̂u ¼
ðT

0

Ĝ`
u ðt; uNLÞĜuðt; uNLÞdt:

Plugging back ûLðuNL, uÞ into equation (4.10) results with

MðuNL, uÞ ¼
ðT

0

jjx̂uðtÞ � j� Ĝuðt; uNLÞûLðuNL, uÞjj2dt:

Finally, let U be some appropriate space of functions on [0,T ]

and define

ð̂uNL, ûÞ :¼ arg min
u[U ,uNL[Q

MðuNL,uÞ:

Then the estimator for u is given by

û :¼ ð̂u`
NL,û`

L ð̂uNL, ûÞÞ`: ð4:11Þ

4.3. Smoothing
In order to estimate the solutions of the ODEs model (3.1), we

use cubic B-splines. In particular, it is assumed that the ODE

solutions can be approximated for any t [ ½0, T� by a linear

combination of cubic B-spline functions denoted by fk(t),
k ¼ 1, . . . ,K‘, ‘ [ f1, 2, 3g, namely,

PðtÞ �
XK1

k¼1
b1,kfkðtÞ,

CðtÞ �
XK2

k¼1
b2,kfkðtÞ

and NðtÞ �
XK3

k¼1
b3,kfkðtÞ:

9>>>>>=
>>>>>;

The choice of number of bases. As the regularity of the sol-

utions of the ODEs model (3.1) might be different, we allow

the number of bases K1, K2, K3 to be (potentially) different.

Choosing the number of cubic spline bases is crucial [53] and

is known to affect the accuracy of the final estimates. Let K ¼
fK1, K2, K3g stand for the number of bases used for the first,

second and third equations of the system (3.1), respectively.

Denote by ûK the vector of parameter estimators ðk̂, ŝ, d̂, â, r̂Þ`

calculated using the direct integral method (4.11) for a given

number of bases K ¼ fK1, K2, K3g. For each ûK, we solve the

system of ODEs (using numerical integration) to obtain

Pð�; ûKÞ, Cð�; ûKÞ and Nð�; ûKÞ. We then choose the combination

K̂ ¼ fK1,K2,K3g that minimizes the squared distance between

the observations (recall that C is unobserved), denoted by
~P, ~N, and the solutions of the system

K̂ ¼ arg min
K

Xn

i¼1

fð~PðtiÞ � Pðti; ûKÞÞ2 þ ð ~NðtiÞ �Nðti; ûKÞÞ2g:

ð4:12Þ

The final estimator is given by ûK̂. Here, we consider var-

iety of combinations of triplets K ¼ fK1, K2, K3g. Extensive



Table 1. Monte Carlo study. The table presents the mean estimate, the square root of the empirical mean square error, empirical absolute bias and empirical
standard deviation, based on 400 simulations for each of the sample sizes. The first block of the table is for n ¼ 8 while the second is for n ¼ 16.

parameter value estimate sqrtMSE absBIAS s.d.

k 5 4.7876 0.2440 0.2121 0.1207

s 0.05 0.0574 0.0076 0.0073 0.0020

d 0.02 0.0195 0.0011 0.0004 0.0010

a 4�1029 3.3609�1029 6.9739�10210 6.3405�10210 2.9039�10210

r 3�105 298 637 214 233 108 214 230

k 5 5.1958 0.3656 0.1895 0.3127

s 0.05 0.0487 0.0045 0.0011 0.0044

d 0.02 0.0210 0.0019 0.0010 0.0016

a 4�1029 3.9405�1029 1.7755�10210 6.2554�10211 1.6617�10210

r 3�105 294 503 99 494 6786 99 262

Table 2. Parameter estimation results for the predator – prey – bdelloplast system for a gradient (20 – 100%) of water content.

water content (%) k s d a r

20 2.5356 0.0300 0.0269 3.2456�1028 33 800

50 2.3034 0.0400 0.0184 2.0321�1028 55 500

70 4.4985 0.0410 0.0269 6.8059�1029 46 000

80 1.4898 0.0480 0.0073 1.5646�1028 62 500

100 3.5618 0.0300 0.0269 1.9331�1028 34 650
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simulation studies suggest (see §5, electronic supplementary

material) that the regularization (4.12) leads to accurate and

stable estimation results.

In the following section, we study some finite sample

properties of the methodology described above.
5. Finite sample properties of the estimation
method

In order to test the finite sample performance of the direct

integral method developed above, we conducted a large

Monte Carlo experiment. We solve model (3.1) with initial

conditions given by j ¼ ðPð0Þ, Cð0Þ, Nð0ÞÞ` ¼ ð106, 0, 108Þ`,

similar to the experimental design, and the ‘true’ parameters

given by u ¼ ðk, s, d, a, rÞ` ¼ ð5, 0:05, 0:02, 4� 10�9, 3� 105Þ`

(for values that are in the vicinity of those estimated from the

real data, see table 2). Recall that the statistical model we consider

is additive as in equation (4.2). Here, we add Gaussian

measurement errors to the deterministic system equations

so that the measurements of the predator will be given by
~PðtiÞ ¼ Pðti; u,jÞ þ ei, and those of the prey are given by
~NðtiÞ¼ Nðti; u,jÞ þ ei, i¼ 1, . . . ,n, where P(ti; u, j) and N(ti; u, j)

are the deterministic solutions of (3.1) at point ti with respect

to initial values j and parameter u. The measurement error ei

follows a Gaussian distribution with zero expectation and a

standard deviation that is proportional to both P and N:

sP ¼ 0:01� �P, and sN ¼ 0:01� �N, where �P, and �N are

the means of Pð�Þ, and Nð�Þ over the time interval of the

experiment, respectively.
In the Monte Carlo experiment, 400 different random

samples were generated. We consider two experimental

set-ups, in the first we sample the model using the exact

sampling times as done in the experimental set-up [0, 8, 16,

24, 36, 48, 96, 168], hence, n ¼ 8. In the second set-up, we

consider n ¼ 16 time points [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,

44, 48, 72, 96, 168]. Next, we estimate the model parameters

using the direct integral method. Table 1 summarizes the esti-

mation from the simulations with the additive noise, note the

ability of the direct integral method to obtain good estimates

(especially given a small sample of size n ¼ 8).

In section 1.5 of the electronic supplementary material, a

comparison between the direct integral method and non-

linear least-squares was conducted for various noise levels.

The findings suggest that for small number of points, the per-

formance of the direct integral method as applied here, in

terms of residual sum of squares, is comparable to that of

the nonlinear least-squares.
6. Estimating parameters of the predator –
prey – bdelloplast system

We fitted model (3.1) to five different environmental conditions

(various different water contents). Thus, we estimated the five

parameters of each configuration using its corresponding

data (table 2).

Figure 1 demonstrates the ability of our simple ‘strategic’

model to capture both qualitatively and quantitatively the

dynamics of predation in a heterogeneous environment.
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Figure 1. Model fits. Observations are displayed with the plus sign. Numerical solution of model (1) given the estimated parameters using the direct integral
method (see Table 2) with a dashed line. Note the ability of the simple model to capture the predation dynamics. Water content: (a) 20%, (b) 50%, (c)
70%, (d ) 80% and (e) 100%. (Online version in colour.)
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To the best of our knowledge, in previous studies only

the progeny size (parameter k) was directly measured. The

estimated k’s in our case fall within the range of 1–9,

known values from the literature, see, e.g. fig. 1a in [54].

The estimation results of the other four parameters seem to

be stable over the water content gradient.

In order to provide further information regarding the esti-

mation process, and to show the strength of the direct integral

method, we present two additional plots. The spline estima-

tors used in the estimation procedure are displayed in
electronic supplementary material, figure S1. One can see

that the splines are able to capture the dynamics of the

predator–prey interactions and specifically, to recover the

unmeasured complex C. The loss function given in equation

(4.7) of electronic supplementary material, used to choose

the optimal s (i.e. the bdelloplast decay rate) is displayed in

electronic supplementary material, figure S2 for the five

experimental set-ups. One can see there a clear minimum,

which is an indication of the ability of the method to estimate

the parameter s.
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7. Discussion
To the best of our knowledge, this is the first attempt to fit a

BALO–prey model to experimental data using a statistical

procedure. The model we have developed can both qualitat-

ively and quantitatively describe the temporal dynamics of a

predator–prey system in the heterogeneous soil environment.

The fact that the model can be fitted to the experimental data

indicates that although the soil is a spatially complex environ-

ment at the microbial scale, predation dynamics can be

captured by a relatively simple dynamical system of ODEs

with prey refuge and separated complex compartment denot-

ing the time delay between predator invasion and progeny

emergence. This is a relatively rare and encouraging result;

mean field approximation of interacting species in a spatially

complex environment usually gives poor results [55]. To

obtain reasonable results under such circumstances, dynami-

cal models usually include spatial structures by various

techniques (e.g. metapopulation, spatial moment equations,

coupled map lattice, etc.) [55].

According to our model, not all the prey is available to

the predator (i.e. some of it has a refuge); the prey population

density decreases due to predation, and approaches r, the

refuge parameter, asymptotically. When the refuge parameter

was absent from the model equations (i.e. r ¼ 0), fitting

results were poor (data not shown) and the prey gradually

approached zero (i.e. become extinct) and not a positive

value. In our experimental set-up, the prey cannot coexist

with its predator, because it does not reproduce due to the

lack of nutritional substrate, yet, our model indicates the role

of the complex spatial structure in protecting the prey and

thus may contribute to coexistence, as indicated by previous

theoretical and laboratory studies [1–4,56].

In this paper, we demonstrated the application of the

direct integral approach to a challenging experimental set-

up. The observations were collected for only eight time

points, and only for part of the system, namely, for predator

and prey; the ‘complex’ was not observed. By exploiting

linear features of the dynamics system and using non-

parametric smoothing, the direct integral approach enabled

us to reduce the complex nonlinear optimization to a

simple search over a grid of values of a single parameter s
(see details in electronic supplementary material, and also

figure S2 there). That resulted in a reasonable parameter

estimates as well as important insights. For instance, we note
that information about the parameter r can be recovered

mostly from the tail of the experiment, where we have only

two observations (this can be easily seen from model (3.1),

where N0 ¼ 0 when N ¼ r). This fact made the estimation task

a very challenging one. Thus, one concludes that measuring

the process in its ‘tail’ is also important, a fact that should be

taken into account in future experimental design. Our analysis

was broken into steps (see the detailed analysis in the electronic

supplementary material), an approach that resulted in

improved stability of the parameter estimation (see, e.g. [38]).

Finally, our analysis is based on a small number of

observations, so the conclusions should be viewed as encour-

agement for further research using more data points, which

will allow better inference. Indeed, in order to move from

point to interval estimation, future work should combine

improved data collection and further theoretical studies,

which will enable the calculation of reliable confidence intervals

(see the electronic supplementary material for details).
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