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The containment of genetically modified (GM) pollen is an issue of significant

concern for many countries. For crops that are bee-pollinated, model predic-

tions of outcrossing rates depend on the movement hypothesis used for the

pollinators. Previous work studying pollen spread by honeybees, the most

important pollinator worldwide, was based on the assumption that honeybee

movement can be well approximated by Brownian motion. A number of

recent studies, however, suggest that pollinating insects such as bees perform

Lévy flights in their search for food. Such flight patterns yield much larger

rates of spread, and so the Brownian motion assumption might significantly

underestimate the risk associated with GM pollen outcrossing in conventional

crops. In this work, we propose a mechanistic model for pollen dispersal in

which the bees perform truncated Lévy flights. This assumption leads to a frac-

tional-order diffusion model for pollen that can be tuned to model motion

ranging from pure Brownian to pure Lévy. We parametrize our new model

by taking the same pollen dispersal dataset used in Brownian motion modelling

studies. By numerically solving the model equations, we show that the isolation

distances required to keep outcrossing levels below a certain threshold are sub-

stantially increased by comparison with the original predictions, suggesting

that isolation distances may need to be much larger than originally thought.
1. Introduction
Genetically modified organisms (GMOs) were first introduced in the late twen-

tieth century. Since then, concerns have been expressed regarding possible

negative effects of GMOs on human health and/or biodiversity [1,2]. These

concerns have prompted regulatory bodies to put in place directives to control

the use of genetically modified (GM) products. In the European Union (EU),

if the content of GM material in a non-GM product exceeds the established

tolerance threshold of 0.9%, the product must be labelled as containing GM

material [3], which may affect the product’s marketability [4]. In the EU,

member states are empowered to take appropriate measures to avoid the unin-

tentional presence of GM material in non-GM crops. The simplest measure for

minimizing cross fertilization between GM and non-GM crops is to spatially

isolate them. This has led member states to issue mandatory isolation distances,

which vary considerably from one state to another. For example, GM and

non-GM conventional maize crops can be 25 m apart in The Netherlands

while they must be separated by at least 600 m in Luxembourg [5]. While

such differences are partly due to political and societal opposition towards

agro-food biotechnology, they also suggest a lack of scientific knowledge on

the processes driving pollen transport.
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The scientific challenge is highly nontrivial, as the speed

of spread of a species (e.g. a species carrying a transgene)

depend in large part on the frequency and distance of rare

long-distance dispersal events [6]. Precisely because they

are rare however, few are observed and so it is extremely dif-

ficult to estimate their frequency and size. Mathematical

modelling is thus used to predict how far transgenic pollen

will spread. Current modelling theory offers two options:

Brownian motion and pure Lévy movement. These two

options, however, have serious flaws: it is known that

Brownian motion (the standard diffusion assumption) often

seriously underestimates dispersal distances, while pure

Lévy movement often overestimates dispersal distances.

Policymakers and scientists are thus left with the unenviable

task of determining appropriate isolation distances from two

flawed models that disagree substantially.

For terrestrial plants, the transport of pollen is mostly

driven by wind or insect pollinators. Some plants are

exclusively wind-pollinated, while others are exclusively

insect-pollinated, and still others can be pollinated via both

means. Examples of wind-pollinated plants include grasses

and conifers, which release pollen in huge quantities that

float on the wind and often pile up in drifts on the ground.

Canola (oilseed rape) pollen is moved by both wind

and insects. Many plant species, however, do not rely on

wind-pollination at all, and so require insect pollinators for

reproduction. Plants in this category include fruit- and

nut-bearing trees (e.g. apple, pear, almond), sunflowers and

sweet potatoes [7]. At least 80% of flowering plants are

directly dependent on insect pollinators [8], of which bees

(honeybees in particular) are the most prolific. While pollina-

tion by wind is well understood and can be modelled using

high-resolution atmospheric-dispersion models [9–11],

modelling pollination by insects is more difficult [12]. This

difficulty is partly due to the complexity of insect displace-

ment patterns. Observations of honeybee flights have

shown that up to 80% of these flights are less than 1 m in

distance ([13], and references therein). However, bees can also

travel much longer distances and some studies have measured

flight distances of up to 4 km [14]. These displacements can be

represented by a kernel function measuring the probability that

a bee flies a certain distance. For oilseed rape pollen, which is

dispersed both by wind and insects, Devaux et al. [15] have

suggested that exponentially decaying kernel functions are

not well suited to represent observed long-distance dispersal.

Instead, they propose leptokurtic (heavy-tailed) kernels that

have power-law type decay in the tails.

The conclusions of Devaux et al. [15] are completely in

line with the observations of Lévy flight (henceforth, LF) pat-

terns in the foraging movements of many living species [16].

LFs consist of frequently occurring short displacements with

more occasional longer displacements. These longer displace-

ments are in turn punctuated by even rarer and even longer

displacements, and so on. Such displacement patterns can

be represented by a Lévy dispersal kernel. Unlike exponential

kernels, Lévy kernels have power-law asymptotic behaviour

and hence heavier tails. The probability of a displacement

of length l is drawn from a distribution that decays as

� l�ðaþ1Þ, where 0 , a , 2. They are, therefore, well suited

to represent movement which includes a non-negligible prob-

ability for very large displacements. Lévy-type foraging

patterns have been observed for a broad range of organisms,

including honeybees [17,18], bumblebees [19], fruit flies [20],
large marine predators [21,22], human T cells [23], jellyfishes

[24], albatrosses [25] and even human hunter–gatherers [26].

All of these Lévy patterns have been identified through

sound statistical techniques, but there is still some debate

on the underlying driving mechanism: natural selection to

optimize search efficiency [27] or spontaneous emergence

from innate behaviours [28]. The goal of this paper is not to

elaborate that discussion but to investigate how the bee-

mediated spread of pollen is altered when it is assumed

that the distribution of foraging honeybee populations is

well described by a movement paradigm of Lévy type.

Fractional diffusion equations have not seen widespread

use in the ecological literature, but they yield the asymptotic

behaviour of both LF and Lévy walk (henceforth, LW) pro-

cesses (see appendix A for more details), and so are a

useful tool in the study of organisms exhibiting Lévy-type

dispersal. The main issue with pure Lévy dispersal kernels

is that particles can perform arbitrarily large displacements

that can go well beyond the physiological limitations of

living organisms or landscape constraints. To avoid unrealis-

tic displacements, it is necessary to truncate the tail of the

dispersal kernel beyond a certain threshold. In that case, the

power-law decay does not extend to arbitrarily large scales

but is replaced by a quicker decay or cut off beyond a certain

limit. Truncated Lévy processes were first introduced by

Mantegna & Stanley [29] and Koponen [30] to eliminate arbi-

trarily large displacements. Exponentially truncated, also

called tempered, Lévy processes were proposed by Rosiński

[31] as a smoother alternative. In these processes, the sharp

cut-off is replaced by a smooth exponential damping of the

tails of the dispersal kernel.

The density of particles following a tempered LF is

the solution of a tempered fractional diffusion equation

[32–34]. In such an equation, the diffusion process is

represented by a non-local integro-differential operator that

results in a diffusion rate faster than second-order diffusion

but slower than non-tempered fractional-order diffusion

[35,36]. The use of a fractional diffusion model allows us to

‘scale-up’ LF foraging patterns of individual organisms and

hence study the large-scale effect of long-range displacement

on the dispersal and spread of a population. Such an

approach has been used to study the large-scale impacts of

LF displacements on the spread of an epidemic [37], the dis-

persal of invasive species [38] and on animal site fidelity [39].

In their review, Beckie & Hall [40] point out that few

mechanistical models have been developed to model crop

pollen-mediated gene flow. Since that time, statistical models

to fit outcrossing data have been developed, but there has

been little to no mechanistic modelling of insect-mediated

pollen dispersal. Morris [41] paved the way for partial differen-

tial equation models by fitting his honeybee movement data to

diffusion and advection–diffusion equations. In order to gen-

erate a leptokurtic pollen distribution, Tyson et al. [42] split

the behaviour of the dispersing bee population into two

states, corresponding to intensive and extensive searching,

with transitions between both states. The authors show that

this model fits the available bee dispersal data better than a dif-

fusion or diffusion–advection model, and also that it provides

a remarkably good fit to near-distance and long-distance

pollen data taken together [42]. The authors do not, however,

look closely at the model fit at the largest dispersal distances,

and this omission provides us with an opportunity to

investigate the relevance of other dispersal models.
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Figure 1. Illustration of three truncated Lévy flights with a ¼ 1.8 and different values of the truncation parameter l. Pure Lévy flights are obtained when l ¼ 0.
The three trajectories have the same number of steps and are represented with the same scaling. (Online version in colour.)
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In this paper, we derive tempered fractional-order diffu-

sion models to simulate the spatial dynamics of foraging

bees (§2), and the distribution of pollen dispersed by bees

(§3). We show that the pollen-dispersal model, calibrated

with both published parameter values and the data of

Tyson et al. [42], predicts larger dispersal distances for

pollen and provides a better fit to the data in the tails of

the distribution (§4). We use this model to provide new

estimates of required isolation distances between GM and

non-GM crops and hence provide a more comprehensive

assessment of the risk associated with GM pollen outcrossing

(§5). We compare our results with those of earlier diffusion

models, and finish with suggestions for future work (§6).
2. Modelling the anomalous dispersal of
honeybees

The searching patterns of foraging honeybees have been

studied extensively by Reynolds et al. [17,18,43]. They have

conducted field experiments using harmonic radar to track

the movements of displaced honeybees searching for their

hive, or for alternative food resources after a known source

of food has been removed. These experiments were conducted

over a scale of several hundreds of metres. All of these exper-

iments provide strong evidence that honeybees adopt an LF

searching strategy to optimize their chances of success. This

strategy is particularly favoured when honeybees have no

access to waggle dance information from nest-mates, or

when their navigational mechanisms are partially disrupted

and fail to bring them home. By necessity however, the

power-law scaling in the flight data must be truncated at

some point. Reynolds et al. [43] estimate that this truncation

takes place somewhere between 100 and 200 m from the

hive. This truncation phenomenon is clearly visible in fig. 2

of [17] which shows that the distribution of flight lengths

decays like an inverse square law, until a distance of about

100 m, after which the distribution decays exponentially.

The field experiments of Reynolds et al. [17,18,43], there-

fore, suggest that the displacements of honeybees could be

represented by an exponentially truncated Lévy density.

With such a density function, the algebraic decay of the

tails is damped by an exponential factor. The asymptotic

behaviour of the Lévy density is then � l�ð1þaÞe�lx for 0 ,

a , 2 and l � 0. The exponent of the distribution, a, controls

the power-law decay of the tails. As the value of a decreases,

the thickness of the tails increases and large displacements

become more frequent. It is interesting to note that the

Lévy density function reduces to the Gaussian density func-

tion when a ¼ 2. Hence, an uncorrelated Brownian random

walk (RW) can be seen as a particular case of a LF.

The truncation parameter l controls the exponential

tempering of the distribution tails. It has SI units of m21
and thus allows for the definition of a truncation length

Ltrunc ¼ 1=l, which represents the characteristic length

beyond which algebraic power-law decay is overtaken by

exponential decay. When l= 0, all the moments of the

distribution are finite and the mean displacement length

can be defined. It should be noted that the exponential

damping of the Lévy density changes the area below the

curve and, if the distribution is skewed, the mean is changed

also. The exponentially damped Lévy density, therefore,

needs to be renormalized and recentred. More details on

these issues can be found in [34]. Figure 1 shows three

sample LF trajectories whose displacement lengths have

been drawn from a truncated Lévy distribution. The expo-

nent of the Lévy distribution is set to a ¼ 1.8 and only the

truncation parameter l is changed. It can be seen that

the probability of large jumps is reduced as l increases.

When l ¼ 0, a pure LF is recovered.

At the macroscopic level, replacing an uncorrelated

Brownian RW by a truncated LF amounts to replacing the

second-order diffusion operator by a truncated fractional-

order operator. In one dimension, the resulting diffusion

equation for the bee density B(x, t) can then be expressed

as follows:

@B
@t
ðx, tÞ ¼ Ka@

a,l
x Bðx, tÞ, (2:1)

where Ka is the fractional diffusivity with SI units of ma s21.

If we assume that the model equation is defined for 0 � x �
L, where L is the domain length, the truncated fractional

diffusion term is then expressed mathematically as

@a,l
x Bðx, tÞ¼ 1

2½e�lx0 Da
x ðelxBðx, tÞÞ þ elx

xDa
Lðe�lxBðx, tÞÞ�

�laBðx, tÞ:

The left- and right-sided fractional derivatives, 0Da
x and xDa

L ,

are defined in the Caputo sense as follows

0Da
x uðxÞ ¼ 1

Gðn� aÞ

ðx

0

@nuðyÞ=@yn

ðx� yÞa�nþ1
dy

and xDa
LuðxÞ ¼ 1

Gðn� aÞ

ðL

x

@nuðyÞ=@yn

ðy� xÞa�nþ1
dy,

where n ¼ 1þ ½a� and a is the largest integer not greater than

a, i.e. n ¼ 2 for 1 < a � 2, and G (.) is Euler’s gamma func-

tion. Unlike ordinary derivatives that are local operators,

fractional derivatives are global operators that depend on

the entire function. This explains why fractional-order diffu-

sion is faster than normal second-order diffusion. More

details on fractional differential equations can be found in

Podlubny [44].

Equation (2.1) can generally not be solved analytically and

a numerical scheme is thus necessary for computation of an

approximate solution. Since fractional derivatives are global

operators, their numerical discretization is usually much
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Figure 2. Numerical solutions of equation (2.1) at time T for different values of the parameters a and l. The initial condition is a Gaussian function (black curve—
note that the vertical axis is in log scale, giving the Gaussian a parabolic appearance). When a ¼ 2 (blue curve), the tails of the solution decay exponentially.
However, as soon as a is smaller than 2, the tails of the solution decay like a power law (red curves). The power-law decay of the model solution can be controlled
by increasing the value of the truncation parameter l. (Online version in colour.)
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more complex than for integer-order derivatives. In this study,

we have used a finite-element scheme, whose details are given

in appendix B. To illustrate the behaviour of the solution for

different values of the parameters a and l, we solved equation

(2.1) with a Gaussian function as the initial condition (figure 2,

black curve). When a ¼ 2, we observe the classical diffusion

pattern and the solution tails decay exponentially (figure 2,

blue curve). As soon as the value of a is smaller than 2, the

tails of the solution start decaying algebraically and hence the

solution decays much more slowly than it does in the Gaussian

case (figure 2, red curves). Asymptotically, the solution decays

as x�ðaþ1Þ. The spreading of the solution can be controlled by

increasing the value of the truncation parameter l. When l ¼

0, there is no truncation and the solution thus corresponds to

a pure Lévy process. By increasing the value of l, we impose

an upper threshold on the displacements beyond which large

displacements become exponentially rare. By doing so, we

can ‘tame’ the tails of the solution and control its spread.
3. Modelling bee-mediated pollen transport
Following the approach of Tyson et al. [42], we assume that

pollen can either be motile or stationary. The former represents

the pollen unwittingly taken up by honeybees as they gather

nectar. Motile pollen sticks to body hairs on individual bees

[45], and is thus transported by the bees as they fly from one

blossom to another. As honeybees visit other flowers, some of

the motile pollen is transferred to the stigma where it sticks

and then becomes stationary pollen. Once deposited, pollen

grains remain in the flower and can initiate the formation of

seeds. Gene flow from a GM crop to a conventional crop will,

therefore, be directly related to the distribution of stationary

pollen originating from the GM crop.

As motile pollen is transported by honeybees, we assume

that it has exactly the same spatial dynamics as bees and can

thus be modelled by a fractional-order diffusion term. The

input of motile pollen is assumed to be directly related to

the distribution of flowers and hence the location of crop

fields or orchards. Finally, the pollen deposition process

that represents the transfer of pollen from the motile to

stationary states is assumed to depend linearly on the

motile pollen concentration. By taking only these three

processes into account, we obtain the following model for

bee-mediated pollen dispersal:

@Pm

@t
ðx, tÞ ¼ Ka@

a,l
x Pmðx, tÞ þ Fðx, tÞ � bPmðx, tÞ (3:1)
and

@Ps

@t
ðx, tÞ ¼ bPmðx, tÞ, (3:2)

where Pm(x, t) and Ps(x, t) represent the concentrations of

motile and stationary pollen, respectively. The diffusion

term is exactly the same as the one used in equation (2.1).

The function representing the source of motile pollen is

denoted F(x, t), and can account for both the spatial and

temporal variability in pollen sources. Time variability can

appear, for instance, in different flowering periods. The

constant deposition rate of motile pollen is denoted b.

It should be noted that equations (3.1)–(3.2) reduce to a

classical pollen dispersal model when a ¼ 2. Such a model

relies on the assumption that bees carrying motile pollen

follow a Brownian RW. The same model, therefore, allows

us to compare dispersal patterns obtained with the classi-

cal Brownian diffusion assumption (a ¼ 2) and with the

anomalous Lévy diffusion assumption (a , 2).
4. Model calibration
Model calibration is based both on published parameter values

and on outcrossing data collected in apple tree orchards with

both GM and non-GM trees. We first consider published data

to calibrate the parameters a, l and Ka that govern the spatial

dynamics of motile pollen. Reynolds & Frye [20] and Reynolds

et al. [17] used harmonic radar to track honeybees searching for

feeders or attempting to locate their hive when deprived of

navigational clues. They found that the honeybee flights are

composed of segments whose length follows a truncated

power-law distribution with slope corresponding to a value

of a close to 1. According to their observations, the power-

law scaling is truncated somewhere between 100 and 200 m

[43]. We have, therefore, taken a ¼ 1 and l ¼ 1

100
m�1. To esti-

mate the diffusivity, we followed the approach of Morris [41]

who expressed the constant in terms of a diffusion length (L)

and time scale (T ). Since Ka has SI units of ma s21, we can

define the diffusion length scale as L ¼ ðKaT Þ1=a, where L is

the mean displacement length and T is the corresponding

time interval. According to the observations of Morris [41], it

seems realistic to assume a mean displacement length of 10

m over a time interval of 1 h. In that case, we can define the

diffusivity as Ka ¼ ð10a=3600Þmas21.

Unlike the parameters a, l and Ka, the deposition par-

ameter b cannot easily be measured directly. We, therefore,
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estimate that parameter value through inverse modelling

by using a pollen dispersal dataset collected in an isolated

apple orchard [42]. Pollen dispersal was tracked via a trans-

genic marker. This marker was present in the pollen of one

row of transgenic trees in the orchard, and then dispersed

by honeybees to produce appleseeds throughout the rest of

the orchard. Transgene presence in appleseeds was measured

along eight transects in the orchard for two consecutive years.

Since the orchard was arranged in four rectangular blocks

separated by bare ground, a portion of each transect crossed

bare ground (see Tyson et al. [42] for details).

The measurements from both years and all transects were

joined together in order to obtain a more substantial dataset

and hence have a better sampling of the distribution tails.

The value of parameter b was then estimated by minimizing

the least squares error between data and model outputs. This

optimization process was performed with the fmincon function

in Matlab. Since the canopy of orchard trees was approximately

7 m across, the model was run with a pollen input function

representing a GM orchard for 0 � x � 3:5 m and conventional

orchards for 3:5 � x � 22:5 m and 40 � x � 200 m, with the

gap representing the average position of the bare ground por-

tion of each transect. The rest of the domain is assumed to be

bare ground where there is no production of pollen. Note

that the absolute value of the pollen source term is not impor-

tant as we are chiefly interested in the proportion of GM pollen

among the entire pool of stationary pollen Ps (FGM). Following

Tyson et al. [42], this indicator is defined as

FGM ¼ ð1=2ÞPGM
s

PGM
s þ Pnon-GM

s

, (4:1)

where the superscripts ‘GM’ and ‘non-GM’ stand for trans-

genic and non-transgenic pollen, respectively. The factor of

‘
1

2
’ in the numerator reflects the fact that only half of the

pollen grains carry the transgene. We assume throughout

that the proportion of pollen grains carrying the transgene at

any one location is 50% of the pollen originating from the trans-

genic source, and so in (4.1) we can assume that, of those seeds

fertilized with transgenic pollen, half carry the transgene.

To perform the optimization procedure over the par-

ameter b, we assumed that the shape of the pollen

distribution rapidly reached a steady state. This assumption

is reasonable if the orchard is sufficiently small that the hon-

eybees could rapidly spread out in a fairly uniform

distribution throughout [42]. Initially, we assume that there

is no pollen available, i.e. Psðx, 0Þ ¼ Pmðx, 0Þ ¼ 0. The other

parameter values are those obtained from the literature:

a ¼ 1, Ka ¼ ð10a=3600Þma s21 and l ¼ 1

100
m�1. Since a

comparison with a classical second-order model would be

illustrative, we also consider the case where a ¼ 2 and also

compute the optimum value of b in that case. Model results

for both the anomalous and classical diffusion cases are

shown in figure 3. For comparison purposes, we also show in

figure 3 the results for the model of Tyson et al. [42], in which

bee movement was modelled using two subpopulations.

When a ¼ 1, the best fit is obtained with b ¼ 2� 10�4 s�1.

When a ¼ 2, the best fit is obtained with b ¼ 7� 10�4 s�1.

While both models provide a good estimate of the proportion

of GM pollen close to the source (figure 3a), they differ more

clearly further away (figure 3b). Indeed, beyond a distance of

about 40 m from the GM orchard, FGM quickly vanishes
with the classical model (a ¼ 2). This is a clear underestimation

of pollen dispersal as in this particular dataset, the last non-

zero measurement of GM pollen occurs at a distance of

about 135 m. With the anomalous diffusion model (a ¼ 1), it

can be seen that the proportion of GM pollen decreases

much more slowly and is still around 0.1% at a distance of

100 m from the GM source. When comparing with the results

of the Tyson et al. [42] model, we see that the anomalous diffu-

sion with a ¼ 1 dispersal curve appears very similar to that

obtained using classical diffusion with switching (cf. figure

3a(top and bottom panels). The tails however, exhibit very

different behaviour (cf. figure 3b(top and bottom panels),

with the solution from the Tyson et al. [42] model showing

almost linear decay to zero, while the solution from the anom-

alous diffusion model decays much more gradually and

remains above zero at distances where the Tyson et al. [42]

model solution becomes negligible.

Finally, it is important to note that the point of non-zero dis-

persal at about 135 m is due to two seeds out of 752 seeds

gathered at that distance. Further work is clearly needed to

determine more robust estimates of pollen dispersal distance

and pollination effectiveness as a function of dispersal distance.

Nonetheless, all the diffusion parameters of the model (i.e. a, l

and Ka) were determined from published bee movement data

and not from this particular dataset. The only parameter that

has been determined from the apple pollen outcrossing data

is the pollen deposition rate b. This approach ensures that

our results are not simply a reflection of the idiosyncrasies of

one particular study, but are based on several field studies

and so have some robustness built in. In particular, the point

of non-zero dispersal at about 135 m does not have undue

influence on the parameter values and predictions of the

model. The fact that the Lévy model is able to accurately rep-

resent the tails of the pollen distribution is, therefore, a

qualitative validation of the model.
5. Estimating isolation distances
Isolation distances are generally prescribed between GM and

non-GM crops to prevent, or at least minimize, conflicts due

to transport of GM crop material into neighbouring habitats,

conventional fields and/or protected areas. The isolation dis-

tance is defined as the minimal required distance between

two neighbouring fields or orchards to keep outcrossing

below a certain threshold. In the EU, isolation distances are

meant to prevent the GM content in the neighbouring con-

ventional field from exceeding 0.9%. For organic crops, this

threshold is further reduced to 0.1%. When that threshold is

exceeded in a non-GM field, food and feed produced from

that field can no longer be declared ‘GM-free’.

Estimating the isolation distance that keeps outcrossing

below a given threshold is obviously a difficult task. It

involves a delicate compromise between outcrossing risk

minimization and cost effectiveness. Indeed, any measure

exceeding what is necessary to ensure compliance with the

legal threshold would put an extra burden on farmers

wishing to adopt GM crops. The adoption of GM crops

being a very sensitive political and societal issue, the defi-

nition of isolation distances by local government is rarely

based solely on scientific knowledge. We nonetheless believe

that providing quantitative models that provide a clear

estimate of the risks at stake could help clear up the debate.
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between 0 and 3.5 m. The conventional trees are located between 3.5 and 22.5 m, and between 40 and 200 m. The last non-zero measurement of GM pollen occurs at a
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shows that the Brownian classical-diffusion model (a ¼ 2) tends to underestimate the proportion of GM pollen faraway from the source while the Lévy anomalous-
diffusion model (a ¼ 1) provides a better fit to the long-distance data. For the sake of comparison, we also include results obtained with the model of Tyson et al. [42] for
the same test case. The data comprise results from tests of 37 000 seeds. Details are presented in Tyson et al. [42]. (Online version in colour.)
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In this section, we use the model defined by equations

(3.1)–(3.2) with the parameter values presented in the pre-

vious section to evaluate the isolation distance between a

GM and a non-GM orchard in order to keep GM input

below a certain threshold. We consider an idealized test

case where both orchards have a length of 50 m and are in

perfect flowering synchrony. This is, of course, the worse-

case scenario as GM crops can often be ‘temporally isolated’

from conventional ones simply through non-overlapping

flowering periods. An illustration of the steady state station-

ary pollen distributions computed with our model as well
as the proportion of GM pollen FGM are shown in figure 4.

The isolation distance between both orchards is denoted l*.

Starting from a set-up where both orchards are next to each

other, we can gradually increase the isolation distance l* and

compute the average proportion of GM pollen in the non-GM

orchard FGM
� �

. That quantity is again computed for a ¼ 1

and a ¼ 2 in order to highlight how Lévy and Brownian

models evaluate the outcrossing risk. Figure 5 shows the evol-

ution of FGM in terms of l* for both models. By taking the

ratio between the values of l* computed for a ¼ 1 and a ¼ 2,

we can estimate by how much the spatial offset between GM



Ps
GM Ps

non-GM

GM orchard
non-GM
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Figure 4. Sample arrangement of the linear landscape for the test case used to evaluate the outcrossing between a GM orchard and a non-GM orchard separated by
a distance l*. Both orchards are 50 m long. The steady-state distribution of stationary pollen released by the GM (Ps

GM) and non-GM orchard (Ps
non-GM) is shown in

red. The proportion of GM pollen (FGM) is shown in blue. (Online version in colour.)
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Figure 5. Proportion of GM pollen in the neighbouring conventional field, FGM, as a function of the isolation distance, l*. The classical model relying on the
Brownian motion assumption (a ¼ 2) predicts isolation distances of 13 m and 27 m to keep outcrossing below the 0.9% and 0.1% thresholds, respectively.
The model relying on the LF assumption (a ¼ 1) predicts larger isolation distances of 72 m and 164 m to keep GM outcrossing below the same thresholds.
(Online version in colour.)

Table 1. Required isolation distances predicted by equations (3.1) – (3.2)
for the test-case defined in figure 4. These distances depend on the
relative size of the GM and conventional orchards. The length of the GM
orchard is set to 50 m.

diffusion
order

conv/GM
orchard size
ratio

0.9%
threshold

0.1%
threshold

a ¼ 1 2 51 m 140 m

1 72 m 164 m

0.5 88 m 183 m

a ¼ 2 2 9 m 24 m

1 13 m 27 m

0.5 18 m 30 m
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and non-GM orchards should be increased when long-distance

pollen flow is taken into account. For orchards of the same size,

this ratio increases from about 5.5 to 7.5 for values of FGM

ranging from 1% to 0.01%. Such a large increase of the spatial

offset requirements highlights the importance of the pollen

distribution tails on the outcrossing risk.

Figure 5 also shows at what distances the ‘GM-free’

thresholds are reached if both orchards are the same size.

When a ¼ 2, our model predicts isolation distances of about

13 m and 27 m for conventional and organic crops, respect-

ively. These distances are in agreement with the distances set

by the most liberal European member states. However, when

a ¼ 1, the thickness of the pollen distribution tail increases

and isolation distances of about 72 m and 164 m become

necessary. Isolation distances for different orchard size ratios

are provided in table 1. These distances are still within the

range of isolation distances in application in Europe but they

approximately represent a sixfold increase over the predictions

of the Brownian model. Our results suggest that the separation

distances of several hundreds of metres proposed by some

European countries might be unnecessarily large. However,

our results also suggest that separating conventional-crop

fields by 40 m, as advocated by Riesgo et al. [46], might not

be sufficient to keep GM outcrossing below the 0.9% threshold.
6. Conclusion
GM risk assessment is a central part of the decision-making pro-

cess surrounding the regulation of GM products. It aims at

minimizing environmental impact while preserving the poten-

tial economic gains that GM products could bring to farmers. In

order to assess the feasibility of coexistence between GM and
non-GM crops, quantitative tools are needed to estimate the

degree of cross-pollination. Determining appropriate isolation

distances has been difficult, however, as the two main model-

ling paradigms currently available generally provide very

different results: Brownian motion models can seriously under-

estimate the potential for cross-pollination, while pure Lévy

movement models have the opposite problem. In this paper,

we have shown that a exponentially truncated Lévy movement

model could provide policymakers and scientists with a much

superior tool. We have focused on bee-mediated pollination,

particularly by honeybees, and developed a mechanistic

model that explicitly accounts for long-distance pollination.

A number of studies have indeed shown that honeybees

can execute displacements over a scale of several hundred



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160889

8
metres when looking for alternative food sources or attempt-

ing to locate a displaced hive [17,18,43]. These long

displacements may result in long-distance pollination and

hence increase the risk of adventitious mixing between GM

and non-GM crops. Our model explicitly takes that risk into

account by allowing long-distance dispersal of GM pollen

by pollinating insects. This long-distance dispersal is

achieved by replacing the classical assumption that pollinat-

ing insects follow a Brownian RW with the broader

assumption that they follow a truncated LF. By doing so,

we derived a general fractional-order pollen dispersal

model of which classical models based on the Brownian

motion assumption are an overly conservative special case.

The difference between Brownian and Lévy pollen disper-

sal models is most apparent in the pollen distribution tails.

Removing the Brownian motion assumption increases the

amount of long-distance pollen dispersal and hence increases

the thickness of the pollen distribution tails. Since more GM

pollen is transported faraway from the source crop, our

model suggests that isolation distances may be underesti-

mated by models relying on the Brownian motion

assumption. Although the dispersal kernel of the Lévy

model has heavy tails, it is important to note that all the

moments of the kernel are finite. This means that there is a

clear upper bound on the distance over which pollen can

be transported. Hence the likelihood of outcrossing as pre-

dicted by the Lévy model eventually decreases to zero, but

the initial decay rate is much slower.

We note here that our anomalous diffusion model also pro-

vides a strong alternative to the correlated composite random

walk (CCRW)-type model of Tyson et al. [42]. There is interest

in considering the CCRW paradigm as a replacement of the

Lévy movement paradigm; this paper provides a useful com-

parison of the two in the context of honeybee-mediated pollen

dispersal. The best-fitting CCRW model shows essentially no

pollen dispersal past a distance of �125 m, consistent with

the notion that there is a maximum biological dispersal dis-

tance, but the data contain a point of non-zero dispersal at

�135 m. Since accurately estimating long-range dispersal

distances is crucial in matters involving GM agriculture, it is

important that models capture non-zero dispersal prob-

abilities. In addition, measurement of rare events such as

long-distance dispersal distances is difficult and, hence, the

actual likelihood of a dispersal event between 135 m and 200

m may be larger than the data suggest. The truncated anoma-

lous diffusion model may provide a more accurate prediction

of dispersal distances in this case.

Since models remain approximations of reality, it is note-

worthy to point out some potentially important biological

details that we have not taken into account. One of them is

the influence of the resource distribution on the bees’ fora-

ging patterns. The distance that bees travel depends in a

nonlinear fashion on the amount of pollen available. When

pollen is plentiful, bees will tend to stay close to the hive,

but will travel further when pollen is scarce. However, the

Lévy process does not explicitly depend on the spatial distri-

bution of resources. Benhamou [47] and Plank & James [48]

have shown that truncated power-law distributions could

be generated by other behavioural processes, such as area-

restricted search that depends on the memory of locations

where resources have been found in the past. Here we did

not study the underlying generative processes driving bee

foraging patterns. A valuable extension of this study would
be to establish how bees respond to resource distributions

by following the same approach as the one used by Hills

et al. [49] to study human foraging.

Other assumptions include the absence of a diurnal cycle

for bee activity, and the absence of any homing behaviour

that would lead to a higher bee concentration in the vicinity

of the hive. The effectiveness of pollination may also decrease

with distance from the source, a factor that would reduce the

effective dispersal distance. In this study, we assume that all

flowers are equally attracting so that bees do not favour a par-

ticular part of the modelled region. During their flights, bees

obviously lose some pollen, which is therefore not converted

into stationary pollen. In addition, bees harvest pollen, stor-

ing it in their pollen baskets. We assume that the removal

of pollen through loss or harvesting is a spatially uniform

effect, and, therefore, does not affect the shape of the distri-

bution of motile pollen available for conversion to

stationary pollen. We can thus assume that motile pollen is

entirely converted into stationary pollen. Finally, the impact

of meteorological or anthropogenic factors on the activity of

bees is also neglected. These are factors that would be

worth considering in future work.
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Appendix A. Lévy flights and Lévy walks
It is important to note that Lévy flights (LF) and Lévy walks

(LW) are often used interchangeably in the biological litera-

ture. Both are random walk (RW) processes with a Lévy

probability distribution of step lengths. They are not, how-

ever, identical. LF and LW are the heavy-tailed equivalents

of the usual uncorrelated and correlated Brownian RW. The

former are usually called position-jump processes, while the

latter are called velocity-jump processes. In a LF, the particle

relocates instantly and hence moves with an infinite velocity

while in a LW it moves with a finite velocity. LW are thus

slower and seemingly more realistic than LF. However, in

the long-time limit, LW become similar to LF as they have

more and more time to perform long jumps [50].

For a Brownian process, the density of particles following

the uncorrelated RW is the solution of a second-order diffu-

sion equation characterized by an infinite propagation

speed. For particles following a correlated RW, the density

is the solution of a telegraph equation for which the propa-

gation speed is finite. In the long-time limit, both the

uncorrelated and correlated RW processes converge to

the same diffusion limit. This correspondence explains

why the diffusion equation, and not the more complex tele-

graph equation, is so widely used to model population

redistribution. The same pattern holds for LF and LW. The

density of particles following an uncorrelated LF process is

the solution of a fractional-order diffusion equation [35].

The density of particles following a correlated LW process

is the solution of a more complex fractional-order equation

akin to the telegraph equation. The fractional diffusion

equation yields the asymptotic behaviour of both LF and

LW processes [51].
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Appendix B. Numerical discretization of the
tempered fractional diffusion equation
In this section, we present the details of the numerical scheme

used to solve equation (2.1). The exponential tempering of the

fractional derivative requires a specific numerical treatment

inspired by the work of Hanert & Piret [52]. In this study,

we have used the finite-element (FE) method to discretize

the model equation. With that method, the exact solution is

approximated by an expansion in terms of piecewise linear

basis functions fj(x):

Bðx, tÞ � ~Bðx, tÞ ¼
XN

j¼1

BjðtÞfjðxÞ:

In that expression, the unknown nodal values BjðtÞ are an

approximation of the solution value at a node j of a grid (or

mesh) that partitions the computational domain into elements.

In one dimension, these elements are simply segments of arbi-

trary size. To handle the exponential tempering, we introduce

the following intermediate variables and assume that they

have the same discretization as the model solution:

elxBðx, tÞ � ~B
lðx, tÞ ¼

XN

j¼1

Bl
jðtÞfjðxÞ (B 1)

and

e�lxBðx, tÞ � ~B
rðx, tÞ ¼

XN

j¼1

Br
j ðtÞfjðxÞ, (B 2)

where Bl
jðtÞ and Br

jðtÞ are the unknown nodal values

corresponding to the left and right tempering of the solution.

With the FE method, it is common practice to use the

Galerkin method to derive the discrete equations. They are

obtained by introducing the discrete solution ~Bðx, tÞ in

equation (2.1) and orthogonalizing the residual with respect

to the set of basis functions. The following discrete equations

are then obtained:ðL

0

fi
@~B
@t

dx

¼Ka

1

2

ðL

0

fie
�lx
0 Da

x
~B

l
dxþ1

2

ðL

0

fie
lx
x Da

L
~B

r
dx�la

ðL

0

fi
~Bdx

� �
,

for i ¼ 1, . . . , N. If we replace ~B, ~B
l
and ~B

l
by their expansions,
we obtain

ðL

0

fifj dx|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;Mij

dBj

dt
¼ Ka

1

2

ðL

0

fie
�lx
0 Da

x
~fj dx|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

;Dl
ij

Bl
j

0
BBBB@

þ 1

2

ðL

0

fie
lx
x Da

L
~fj dx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

;Dr
ij

Br
j�la

ðL

0

fifj dx Bj

1
CCCCA,

(B 3)

where we have introduced the matrices Dl, Dr and M. Since the

basis functions fj are piecewise linear, it is possible to compute

their fractional derivative analytically (see Hanert [53] for details).

In order to be able to solve equation (B 3), we still have to

express the tempered nodal values Bl
j and Br

j in terms of Bj.

To do so, we use the following L2-projection which simply

amounts to applying a Galerkin formulation to equations

(B 1)–(B 2):

ðL

0

fie
lx~Bdx¼

ðL

0

fi
~B

l
dx!

ðL

0

fie
lxfj dx|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

;El
ij

Bj¼
ðL

0

fifj dxBl
j

and

ðL

0

fie
�lx~Bdx¼

ðL

0

fi
~B

r
dx!

ðL

0

fie
�lxfj dx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

;Er
ij

Bj¼
ðL

0

fifj dxBr
j ,

where we have introduced two additional matrices: El and Er.

These matrices allow us to express the vectors of nodal values

Bl and Br in terms of B as follows: Bl ¼ M�1ElB and

Br ¼ M�1ErB. The semi-discrete equations can finally be

expressed in matrix form as follows:

M
dB

dt
¼ Ka

1

2
DlM�1El þ 1

2
DrM�1Er � laM

� �
B: (B 4)

The last step is to discretize equation (B 4) in time. This can be

done with any standard time integration scheme. In this study,

we have used a third-order Adams–Bashforth scheme.
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