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Cancerous tumours have the ability to recruit new blood vessels through a

process called angiogenesis. By stimulating vascular growth, tumours get con-

nected to the circulatory system, receive nutrients and open a way to colonize

distant organs. Tumour-induced vascular networks become unstable in the

absence of tumour angiogenic factors (TAFs). They may undergo alternating

stages of growth, regression and regrowth. Following a phase-field method-

ology, we propose a model of tumour angiogenesis that reproduces the

aforementioned features and highlights the importance of vascular regression

and regrowth. In contrast with previous theories which focus on vessel remo-

delling due to the absence of flow, we model an alternative regression

mechanism based on the dependency of tumour-induced vascular networks

on TAFs. The model captures capillaries at full scale, the plastic dynamics of

tumour-induced vessel networks at long time scales, and shows the key role

played by filopodia during angiogenesis. The predictions of our model are

in agreement with in vivo experiments and may prove useful for the design

of antiangiogenic therapies.
1. Introduction
Angiogenesis is the growth of new capillaries from preexisting blood vessels. The

growth process is usually triggered by cells whose oxygen or nutrient require-

ments are not satisfied by the current vasculature and it can happen both in

physiological and pathological conditions [1]. Notably, angiogenesis plays a pivo-

tal role in tumour development because it is a necessary step for a solid tumour to

grow beyond a certain size and become malignant [2].

In cancer, tumour cells proliferate abnormally quickly consuming the oxygen

and nutrient released by preexisting blood vessels. As a consequence, they gener-

ate hypoxic regions within the tumour. Hypoxic cancerous cells may release

tumour angiogenic factors (TAFs) [3], such as vascular endothelial growth

factor (VEGF) or basic fibroblast growth factor (bFGF) [4,5], that unbalance the

equilibrium between pro- and anti-angiogenic substances in their microenviron-

ment. Endothelial cells (those that line the interior surface of blood vessels) are

able to sense this change through their surface receptors. This activates the angio-

genic response, a complex process that includes: selection of tip endothelial cells

(TECs, those that will lead capillary growth); degradation of the basement mem-

brane; sprout initiation; TEC migration towards the hypoxic region; proliferation

of the capillary stalk to elongate the vessel; formation of the lumen that allows

blood flow; and anastomoses between capillaries to form loops [6]. Angiogenesis

peaks with the formation of a new vascular network. The newly developed net-

work provides cancerous cells with virtually limitless oxygen and nutrients, as

well as a way to escape the primary tumour and potentially metastasize.

Tumours give rise to dense, tortuous and defective capillary networks

(figure 1a), which are significantly different from those formed in physiologi-

cal conditions [7]. Arguably, the most characteristic feature of tumour-induced

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2016.0918&domain=pdf&date_stamp=2017-01-18
mailto:gvilanovac@udc.es
https://dx.doi.org/10.6084/m9.figshare.c.3660539
https://dx.doi.org/10.6084/m9.figshare.c.3660539
http://orcid.org/
http://orcid.org/0000-0002-9650-0602
http://orcid.org/0000-0002-9005-1375
http://orcid.org/0000-0002-2553-9091


(b)(a)

(c) (d)

Figure 1. Tumour angiogenesis in vivo. (a) Growth of capillaries in a
Rip-Tag2 tumour; (b) regressed capillaries after a 2-day inhibition of VEGF
receptors; (c) regrowth of first sprouts (arrows) 2 days after inhibition
removal; and (d) regrown capillaries 7 days after removal. Scale bar, 115 mm
(adapted from [10]). (Online version in colour.)
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capillaries is that they are TAF-dependent as suggested by

experiments [8–11]. Specifically, in [10], Mancuso and co-

workers performed in vivo experiments where newly formed

capillaries regressed after chemically inhibiting VEGF receptor

signalling of endothelial cells (figure 1b). Perhaps more impor-

tantly, the experiment showed that tumour-induced capillaries

regrew when VEGF receptors were made functional again

(figure 1c–d). Owing to this evidence, it is currently believed

that vascular regression can also happen locally and spon-

taneously in areas which are temporarily well oxygenated.

After local regression, nearby tumour cells become hypoxic

again, activating back the angiogenesis cascade. Mancuso

et al. also observed in their work that regressing capillaries

leave (temporarily) behind the vascular membrane that envel-

oped them. When new capillaries regrew afterwards, these

vascular membranes were used by TECs as a scaffold that facili-

tated their migration: by going through these empty sleeves

of basement membrane, TECs avoid or at least minimize the

effort of degrading the extracellular matrix. As a consequence,

the authors also observed that the regrowth was faster than

the normal growth. Notably, the role of detecting the basement

membranes relies on filopodia. Filopodia are receptor-rich, slen-

der cytoplasmatic protrusions that TECs extend to enhance their

sensitivity, to prove their microenvironment and to respond to

it. In particular, when filopodia sense the remnants of basement

membrane, TECs alter their direction towards them to use them

as the path of minimum resistance in their migration.

There is an emerging view that regression and regrowth

may play a significant role in the long-term dynamics of

tumour angiogenesis and cancer development [12,13]. Numer-

ous investigations have shed light on the intricate growth of

capillaries through mathematical models (see [14–16] for exten-

sive reviews). In the literature, we found different strategies

to model capillaries. Some approaches use fully continuous

theories that represent capillaries as averaged endothelial cell

concentrations [17–21]. Although they set the basis for angio-

genesis modelling, either they are fundamentally unable

to capture the structure of capillaries or they only model the
onset of angiogenesis. Using a different approach, several

authors developed models such as [22–29] based on one-

dimensional discrete theories for the description of TECs. In

these models, capillaries are defined as the trail of TECs, captur-

ing thus the medial line of the capillaries, but not their width.

Continuing with discrete theories, another common approach

is to model every endothelial cell using full-scale agent-based

theories, as in [30–32]. These theories are able to define the

faulty structure of capillaries, but are, in turn, computationally

demanding. Lately, the phase field theory [33,34] has been

used to model angiogenesis [35–39]. This theory is based on

the definition of an order parameter that typically takes two

values, each one representing a ‘phase’. The intermediate

region between these two phases is a thin, smooth transition

which in the limit becomes a sharp interface. The order par-

ameter is interpreted in angiogenesis as a marker of the

location of the endothelial cells, such that one phase represents

the capillaries, the other the extravascular region, and the inter-

face the capillary wall. The dynamics of the capillaries is

governed by a partial differential equation that minimizes an

energy functional. The phase field model allows one to resolve

capillaries at full scale and to represent their structure. Further-

more, because it is not computationally expensive, the theory

can capture the long-term dynamics of angiogenesis, or can

be coupled with tumour growth models [37,40]. We also envi-

sion phase-field theories of angiogenesis being coupled with

three-dimensional fluid dynamics simulations to compute

blood flow [41].

In the last few years, new or augmented mathematical

models of tumour-induced angiogenesis have been developed

to include more biological phenomena, such as vascular adap-

tation, vessel remodelling, blood flow and capillary collapse

[16,42,43]. In these theories, neo-vessels are no longer viewed

as static, but they adapt to the changes of their environment.

One of the first works on this topic was pioneered by Secomb

& Pries [44], in which vessels changed their radius as a function

of wall shear stress, intravascular pressure, and short- and

long-range metabolic stimuli. This one-dimensional theory

for blood flow has also been used in two- and three-dimen-

sional models of angiogenesis such as [45–52], which also

include phenomena such as varying vessel radii, haematocrit,

non-Newtonian effects or subcellular dynamics. The interested

reader is referred to the above-mentioned reviews for further

works on this topic. In these theories, capillary remodelling

depends upon blood flow. However, its dependency on TAF

and the long-term dynamics of regression and regrowth has

received little attention. In this work, we present a model for

tumour angiogenesis that includes not only growth of new

capillaries, but their natural regression and regrowth subject

to TAF availability. The model, based on the phase field

theory, resolves capillaries at full scale, allowing a description

of their structure. We analyse the long-term dependency of

this structure upon external stimuli. Our results achieve

good agreement with in vivo experiments and suggest

that our model could be a useful tool for the design of

antiangiogenic therapies, which are emerging as a promising

treatment for cancer [53].
2. Mathematical model
Our formulation accounts for three essential ingredients of

angiogenesis, namely, TAF, capillaries and TECs, as shown in
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figure 2. In our theory, TAF is interpreted as one general and

potent angiogenic factor, for instance VEGF, for the wide var-

iety and functions of TAFs makes it effectively impossible to

account for everyone. We model TAF as a normalized continu-

ous variable f e [0,fhyc] representing the concentration of the

factor. Capillaries are modelled using an order parameter c e
[21,1], such that the areas where c � 0 are identified with the

endothelial cells that form capillaries and those where c , 0 rep-

resent the extravascular tissue. Furthermore, as capillaries are

enveloped by a basement membrane and occasionally by a

thin cell coverage (pericytes and smooth muscle cells), we

extend the definition of c to include them: the extravascular

tissue is compartmentalized into the capillary coverage,

20.9 , c ,0, and the extracellular matrix, c , 20.9. Finally,

TECs are modelled as discrete agents which follow chemical

cues and sense nearby capillaries or empty basement mem-

branes left by regressed capillaries.

2.1. Tumour angiogenic factor
TAF is produced by tumour cells when they enter a hypoxic

state. Tumour cells are located at fixed points and are assumed

to be hypoxic when they do not have a capillary closer than the

oxygen diffusion length, dnox (figure 2). TAF diffuses from

the hypoxic cells (HYCs) and throughout the tissue, decays

naturally, is consumed by endothelial cells, and eventually trig-

gers angiogenesis. Its dynamics is supposed to be governed by

the reaction–diffusion equation

@f
@t
¼ r � ðDrfÞ þ PðdÞð fhyc � fÞ � UðcÞf , (2:1)

where D is the diffusion coefficient and fhyc is a constant repre-

senting the maximum TAF concentration in the tissue. P is

defined as

PðdÞ ¼ P if d < R
0 if d � R:

�
(2:2)

Here, P is the production rate, d is the distance to the closest

hypoxic tumour cell and R is an average cell radius. The term

P(d)( fhyc 2f) in equation (2.1) limits the concentration of

TAF within a hypoxic cell to fhyc. The uptake function U is

defined as

UðcÞ ¼ Uuc if c � 0
�Udc if c < 0,

�
(2:3)

where Uu is the endothelial cell uptake rate, and Ud combines

the TAF decay rate and the uptake rate by other cells. The
uptake function acts such that deep inside the capillaries

where c ¼ 1 the uptake term 2U(c)f of equation (2.1) reduces

to 2Uuf, that is, the endothelial cell uptake. On the other

hand, when c ¼ 21, the term reduces to 2Udf which accounts

for natural decay. Note that natural decay is neglected inside

capillaries, as the uptake by endothelial cells is two orders of

magnitude higher than natural decay, i.e. Uu � Ud. In the

intermediate region, the uptake function creates a transition

between the endothelial cell uptake and the natural decay.
2.2. Capillaries
The dynamics of capillaries is modelled using the phase field

theory. While at tissue scales averaged descriptions of the

capillaries may be enough, at the scale at which we study angio-

genesis, that is cellular to tissue scale, the morphology of the new

vascular networks plays an important role. For instance, the

location of new sprouts alters the distribution of TAF, oxygen

and hypoxic regions and the width and connections of capil-

laries influence blood flow. The phase field model allows one

to describe this morphology without tracking the evolution of

the capillary walls. Following this theory, the evolution of the

order parameter c that represents a marker of the location of

endothelial cells is such that it tends to adopt the configuration

of minimum energy given by the energy functional

Eðc,fÞ ¼
ð
V

ðCsðcÞ þCcðc,fÞÞdx, (2:4)

whereCs andCc are the so-called surface free energy and chemi-

cal free energy, respectively. The surface free energy is defined as

CsðcÞ ¼ 1
2l

2jrcj2, (2:5)

where l is a constant proportional to the width of the capillary

wall. This term accounts for the required energy to create and

maintain the capillary wall. The chemical free energy, defined as

Ccðc,fÞ ¼ 1
4ðcþ 1Þ2ðc� 1Þ2 þ 1

2agð fÞðcþ 1Þ2ð2� cÞ; (2:6)

is a double-well, non-convex function with two local minima (as

shown on the top row of figure 3) where a is a parameter and

g(f ) is a tilting function. Each local minimum represents a

phase. The first one is at c¼ 1, where the concentration of endo-

thelial cells is maximum, while the other is at c ¼ 21, where

there are no endothelial cells; that is, the extravascular tissue.

Between them there is a local maximum such that the energy

contribution Cc leads to the separation of the phases. Further-

more, the second term on the right-hand side of equation (2.6),
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by means of the functiong(f ), tilts the double well favouring one

phase over the other. This term captures the following prolifera-

tive to apoptotic phenotype switch. Endothelial cell receptors

stimulated by TAF activate molecular pathways that change

the cell phenotype either to a migratory (TECs, modelled separ-

ately) or to a proliferative one. In the absence of stimuli,

endothelial cells lining immature, tumour-induced capillaries

become apoptotic, which eventually leads to vascular regression

[13]. Hence, we define g(f ) as

gð fÞ¼exp½�expðbð f � factÞÞ� � expð�1Þ, (2:7)

where b is a constant. As shown in figure 3, this function tilts the

double well in such a way that capillary growth (proliferative

phenotypes) is favoured when f . fact and capillary regression

(apoptotic phenotypes) is promoted otherwise. In equation (2.6),

the parameter a is set to guarantee the existence of two local

minima in Cc for all g.

The key idea to successfully model this phenotype switch

is to make use of non-conserved phase-field dynamics rather

than previously used conserved models [36]. In the latter,

the energy structure of the phase-field would be broken

down by the incorporation of a reactive term. This new

approach, however, allows a seamless integration of prolifer-

ation and apoptosis of endothelial cells in the energy

functional. Thus, our phase-field equation is

@c
@t
¼ �M

dE
dc

, (2:8)

where M is the mobility, a positive time-scale parameter, and

dE
dc
¼ �l2Dcþ mðc,fÞ (2:9)
is the variational derivative of the energy E. In equation (2.9),

mðc,fÞ ¼ 1
2ðc

2 � 1Þðc� 3agð fÞÞ (2:10)

is the derivative of Cc with respect to the order parameter.

Finally, we end the derivation of the phase field equa-

tion gathering equations (2.8) and (2.9), which leads to the

following reaction–diffusion partial differential equation:

@c
@t
¼ Mðl2Dc� mðc,fÞÞ: (2:11)

The reader is referred to [54–57] for detailed descriptions of

this kind of phase-field models often used in dendritic solidi-

fication, but also in biological problems [58].
2.3. Tip endothelial cells
When capillaries receive TAF signals, some privileged cells

(TECs) acquire a migratory phenotype and lead the growth

of new sprouts [59]. This phenotype was not included in

equations (2.7), (2.10) and (2.11). When an endothelial cell

becomes a TEC, it expresses Delta-like ligand 4 (Dll-4). Dll-4

binds to Notch receptors of nearby endothelial cells preventing

them from becoming also TECs [60,61]. This mechanism is

known as lateral inhibition. TECs migrate following cues that

guide the new capillaries towards nutrient-demanding cells.

These cues may be, for example, chemical or mechanical.

TECs are especially sensitive to such cues because they

extend highly dynamic, receptor-rich protrusions called filopo-

dia [62,63] towards the angiogenic stimuli (figure 2a).

Furthermore, as filopodia probe the cell’s microenvironment,

they may detect nearby endothelial cells. In this event, the

TEC anastomoses with the identified endothelial cell forming

a loop between the growing sprout and the detected capillary.
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Note that this mechanism increases the vascular network

connectivity. Perhaps, more surprisingly, filopodia may even

sense basement membranes left behind by regressed capillaries

and use them to improve their migratory capacity (see [64] and

the supporting information therein for examples of in vitro
experiments). The fact that no other cell will become migratory

in the vicinity of a TEC through the lateral inhibition mechan-

ism makes TECs ideally suited for a discrete description.

A prime example is the work by Bentley et al. [65,66] which pre-

dicts TEC selection combined with migration and fusion using

a cell-scale agent-based model.

Thus, TECs are discrete agents in our formulation, as

shown in figure 2b. They are modelled using ideas from the lit-

erature [35], but further extended to include filopodia, to detect

nearby capillaries, and to migrate not only following chemotac-

tic cues (figure 2b, green arrows) but also using the empty

sleeves of basement membrane left in the extracellular matrix

(figure 2b, black arrow) by regressed capillaries. Following

[35], we use discrete agents that are characterized by their

centre and their radius R. TEC activation, that is, the phenotype

switch from quiescent or proliferative to migratory, is per-

formed according to the following deterministic rules: a point

of the domain is the centre of a new TEC if

(1) it is inside a capillary (c . cact), to guarantee that it is an

endothelial cell;

(2) the TAF is greater than a threshold ( f . fact), to ensure

that the stimulus is potent; and

(3) there is no other TEC in the vicinity (distance to every

TEC greater than d4), to account for the Delta-Notch

selection.

Activated cells, unless they detect a nearby basement

membrane or a capillary, migrate through the extracellular

matrix following chemotactic cues with a velocity pro-

portional to the TAF gradient, given by

v ¼ x
rf
jrf j , (2:12)

where x is the chemotactic constant and | . | denotes the

Euclidean norm.

In our model, TECs also develop filopodia, which we

model as a set of check points that mimic their high concen-

tration of receptors (figure 2b, grey crosses). Because TAFs

polarize tip cells such that they spread filopodia towards

their front [59], we evenly place the check points into an annu-

lar sector of angle u ¼ 2p/3 centred around the chemotactic

direction, as shown in figure 2b. The internal and external

radii of the annular sector are set to ‘int¼ 2R and ‘ext ¼ 4R,

respectively, which is within the range of filopodia

length [62]. Filopodia do not develop immediately after TEC

activation, thus, in the model, the check points are not tested

until the sprout has been initiated, that is, until the TEC has

migrated a diameter from its activation point and it is outside

its parent vessel. A positive check (figure 2b, black cross),

defined as c . 20.9, means that the TEC has detected a base-

ment membrane or a capillary through filopodia. Under this

circumstance, the (chemotactic) direction of migration is

altered towards the check point. Furthermore, the velocity

magnitude is doubled when tip cells move using the vascular

membrane scaffold to account for the easier migration through

the already-degraded extracellular matrix. In the event of
several positive checks, the check point where the value of c
is higher is selected.

There are two ways by which a TEC can be deactivated, that

is, the endothelial cell loses its migratory phenotype. The first

one occurs when the TEC anastomoses with another TEC or

capillary. Anastomosis is modelled in a similar way to filopo-

dia: TECs test the value of c in a 2p/3-radians arc with

radius R centred around the direction of migration. If any of

these values is greater that 0.9, that is, the TEC is already touch-

ing the capillary, then there is an anastomosis event and the

TEC gets deactivated. The second deactivating circumstance

happens when the stimulus ceases (failure to meet condition 2).

In both cases, the discrete agent is removed.

Finally, to close the model, we need to couple the discrete

agents and the continuous variables. The connection between

these two parts of the model is that both the TECs and the

continuous variable c describe endothelial cells. Thus, we

include TECs in the phase-field variable using a straightfor-

ward approach: c is updated to c ¼ 1 in those regions of the

computational domain occupied by TECs. Further elaborated

strategies could be used to conciliate the discrete agents with

the phase-field theory at the expense of a greater complexity.

In addition, other discrete models for TECs that also operate

at the cellular scale such as [66] could be easily coupled with

this model using the proposed approach.
2.4. Numerical methods
Our theory is composed of two continuum variables and a

set of discrete agents. Thus, we develop numerical methods

for the partial differential equations, for the discrete agents

and for coupling both of them. First, we derive the weak

form of the continuous partial differential equations (2.11)

and we discretize them in space and time using the Galerkin

method and the generalized-a method [67,68], respectively

(electronic supplementary material, text T1). Isogeometric

analysis [69,70] permits us to use globally smooth functions

on the domain and a means of accurately solving the

equations. Additionally, we implement a time-step correction

algorithm similar to those in [71–73]. Then, we develop an

algorithm that handles TEC activation, filopodia probing,

migration and deactivation. Note that the migration of

TECs is meshless, meaning that it is independent of the

spatial discretization of the continuum variables. This fact

hinders the coupling between the discrete agents and the con-

tinuum variables, which we perform by updating the value

of the order parameter c at the locations of TECs every time

step using the concept of templates presented in [36]. Thus,

each time step tn before solving the continuous partial

differential equations, we replace the phase field c with

~cðx,tnÞ ¼ gj
cðxÞ if x [ V

j
tec,

cðx,tnÞ otherwise,

�
(2:13)

for all j ¼ 1, . . . ,Ntec, where Ntec is the number of active TECs,

Vj
tec is the domain of the jth TEC, and the template function

gj
c is a multidimensional generalization of an exact one-

dimensional solution to the phase-field equation on an infi-

nite domain (see details in [36]). Note that the implemented

adaptive time-step scheme could yield a large time step,

which in turn could create a gap between capillaries and

TECs. Hence, the continuous/discrete coupling limits the

maximum time step size so that each time step a TEC is

moved a maximum of 10% of its radius.



Table 1. Parameters of the model in dimensionless units.

parameter description in-text reference value

D tumour angiogenic factor diffusion coefficient equation (2.1) 350.0

fhyc maximum tumour angiogenic factor concentration in the tissue equation (2.1) 1.0

P tumour angiogenic factor production by HYCs equation (2.2) 350.0

R average cell radius equation (2.2) 4.0

Uu tumour angiogenic factor endothelial cell uptake equation (2.3) 21.875

Ud tumour angiogenic factor natural decay equation (2.3) 0.35

l interface width equation (2.5) 1.0

a phenotype switch equation (2.6) 0.525

b phenotype switch equation (2.7) 104

M mobility equation (2.8) 0.0875

x chemotatic constant of tip endothelial cells equation (2.12) 25.48

cact condition for TEC activation condition 1 0.9

fact condition for TEC activation condition 2 0.001

d4 Dll-4 radius of action condition 3 32.0

dnox nutrient and oxygen diffusion length 20.0
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The parameter values in dimensionless units used in the

computations are summarized in table 1. The physical quantities

of these parameters may be retrieved by using the length and

time scales L0 ¼ 1.25mm and T0 ¼ 5460 s, respectively. Some

of them are taken from in vivo observations, while others have

been used in previous models of tumour angiogenesis.

The diffusion coefficient of the TAF, following [35,74], has

been set to D ¼ 8.64 � 1029 cm2 s21. In the model, the radius

of the TECs is 5 mm, which is within its measured 5–10 mm

range [75]. We define the endothelial cell uptake as Uu ¼D/

R2 ¼ 14.42 h21 so that the TAF cannot penetrate inside a capil-

lary farther than the radius of a TEC. The value of the natural

decay rate, Ud ¼ 0.230 h21, is set so that its half-life is 3 h, an

averaged value between TAFs [76,77]. P controls the pro-

duction of TAF within a hypoxic cell. In the model, it acts as

a penalty parameter that needs to be sufficiently large, without

compromising the stability of the numerical scheme; thus,

we have set its value to 350. As shown in the electronic sup-

plementary material, the solution has proved to be fairly

insensitive to variations of this parameter. The TAF condition

for TEC activation fact is set to 0.001 so that for fhyc¼ 1 hypoxic

cells located farther than 200 mm away from a capillary can

activate TECs within the time scale of angiogenesis (electronic

supplementary material, text T1). Furthermore, we have set d4

to 8R so that TECs impede the activation of other TECs in their

neighbourhood.

The migration of TECs is controlled by the chemotactic

constant x which is set to 0.504 mm d21, which is within the

range of velocities observed in the mouse cornea micropocket

angiogenesis assays [78]. On the other hand, proliferation and

apoptosis of stalk cells is controlled by the phase field

equation, in particular by the velocity of the interface. For a

straight interface it can be proved [79] that this velocity is

V ¼3Mlag(f ). Here, a and l are computational parameters

which do not directly relate with physical measures. The

reader can find in the electronic supplementary material a

parametric study of these quantities. As shown in [79], the con-

dition agð fÞ , 1=6 is necessary to guarantee the existence of
two minima in the energy functional and recalling that l is a

fixed length scale that defines the capillary wall thickness,

we can assume that the proliferation/apoptosis velocity is con-

trolled by the mobility M. Because the diffusion of TAF is

much faster than cell dynamics, we have set the ratio between

the diffusion coefficient and the mobility to 4000. In addition,

the definition of g is such that the velocity of capillary

regression through apoptosis is 5=3 times slower than its pro-

liferation, to maintain the integrity of growing capillaries. b is a

computational parameter that has been set to 104 to produce a

smooth transition in g around fact. Finally, under physiological

conditions, every cell is at a maximum of 100–200mm from a

blood vessel. Because of the faulty structure of tumour-

induced capillaries and the high nutrient uptake of cancer

cells, we have reduced this distance to dnox ¼ 25 mm. In this

respect, the model could be improved by adding nutrient

and flow compartments so that dnox would not need to

be estimated.
3. Results
We open this section with a simple simulation whose aim is

to give insight and study the proposed mathematical model.

The study is continued with an analysis of the parameters

that control filopodia extension. Then, we show how the

theory is able to capture the growth patterns in configur-

ations that resemble in vivo experimental setups, in

particular, in a two-dimensional simulation of the mouse cor-

neal micropocket angiogenesis assay. Finally, we present the

full potential of this new theory in a simulation that replicates

the experiment shown in figure 1.

3.1. Basic features of the model
In order to study how the model works, we perform a

simple simulation on a square domain (figure 4; electro-

nic supplementary material, video V1). The simulation is

performed on a 375 � 375 mm square domain using a mesh
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composed by 2562 quadratic elements (figure 4a), a con-

figuration that has already proved to accurately capture the

phase-field interface [36,80]. The boundary conditions

for this and every other simulation hereafter are zero-flux

conditions. We consider this set-up simply because, contrary

to the following simulations in this paper, it only has an

initial straight capillary and one HYC located close to it—

approximately 60 mm away. Furthermore, for the sake of

simplicity, we have set fhyc to 0.1 to reduce the potential

number of new capillaries.

Figure 4b– j shows the time evolution of this simulation

by means of zoomed snapshots. The simulation starts with

TAF being produced at the HYC which diffuses throughout

the domain. The first activation of a TEC (dotted, red circum-

ferences in figure 4) occurs when enough TAF infiltrates the

initial capillary, that is, when the amount of TAF is greater

than fact (green lines in figure 4) inside the capillary. Several

time steps afterwards, two other TECs get activated on both

sides of the first one. Note that all TECs are separated from

each other as dictated by the lateral inhibition mechanism.

As shown in figure 4b, the three TECs initially migrate follow-

ing the chemotactic direction, marked with green arrows.

Figure 4c reveals, however, that the chemotactic direction

may be altered. There, the filopodia of the rightmost TEC

detect the presence of a capillary located on its left-hand side.

Consequently, the chemotactic direction is overridden and,

even though the green arrow points to the top-right corner,

the TEC moves towards the detected capillary, anastomoses

with it and gets immediately deactivated. This event highlights

that anastomosis is driven by filopodia contact sensing rather

than through chemotaxis in our model, which is in
agreement with recent in vivo observations [63]. Meanwhile,

the two other TECs, that have already promoted the deactiva-

tion of the HYC, continue their migration through the

extracellular matrix still following chemotactic cues. Prolifera-

tive cells keep widening and elongating the capillaries. And,

as shown in figure 4d, the growth process evolves unaltered

until all TAF gets consumed.

At this point, in the absence of TAF, the endothelial cells

of the tumour-induced vasculature, which are highly TAF-

dependent, change their phenotype to an apoptotic one and

regression starts. Figure 4e–g shows how this process, although

slower than the initial growth (note the time steps in the caption

and its duration in the video), promotes the gradual disappear-

ance of the capillaries. The vascular basement membrane that

was enveloping the capillaries, however, remains after the

capillaries have regressed forming the already mentioned

empty sleeves, through which future TECs can migrate easily.

And, indeed, after the HYC gets activated again the new

TECs that orchestrate the regrowth, aided by their filopodia,

use these remnants of basement membrane to direct the for-

mation of new capillaries (figure 4h– j). Note that, given

enough time, the basement membranes would eventually

regress. As shown in figure 4j, the regrowth and the growth pat-

tern are not equal, even in this simple setup. The source of this

difference is that TECs migrate faster through the empty sleeves

than through the extracellular matrix, thus, their velocities are

higher with respect to TAF consumption. In particular, in the

regrowth process shown in that figure a new TEC gets activated

soon after the anastomosis event between the rightmost TEC

and the middle capillary, creating a new sprout that grows

towards the top-right corner.
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3.2. Parametric study of filopodia
In the previous example, we observe how filopodia play a pivo-

tal role in creating anastomoses between capillaries. The

parameters that define filopodia probing, that is u, ‘int and ‘ext,

were estimated from observations [64]. Note that the parameter

‘int measures the minimum distance at which filopodia start to

sense. Its value has been set to a minimum 2R so that TECs

do not sense themselves. There is no biological reason to

increase this parameter, either. Therefore, we perform here a

study of the value of the other parameters. As shown in figure

5a, for this study we make use of a more realistic, although

still academic configuration of the computational domain.

Initially, we place two capillaries along opposite edges of the

square domain and an aggregate of hypoxic cells at its centre.

These HYCs represent hypoxic regions of a 112.5 mm diameter

tumour. The size of the domain and mesh used for this

simulation are the same as in the previous example (figure 4a).

First, we present in figure 5b two snapshots of the evolution

of the vascular network for u ¼ 2p/3 and ‘ext ¼ 4R, that is, the

estimated values. In the first snapshot, we observe that the

longest capillaries, those created first, grow parallel to each

other separated by a distance close to d4. However, as more

capillaries grow behind, the distance between TECs and capil-

laries falls within the extension range of filopodia, which

triggers the creation of anastomoses. The network starts to

form loops until a lattice-like pattern that spans and oxygenates

the tumour gets generated at time t ¼ 30. In the remaining sub-

figures, we show the vascular patterns at that time generated

under the same initial conditions and parameters, except for

one. In figure 5c,d we have altered the maximum extension of

the filopodia twice and thrice, respectively. As the detection
range of TECs has been increased, tip cells detect nearby capil-

laries easily. Indeed, the scope of filopodia is now greater or

equal to d4, meaning that TECs sense other capillaries as

soon as they initiate the formation of a new sprout. The result-

ing networks create an hourglass-like shape with the thinnest

part over the tumour. This shape is more pronounced in

figure 5d, where a higher value of ‘ext favours the creation of

aberrant capillary clusters. In the simulation shown in

figure 5e, we have decreased the spread angle of filopodia u to

5p/12, and in figure 5f we have increased it to 11p/12. In the

former case, the highly reduced detection by filopodia promotes

a vascular network of capillaries that run parallel and only get

occasionally connected by short vessels. In the latter, we observe

a small number of top-to-bottom capillaries from which many

short sprouts emerge. These sprouts get rapidly connected

(in many instances even with its parent capillary) due to the

large value of u, creating capillary masses and saccular regions.

In this parametric study, we have shown that the vascular

patterns for the altered parameters are more defective either

by forming clusters of capillaries or by creating parallel,

poorly interconnected ones. Note, however, that in experimen-

tal observations the direction and extent of filopodia is not

constant, but varies widely. In the absence of data, we have

estimated these parameters as constants for the sake of simpli-

city, although a more complicated stochastic model could be

easily incorporated.
3.3. Vascular growth
As a first illustration of the capabilities of our model in an

experimental-like set-up, we show in figure 6 a computation
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in a configuration that resembles the mouse cornea micro-

pocket angiogenesis assay [81]. The cornea is an avascular

tissue surrounded by a region called limbus formed by capil-

laries. Tumour cells in the cornea may promote the creation

of new capillaries from the limbus. Thus, in our simulation,

the entire system is initially avascular (figure 6a), except for a

circular capillary (red) that mimics the limbal vessels. We

include a cluster of hypoxic tumour cells that release a generic

TAF (green) that triggers angiogenesis. Figure 6b shows a snap-

shot of the growing capillaries that are pervading the cornea

and forming a new vessel network. As this network grows,

endothelial cells consume angiogenic factor and tumour cells

that are close to capillaries become normoxic and stop releasing

TAF. Capillaries grow led by TECs. TECs follow gradients of

TAF (triangle-labelled discrete agent of the inset), unless they

sense nearby capillaries through filopodia (star-labelled agent

of the same inset) and anastomose with them. The pattern

obtained in this numerical simulation immediately after capil-

lary growth has ceased (figure 6c) is similar to those observed

in vivo [81–83] and in silico [24,26,84].

We performed a quantification of the neovasculature over

time (figure 6d). The vasculature starts as a tree-like network

(no loops) driven by an increasing number of TECs that create

new branches and bifurcations. However, as their filopodia

detect nearby capillaries, the number of anastomosis events

grows rapidly. Consequently, the tree-like network gradually

evolves to a mesh-like one with loops that facilitate blood flow.

By the end of the simulation approximately 30 anastomoses
have shaped the vasculature into a highly interconnected net-

work with more than 20 loops. Note that by the end of the

simulation more than 50% of the loops involve four capillary

branches or more (‘.4-loops’ in figure 6). These long-range con-

nections favour the oxygenation of tumour cells. The pace at

which the vasculature penetrates the cornea (measured as the

distance from the limbus to the innermost TEC using the shortest

path) is linear, as reported in [82,83]. We also measured the

maximum and average capillary length (distance between bifur-

cations) and observed that anastomoses reduce the maximum

length compared with the penetration distance and maintain

the average length almost constant.

With the aim of evaluating the role of filopodia, we repeated

the same simulation disabling the extension of filopodia in each

tip cell. Electronic supplementary material, video V2 presents

the side-by-side vascular network evolution of both simulations

and figure 6e shows a comparison of the resulting medial lines

or skeleton of the final patterns. Visual observation reveals two

marked differences between them. The first one is that in the

absence of functional filopodia, chemotactically driven TECs

chiefly migrate in the same direction creating almost parallel

capillaries. The second one is that the number of bifurcations,

represented as grey dots in the figure, is drastically reduced

from one simulation to the other. These facts are supported

by the quantitation of the last simulation shown in figure 6f.
There, we observe that, although the number of TECs created

during angiogenesis is almost the same, the number of bifur-

cations is reduced by a factor of two. Not only that, but the
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majority of these bifurcations are a consequence of the initiation

of angiogenesis from the limbus and not due to anastomoses.

The absence of filopodia prevents TECs from sensing nearby

vessels and the only anastomosis event is the result of a tip

cell that runs close to a capillary. As a consequence, the new

vasculature presents a single loop and is mainly formed by

dead-end capillaries that prevent blood flow. Note also

that the duration of both simulations is equal and that both

networks penetrate approximately the same distance into

the cornea.
3.4. Regression and regrowth
The result in figure 6 illustrates the capabilities of the model

to predict vascular growth patterns, but a major goal of

this work was to develop a model that naturally leads to
regression and regrowth. We study this phenomenon

motivated by the in vivo experiment shown in figure 1. To

replicate the experiment, we need first to simulate the

growth process. To this end, we chose as our computational

domain the area enclosed by the dotted lines in figure 1.

In the simulation, the system is initially avascular, except

for a capillary placed on the boundary which serves as a

precursor to the neo-vasculature (figure 7a). Randomly dis-

tributed hypoxic cells (that resemble the Rip-Tag2 tumour

in the experiment) release angiogenic factor that activates

TECs. Initially, capillaries grow inwards, forming a new

vasculature (figure 7b). Then, the vasculature regresses due

to the absence of TAF (figure 7c) and the system enters a tran-

sient behaviour with local regressions and regrowths

(electronic supplementary material, video V3) similar to

those observed in experiments. Figure 7d–h shows snapshots
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of different patterns that highlight the dynamism and adap-

tation of the vasculature when regression and regrowth

are considered. Note that in figure 7h the initial capillary

has completely regressed. We assume that this configura-

tion is analogous to the starting point of the experiment

(figure 1a).

The experimental procedure of Mancuso et al. is continued

by chemically inhibiting the VEGF receptors of endothelial

cells, so that capillaries are unable to detect the presence of

TAF and eventually regress (figure 1b). The receptors are

kept blocked for 7 days and the capillaries regrow afterwards

(figure 1c,d ). Our simulation proceeds along the same lines.

We model the receptor inhibition by blocking the activation

of new TECs. Those that were active will eventually get deacti-

vated in the absence of TAF. During the inhibition, most

capillaries regress, as shown in figure 7i– l. Note that regressed

capillaries leave behind a trail (grey colours representing low

values of c in figure 7) which we identify with the basement

membrane. If the treatment were prolonged, all the capillaries

and basement membranes will eventually disappear. How-

ever, as in the experiment, we remove the inhibition after

approximately 7 days (figure 7m) and the regrowth process

starts (figure 7n–p). The high availability of TAF due to the

treatment promotes an almost instant activation of TECs after

its removal.

Visual inspection shows that the in vivo experiment and the

numerical simulation compare well. In both cases, the network

is composed of tortuous, highly interconnected vessels that

oxygenate the tissue unevenly. Also, as the new vasculature

is particularly dependent on TAF, the inhibition acts success-

fully, leaving in both cases few, barely functional capillaries

in the region. The dependency on TAF also implies that the vas-

culature recovers rapidly after the treatment, a finding that may

be useful in the design of antiangiogenic therapies. Adding to

the visual inspection, we performed a quantitative comparison

between the simulation and the experiment. Figure 8 shows the

vascular density of the former in grey and of the latter (data

taken from [10]) in red. Vascular density suffers a drastic drop

due to the inhibition. Then, the regrowth process starts and

the vascular density eventually recovers its original value.

After the regrowth, our model predicts mild oscillations of the

vascular density due to spontaneous local regressions and

regrowths. To some extent, this can also be inferred in the exper-

iment, but there is insufficient data to be conclusive. In addition,
in order to pose the mathematical model we had to make sev-

eral assumptions. One of the strongest ones is that we neglect

the proliferation and death of cancerous cells and assume

fixed hypoxic regions, as the time scale of angiogenesis is

smaller than that of tumour growth. In this experiment, in par-

ticular, we presume that the tumour is not aggressive and

remains constant and occupying the whole domain throughout

the duration of the simulation. This assumption hinders the

quantitative comparison with assays. In summary, although

precise agreement with in vivo experiments is a daunting task,

the simulation captures the trend of the experiment.
4. Conclusion
In this work, we have presented a new model for tumour-

induced angiogenesis growth, regression and regrowth. The

model is based in a non-conservative phase-field theory

which, opposite to previous models that include vessel remodel-

ling, allows one to resolve capillaries at full scale and to simulate

long-term dynamics of angiogenesis. Existing models consider

vessel regression and remodelling mainly based on one-

dimensional theories of blood flow [44,45]. Here, we model an

alternative regression mechanism which emanates from the

fact that tumour-induced capillaries are TAF dependent. In

addition, we have included a discrete conceptualization of filo-

podia that endows TECs with the ability to sense their

microenvironment.

Even assuming a fixed tumour and neglecting blood flow,

our model predicts the plasticity and dynamic evolution of

capillaries at long time spans. In particular, the simulations

are in agreement with in vivo experiments and capture capillary

regression induced by TAF inhibition and their subsequent

regrowth after inhibition removal. Our simulations reinforced

the view that filopodia-based sensing plays a major role in ana-

stomosis and loop formation and that chemotaxis itself is not

enough to create connected networks that favour blood flow

and oxygenation. Furthermore, filopodia have proved to facili-

tate regrowth, as they enhance TEC exploration of the least

resistant path for migration, which is formed by the left-

behind basement membranes. In this respect, the model

could be augmented by explicitly considering extracellular

matrix degradation during migration and making TEC velocity

a function of this new variable. Also, the directional switch of
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TEC migration between the chemotactic and vessel detection

by filopodia could be improved by incorporating a smooth

transition based on experimental data.

In conclusion, our model reinforces the view that tumours

need to be analysed as a complex system which interacts

dynamically with its microenvironment. In this context, our

study highlights the importance of regression and regrowth

of tumour vasculature. The proposed model may be a

useful tool not only to predict capillary growth patterns,

but also for the design of antiangiogenic therapies, which

are currently considered the fourth pillar of cancer treatment

after surgery, chemotherapy and radiation.
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