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Flocking ferromagnetic colloids
Andreas Kaiser,1 Alexey Snezhko,1 Igor S. Aranson1,2*

Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or
magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-
assembly. Although colloidal systems are relatively simple, understanding their collective response, especially un-
der out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in
the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing
experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the
emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise
particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape im-
perfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative
effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large
class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of
bacteria, cell colonies, and bird flocks).
INTRODUCTION
Colloids, that is, suspensions of microscopic particles, play an impor-
tant role in everyday life and are crucial formany industries, fromphar-
maceutical to medicine and nanotechnology. A multitude of forces
govern their behavior, from steric repulsion, electrostatic, magnetic,
and van der Waals forces to gravity, hydrodynamics, etc. (1). Despite
their seeming simplicity, colloidal systems may exhibit fascinating
collective behavior when they are driven out of equilibrium by external
magnetic or electric fields (2). Recent studies have led to the discovery
of self-assembled swimmers, microrobots, and spinners in the system
of driven ferromagnetic colloids (3–5), self-assembly of dynamic rings
and vortices in electrostatically driven metallic particles (6), recon-
figurable active patterns inmetal-dielectric Janus colloids (7), forma-
tion of complex vorticity patterns of paramagnetic colloids in triaxial
alternating fields (8, 9), emergence of large vortices in the system of col-
loidal dielectric rollers energized by an electric field (10, 11), ionic crys-
tals and lane formation in bidisperse colloidal suspensions (12), crystal
formation of light-induced colloidal surfers (13), and many others.

Studies of driven colloids havehighlighted a close relation to a broad
class of systems termed active matter: assemblies of self-propelled par-
ticles capable of transducing energy stored in the environment into
mechanical motion. Active matter has a strong propensity toward
the onset of large-scale collective behavior stemming from a simple
alignment interaction between the self-propelled agents. In living
systems, this collective behavior is exemplified by bacterial swarms,
bird flocks, fish schools, etc. (14). Many aspects of collective behavior,
at least on a qualitative level, are captured by a paradigmatic Vicsek
model for the interacting self-propelled point particles (15). Although
significant progress has been made in the theoretical understanding
of model active systems [for example, see recent research (16–18)] in
many experimental realizations of active matter (19–24), a multitude of
long-range interactions (for example, hydrodynamic, magnetic, electro-
static, elastic, etc.) often obscure and complicate the simple phenome-
nology exhibited by the Vicsek model.

The emergence of large vortices and propagating densification
fronts (so-called Vicsek bands) has been reported in the system of
rolling colloids energized by the dc electric field (10, 11). Self-propulsion
is an outcome of the spontaneous rotation of a dielectric sphere in a
conducting fluid when it is exposed to a dc electric field [Quincke effect
(25)].Althoughmanyexperimental findings fromthe studyofBricard et al.
(10, 11) were successfully reproduced by coarse-grained continuum
theory and simplified particle dynamics model, individual interac-
tions between the particles are hard to quantify, especially the effects
of the dielectric polarization and hydrodynamic forces.

Here, we report on the discovery of ferromagnetic flocking col-
loids. The experimental system is realized by ferromagnetic colloidal
spheres energized by a vertical alternating (ac) magnetic field. Particles
are settled on a slightly concave bottom surface of a liquid-filled con-
tainer (see Materials and Methods). The rolling motion appears due to a
spontaneous symmetry breaking of the clockwise/counterclockwise
rotation experienced by a magnetic sphere in a uniaxial field (5). De-
pending on the frequency of the external magnetic field, a sequence of
transitions can be observed: from gas-like motion of individual particles
at low frequencies to the onset of flocking and global rotation, followed
by a reentrant flocking and gas-like state for increasing frequency. Like
in living systems, flocking behavior is characterized by a spontaneous
onset of coherently moving groups of many particles. However, the
flocks do not keep their identity; they often change their direction, break
up, and reassemble. Our discrete particle simulations have provided in-
sight into the behavior of our experimental system.We have established
that the flocking is an outcome of mostly collisional and magnetic inter-
actions between the particles, whereas the long-range hydrodynamic
forces do not have a qualitative effect on the collective behavior. We have
also observed a strong correlation between the onset of flocking and the
synchronization of particle motion by the applied ac magnetic field.
Our work provides fundamental insights into a broad class of active
systems, both synthetic and living, where collective motion is caused
by a subtle interplay of long- and short-range interactions. Control and
prediction of collective behavior in out-of-equilibrium colloidal systems
also lead to a better understanding of fundamental aspects of dy-
namic self-assembly in general and novel properties of functional
colloidal materials.
RESULTS
In our experiment, a dispersion of ferromagnetic nickel spheres was de-
posited on the bottom of a liquid-filled container. The bottom surface
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of the container was formed by a concave glass lens. The lens was used
to drive the particles toward the center and to prevent them from ac-
cumulating at the container walls. A uniform vertical alternating
magnetic field was used to energize the particles (see Materials and
Methods for details). Typically, up to 400 particles were used in each
experiment. The schematics of our experiment are shown in Fig. 1A.

The main experimental results are summarized in Figs. 1 to 4.
Figure 1B illustrates the trajectories of individual particles. Whereas
some particles roll persistently, other particles may stop and exhibit
almost no rolling for extended periods of time. This variability in
particle behaviors is likely due to the dispersion of the particle sizes
and, correspondingly, magnetic moments as well as shapes and
roughness. A sequence of experimentally observed transitions is
illustrated in Fig. 2. The transitions between the states are quantified
by the corresponding order parameter for in-plane rotational collec-
tive motion, fR, defined as (26)

fR tð Þ ¼ 1
N
∑
N

i¼1
eφiðtÞ⋅viðtÞ ð1Þ
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where eφi are the in-plane unit vectors in angular direction, vi are the
in-plane unit velocities of the individual particles, and N is the total
number of particles. The order parameter attains its maximal values
±1 for pure rotation. Time evolution of the order parameters for the
different regimes after reaching a steady state is shown in Fig. 3B.

The experimental transitions can be summarized as follows: For
low frequencies f < 30 Hz, a gas-like state of randomly moving par-
ticles was observed (see Fig. 2, A and E, and movie S1). While indi-
vidual particles roll, the order parameter for rotational collective
motion ϕR was close to 0 (see Fig. 3B), and their individual velocities
seem uncorrelated (see Fig. 3A). Correspondingly, for this state, the
time-averaged rotational velocity is close to 0 (see Fig. 2E).

Increase in the frequency of the magnetic field resulted in a mark-
edly new phenomenon: the onset of a behavior, which is reminiscent of
bird flocks and fish schools, where large groups of particles start to
move coherently and form well-defined flocks. These flocks are not
static: they break up and reassemble in different locations (see Fig. 2,
B and F, andmovies S2 and S3). Correspondingly, the order parameter
ϕR fluctuates over time at around a value of 0.2.
Fig. 1. Schematics of the experiment and particle trajectories. (A) Schematics of the experiment. A nonsmooth ferromagnetic particle with the magnetic moment m
is energized by an applied vertical ac magnetic field. Particle rotation leads to a self-propelled motion with the velocity V. (B) Trajectories of 25 particles observed over
100 periods of the ac magnetic field. Some particles escape the center of the lens, whereas other particles remain near the center of the lens most of the time. Scale
bar, 1 mm.
Fig. 2. Main observed phases. (A to D) Snapshots of the individual particle velocities for the four major phases: gas (f = 20 Hz) (A), flocking (f = 30 Hz) (B), vortex (f = 40 Hz)
(C), and reentrant flocking (f = 50 Hz) (D) (see also movies S1 to S8). Individual flocks in (B) and (D) are accented by light colors. (E to H) Magnitude of the corresponding
coarse-grained velocity fields. Scale bars, 1 mm.
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Further increase in the field frequency results in the increase in size
and persistence time of the flocks. It eventually leads to the emergence
of a vortex spanning the entire system and continuously rotating in a
certain direction (see Fig. 2, C and G, and movies S4 and S5). The
order parameter attains a maximal value at about 0.5 and shows fluc-
tuations around the mean value (Fig. 3B). The sense of rotation is
determined by an initial particle configuration and changes from ex-
periment to experiment. The core of the vortex is characterized by an
almost linear azimuthal velocity profile (Fig. 3C). Further increase in
the frequency results in the breakdown of the coherent vortex motion
and formation of a reentrant flocking state (see Fig. 2, D and H, and
movies S6 and S7) and, finally, a gas-like state (see movie S8).

Figure 3A displays the spatial correlation functions for different
values of the driving frequency f. Correlation length provides valuable
information on the changes in the system order; however, the absolute
value of it depends on the particle number density. As anticipated, the
correlation length is minimal in the gas phase ( f = 20 Hz). Then, the
correlation length increases with the frequency and attains a value of
15 to 20 particle sizes in the flocking state ( f = 35 Hz). It becomes com-
parable with the system size in the vortex state ( f = 40 Hz). Moreover,
the negative values in the correlation function indicate a large-scale
rotational motion leading to anticorrelations. Then, with further in-
crease in f, the correlation length decreases again. The inset in Fig. 3A
Kaiser, Snezhko, Aranson Sci. Adv. 2017;3 : e1601469 15 February 2017
shows that the correlation length peaks at the frequency f ≈ 39 Hz. In
this case, the correlation length is possibly limited by the system size.
DISCUSSION
Individual particle dynamics
To obtain insights into the onset of collective behavior, we first in-
vestigated the dynamics of individual particles for very low concen-
trations (25 to 40 particles). The results are summarized in Fig. 4.
Although individual particles roll and exhibit self-propelled motion,
the trajectories resemble a random walk due to shape imperfections.
The averaged mean square displacements of individual particles at a
40-Hz excitation frequency are shown in Fig. 4A. The behavior is
consistent with the linear law characterized by translation diffusion
coefficient DT. For f = 40 Hz, we obtainedDT≈ 1 mm2 s–1. From the
measurements of the translation diffusion, we infer the effective ro-
tational diffusion coefficient DR using the well-known relation for
the self-propelled particles

DR ¼ V2

4DT
ð2Þ

where V is the typical particle velocity (27). The estimate yields
the following value for the rotational diffusion DR ≈ 3 to 4 s–1, with
A B C

Fig. 3. Collective particle dynamics. (A) Spatial particle velocity correlation functions for different frequencies; here, a is the particle radius. Inset: Correlation length versus
frequency f. When the correlation length becomes comparable to the system size for the frequency f ≈ 40 Hz, the particle motion is self-organized into a large vortex. The dashed
line serves as a guide to the eyes. (B) Rotational order parameter fR for gas, flocking, and vortex states. (C) Vortex velocity profile versus distance from the center.
A B C

Fig. 4. Individual particle dynamics. (A) Mean square displacement (MSD) of individual particles at frequency f = 40 Hz and magnetic field magnitude H0 = 70 Oe; the
dashed line is a linear law. For longer times, the curve saturates due to finite system size. Inset: Angular mean square displacement (〈dϕ2

〉) for the same experimental
conditions. (B) Particle velocity distribution function; the average is taken over 4 × 104 instantaneous velocity values of individual rollers at f = 40 Hz. (C) Typical particle
velocity normalized by maximally attained velocity V0 = wa, with w = 2pf. The dashed line indicates the value of the slipping parameter as used in simulations.
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a corresponding persistent length l =V/DR≈ 1 mm.We also estimated
the rotational diffusion directly from the variance 〈dφ2〉 of in-plane par-
ticle velocity orientation angle f(t), with dφ = φ(t) − φ(0). This vari-
ance behaves as 〈dφ2〉 ≈ 2DRt for time t ≫ 1 s (see inset in Fig. 4A).
Using this procedure, we obtained DR ≃ 3.5 s–1 for the excitation fre-
quency f= 40Hz. As the frequency of the excitation field increases, the
rotational diffusion coefficient systematically decreases; however, varia-
tion of themagnetic field amplitude has not produced significant changes
in the rotational diffusion coefficient.

Figure 4B shows the particle velocity distribution function P(V).
The distribution is peaked at around a value of Vp ≈ 4 mm s–1, which
depends on the frequency itself. There is a significant population of
particles that almost does not roll (likely due to lower values of the mag-
netic moment). This population is manifested by a plateau near V = 0.

Because of the contact with the surface, a rotating particle will roll.
In the limit of no-slip contact with the surface, the rolling speed V0

would be V0 = wa, where w = 2pf. However, we have found from
our experiments that this theoretical speed value is not attainable
(see Fig. 4C). The particle rolling speeds are distributed around mean
value �V , which is of the order �V ≈ 0:2� 0:3V0 in the range of our
frequencies. Two main factors may contribute to the speed reduction.
First, the fluid may work as a lubricant, leading to partial slip between
the particle and the bottom. Second, a moving rotating particle near a
solid surface will experience a lift force FL, which is of the order of the
gravity for our conditions. In the Stokes limit, the lift force on a rotat-
ing sphere is FL = prfa

3wV, where rf is the fluid density, and V is the
particle translation velocity (28). A particle loses contact with the sub-
strate when the lift force FL becomes comparable with the gravity force
Fg = mg = 4/3prpa

3, where m is the particle mass, rp is the particle
density, and g is the gravity. By using V = V0 = wa, we obtain the lift-
off condition FL=Fg ¼ 3rf aw

2

4rpg
> 1. For nickel particles (rp/rf ≈ 9) with

the radius a≈ 60 to 100 mm,we find that the lift force will exceed gravity
for frequencies in the range of f ≈ 60 to 100 Hz. This implies that the
particle cannot be in a protracted contact with the surface above these
frequencies. Correspondingly, it should move parallel to the surface
with a speed smaller than V0.

The onset of rolling
Theonset of rolling is associatedwith the spontaneous symmetry breaking
of the clockwise/counterclockwise rotation of an individual particle in
an ac vertical magnetic field. Non-negligible particle inertia is a main
cause of the directed rotation (5). By neglecting fluctuations, the evolu-
tion of the particle angle qwith respect to vertical direction (see Fig. 1A)
as a function of time in a vertical uniaxial acmagnetic fieldHz=H0 sin(wt)
is described by the following equation of motion

I
d2q
dt2

þ ar
dq
dt

¼ mH0 sin wtð Þ sin qð Þ ð3Þ

where H0 is the magnitude of the applied field, w = 2pf, m is the
magnetic moment of the particle, and I = 2/5ma2, and ar = 8pha3 are
the moment of inertia and the rotational drag coefficient, respective-
ly (a is the particle radius, m is the particle mass, and h is the fluid
dynamic viscosity). If the particle inertia is negligible compared to
the viscous forces, the first term in Eq. 3 can be dropped, and it is
reduced to

ar
dq
dt

¼ mH0 sin wtð Þ sin qð Þ ð4Þ
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This equation can be solved exactly, leading to the family of
periodic solutions

q ¼ 2 arctan
�
C0 exp

�
z cosðwtÞ

��
ð5Þ

with z = mH0/arw and an integration constant C0 determined by the
initial conditions. Thus, these solutions would correspond to oscilla-
tions around some mean value of the angle q. Any nonzero particle
masswould lead to the breakdownof the family and locking of the angle
to the values of either q = 0 or q = p. The effect of a small inertia can be
demonstrated analytically by perturbing the solution given by Eq. 5. It is
practical to consider the e = I/ar≪ 1 limit. For simplicity, we set in Eq.
5 C0 ≪ 1, leading to q = C0 exp(zcos(wt)). For small e, we use the so-
lution in the form q = C0(et)exp(zcos(wt)). Plugging this into Eq. 3, in
the first order in e, we find, after a simple algebra, that C0 ~ exp(−lt),
where l ¼ ImH0=2a3r . Thus, the particle will align in a vertical direction
with the rate ~I for any small particle inertia.

However, the steady states q = 0, p may become unstable with the
increase of the particle inertia and/or fieldmagnitude. This can be seen
by linearizing Eq. 3 around q = 0, p. Linearizing Eq. 3 after a proper
scaling assumes the form

d2~q

d~t2
þ p

d~q

d~t
¼ ±q sin ~tð Þ~q ð6Þ

where p ¼ ar
wI and q ¼ mH0=w2I are the normalized friction and field

magnitude, respectively, and ~t ¼ wt . Equation 6 can be reduced to
the Mathieu equation whose solutions are well studied and tabulated
(29). Correspondingly, Eq. 6 can be solved in terms of theMathieu spe-
cial functions (29). The time behavior of the Mathieu functions is
determined by the Mathieu characteristic exponent v, which is the
function of the parameters p and q. Thus, by transforming Eq. 5 to a
canonical Mathieu form, one derives a condition for the instability of
the steady states q = 0, p

L ¼ Imðn½�p2; 2q�Þ � p > 0 ð7Þ

The condition provides a critical value of the friction coefficient
when locking with the field direction becomes unstable. In the limit
of small inertia I, (that is, p = ar/wI≫ 1), one finds from Eq. 7 that
L < 0, consistent with our asymptotic analysis above. Thus, the
locked states are stable. The threshold value of the normalized field
q versus friction p obtained from the condition L = 0 is shown in
Fig. 5A. One sees that the critical field value increases with the in-
crease of the friction coefficient p. However, even for p→ 0, there is
a critical value of the field q ≈ 0.454 needed for instability of the
locked state.

Furthermore, by decomposing the driving term into two counter-
rotating wavesH0 sin wtð Þ sin qð Þ ¼ H0

2 cosðq� wtÞ � cosðqþ wtÞð Þ
and neglecting one of the terms in this expression (for example, the
second), we obtain a damped pendulum equation

I
d2q
dt2

þ ar
dq
dt

¼ 1
2
mH0 cos q� wtð Þ ð8Þ
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After making a transformation to a corotating frame, y = q − wt,
one obtains an equation without explicit time dependence

I
d2y
dt2

þ ar
dy
dt

þ arw ¼ 1
2
mH0 cos yð Þ ð9Þ

The rotating state corresponds to a fixed point of Eq. 9. The
corresponding fixed points exist for mH0 > 2arw (or q = 2p), that is,
for relatively small friction. Thus, Eq. 3 describes the rotation of the
particle in clockwise directionwith the frequencyw as long as q > 2p. A
similar consideration is valid for the opposite direction of rotation.
The direction of rotation is determined by the initial conditions and
may change due to interactions with other particles. The rotating state
existence boundary obtained from the condition q = 2p is shown in
Fig. 5A by a thin dashed line.

Moreover, even a single particle may exhibit stochastic switching
of its rotation direction if the fieldmagnitudeH0 becomes large enough.
The approximate boundary for the chaotic regimes for very small fric-
tion ar→ 0 is given by the resonance overlap criterion (30), which is
q* = mH0/w

2I⪆ 1/2 in our notation. However, this condition for q*
underestimates the numerically obtained transition values some-
what by a factor of 3 (see Fig. 5A). For increased values of the fric-
tion coefficient ar, stronger magnetic fields are required for the
onset of these chaotic regimes. The existence boundary of chaotic
regimes, obtained by numerical solution of Eq. 3, is shown in Fig.
5A by black diamonds.

Although our system of ferromagnetic rollers appears seemingly
related to theQuincke colloidal rollers energized by the dc electric field
(10, 11), we want to emphasize a fundamental difference. The propul-
sion speed of the Quincke colloidal rollers depends on the magnitude
of the electric field and vanishes at a critical field value. In contrast, for
the ferromagnetic rollers energized by the ac magnetic field, the rota-
tion speed does not depend on the field magnitude H0 and depends
only on the field frequency f. Moreover, even individual ferromagnetic
rollers exhibit complex dynamics characterized by spontaneous direc-
tion reversals. This particle behavior is not present in the electrostatic
Kaiser, Snezhko, Aranson Sci. Adv. 2017;3 : e1601469 15 February 2017
system ofQuincke rollers. These intrinsic chaotic dynamics lead to the
complexity of the phase diagram for ferromagnetic rollers.

Even in the absence of noise, the analysis of individual particle
dynamics for ferromagnetic rollers provides nontrivial insight into
the collective behavior of many interacting particles. We show below
(see Fig. 5) that the transitions between different collective states are
closely related to the boundaries in the phase diagram for individual
particle (Fig. 5A).

Computational modeling of collective dynamics
To obtain insights into the onset of collective motion and to identify
themost important particle interactions, we performed computational
modeling of a colloidal system driven by a vertical magnetic field (see
Materials and Methods for details). A phase diagram spanned by the
amplitude and the frequency of the magnetic field is shown in Fig. 5B.
In good agreement with the experiment, we reproduced the three
main states (gas, flocking, and vortex) and their correct sequence of
transitions for increasing frequency of the applied field (see Fig. 6
and movies S9 to S12). Moreover, the temporal evolution of “compu-
tational flocks” closely resembles the experimental ones (as can be
seen in Fig. 7A andmovie S10), showing a polar order parameter fluc-
tuating around ϕR ≈ 0.3. In agreement with the experimental results,
we observed that in the vortex state, all particlesmove in a single flock,
with a rotational order parameter ϕR close to 1 and a “void”with a radius
rv ≈10a, (see movie S8). Similar “hollow” vortices were previously ob-
served in the model of interacting self-propelled particles (31). The in-
dividual particle behavior (see Fig. 5A) helps to understand the observed
collective phenomena. The vortex with the maximal correlation length
exists very close to the stability limit of the locked state for an individual
particle. In this regime, the individual particles exhibit the most robust
rotation, which leads to the emergence of a single vortex. We also ob-
served vortices slightly below the stability limit. Whereas in the ab-
sence of fluctuations, individual particles do not rotate, interactions
with other particles and the noise can cause the particle to spin. How-
ever, their propagation velocity decays with the increase of the fre-
quency. This nonsteady rotation of an individual particle for high
frequency leads to transient flocks in the case of collective dynamics.
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Accordingly, we find a flocking state for low frequencies near the
transition from chaotic rotation toward persistent rolling.

We also emphasize a fundamental difference between the two flock-
ing states observed for low and high frequencies. According to Fig. 5A,
low-frequency flocking is observed in the regime when an individual
Kaiser, Snezhko, Aranson Sci. Adv. 2017;3 : e1601469 15 February 2017
particle exhibits a chaotic behaviormanifested by spontaneous direction
reversals. This implies that external noise does not play a significant role
and the emergence of the vortex state is due to the suppression of the
intrinsic stochasticity of individual particle motion. We checked through
simulations that in this frequency range, the flocking-like motion exists
VortexFlocking

–80

–40

0

40

80

–80 –40 0 40 80

y
/
a

x/a

–80 –40 0 40 80
x/a

–80 –40 0 40 80
x/a

–80 –40 0 40 80
x/a

–80 –40 0 40 80
x/a

–80 –40 0 40 80
x/a

–80 –40 0 40 80
x/a

–80 –40 0 40 80
x/a

Gas Flocking

0

0.2

0.4

0.6

0.8

1

V
/
α

s
V

0

–80

–40

0

40

80

y
/
a

A B C D

E F G H

Fig. 6. Dynamic states. (A to D) Snapshots of the emerging dynamic states forH0 = 11 dimensionless units: gas (f = 6 Hz), flocking (f = 20 Hz), vortex (f = 47 Hz), and reentrant
flocking (f=88Hz) (see alsomovies S9 to S12). Arrows indicate the velocity of eachparticle, and the flocks are highlighted by a greenbackground. (E toH) Corresponding intensity
plot of the coarse-grained velocity fields.
–1

–0.5

0

0.5

1

C
(r

)

r/a

0

20

40

60

80

C
d
/
a

f , Hz

0

0.5

1

0 20 40 60 80 100

V
t
/

s
V

0

r/a

0

0.5

1

0 5,000 10,000 15,000 20,000

φ αR

Time

Vortex
Flocking

Gas

Vortex
Flocking

Gas

A B

C D

00 50 100 150 200 20 40 60 80 100

Fig. 7. Characterization of the dynamic states. (A) Rotational order parameter fR for gas, flocking, and vortex states as a function of time (normalized by the filed period).
(B) Tangential velocity profile for the vortex state as a function of distance from the center. The velocity is scaled by the reduced single-particle velocity asV0. (C) Spatial particle
velocity correlation functions for the different dynamic states; dashed lines correspond to the results including hydrodynamic interactions. Data are shown for the following
frequencies: gas (f = 6 Hz), flocking (f = 20 Hz), and vortex (f = 47 Hz). (D) Correlation length Cd as a function of frequency; open symbols denote the results considering
hydrodynamic interactions.
6 of 10



SC I ENCE ADVANCES | R E S EARCH ART I C L E
even in the absence of external noise. In contrast, for high-frequency
flocking, individual particles would be in a steady state, with their orien-
tation along the field direction. Figure 5C displays the system phase dia-
gram without external noise (DR = 0). Without noise, a stationary phase
with hexagonal order emerges (see inset in Fig. 5C). The transition occurs
immediately at the boundary between the stationary and rotating states
for individual particles (see again Fig. 5A). This observation implies that
the high-frequency flocking is a noise-activated process and highlights
again that the individual particle dynamics allows one to draw
conclusions on the collective phenomena. In the absence of noise, the vor-
tex state emerges only if an individual particle exhibits a robust rotation.

For the results shown in Figs. 5 and 6, we neglected long-range
hydrodynamic forces exerted on the fluid by moving rotating par-
ticles. The fluid effect was only included in the translational and rota-
tional drag cofficients at and ar. A rolling particle will impose a net
force on the fluid (force monopole or stokeslet). In bulk, the stokeslet
velocity would decay as 1/r, where r is the distance from the origin (32).
Near a nonslip boundary, the stokeslet will be screened, and in the far
field, it will decay as 1/r2 due to an image stokeslet opposite in sign
(33). We implemented the hydrodynamic interactions between the
particles in the far-field approximation (for the distances large compared
to the particle radius a). Our simulations produced no qualitative ef-
fect of the hydrodynamic interactions on the overall dynamics of the sys-
tem (see Fig. 7 and movie S13). This implies that for typical experimental
conditions, and except for the immediate vicinity of the particle, the hy-
drodynamic velocity is small compared to the rolling velocity wa and
can be neglected. All numerically obtained characteristics of the dynamic
states (rotational order parameter, tangential velocity profiles, correlation
functions, and correlation length dependencies; see Fig. 7) are in qualita-
tive agreementwith the experiments (see Fig. 3).However, there are some
quantitative differences. First, in the simulations, the obtained correlation
length is larger than that in the experiments because all particles are en-
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gaged in a vortical motion. In the experiment, even in the case of a vortex,
some particles at the periphery move randomly. Second, there is some
differencebetween thevortex tangential velocityprofiles. In the experiment,
the velocity profile is almost linear within the vortex core, whereas in the
simulations, we have a void (see Fig. 7B). We found that the void size
shrinks to zero as the number of particles in the system increases.

The onset of flocking and synchronization phenomenon
A fundamental question in the context of the onset of large-scale col-
lective behavior is how the increase of spatial coherence relates to the
synchronization of particle orientations through the applied ac
magnetic field. To address this question, we extracted the particle ori-
entation angles qi at each field period (so-called stroboscopic plots)
from the simulation data (see Fig. 8, A to D). The corresponding dis-
tribution functions P(q), plotted after a transitional phase (about 200
periods), for different frequencies are shown in Fig. 8E. Figure 8 re-
veals a close relation of the phenomenon of phase synchronization
and the onset of large-scale collective behavior. As anticipated, in the
gas phase (Fig. 8A), the particles execute random-likemotion, and their
orientations with respect to the field are essentially uncorrelated. Cor-
respondingly, the angle distribution is almost uniform (see Fig. 8).With
the onset of flocking, a marked transition occurs (see Fig. 8B). After a
short transitional phase, all particle angles converge to two well-
separated narrow bands, and the distribution function exhibits two
narrow peaks of almost equal heights. The width of the peaks is de-
termined by the noise magnitude DR. We verified that without noise
(DR = 0), the peaks become d-functions. These two peaks in the
distribution function P(q) imply that the flocking phase is composed
of two almost equal fractions of clockwise/counterclockwise rolling
colloids. Because we do not see transitions between the bands over
the entire duration of simulations, it means that the reversal of individ-
ual particle directions in low-frequency flocking is very rare. With the
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transition to a vortex, one of the bands disappears (see Fig. 8C). Corre-
spondingly, the distribution function acquires only one narrow peak.
Thus, vortex motion is characterized by the complete synchronization
of particle angles with respect to the applied ac field. A further increase
of the frequency leads to the breakdown of the synchronized vortexmo-
tion and the onset of noise flocking (Fig. 8D). In contrast to the low-
frequency flocking shown in Fig. 8B, the high-frequency flocking is
noise-activated. It is manifested by a significant amount of unsynchro-
nized particles and relatively small broader peaks in the distribution
function. Overall, the observed behavior is reminiscent of the synchro-
nization and clustering phenomena in coupled noisy oscillator systems
described by various versions of the Kuramoto model (34–36).
CONCLUSION
We have demonstrated that a seemingly simple assemblage of rolling
ferromagnetic colloids exhibits marked flocking behavior reminiscent
of that in living systems. We have identified and characterized three
main dynamic phases: gas, flocking, and vortex, as well as the transi-
tions between them. The main advantage of our system compared to
other experimental realizations of active matter is that the particle in-
teractions are well characterized and can be tuned by the frequency
and magnitude of the magnetic field, solvent viscosity, surface curva-
ture, etc. Moreover, each and every particle can be tracked, and its tra-
jectory can be analyzed. Thus, our work provides insights into a variety
of synthetic and living activematter realizations. It also sheds light upon
the relation between seemingly unrelated phenomena: the onset of col-
lective behavior and phase synchronization in periodically driven systems.
We have demonstrated that the emergence of flocking and vortexmotion
is manifested by the appearance of sharp peaks in the particle orientations
and their synchronization with the ac applied field. Our results also em-
phasize a subtle role of the rotational noise: whereas one of the flocking
phases appears to be noise-insensitive, the reentrant flocking happens to
be noise-activated. Thus, our work uncovers new relations between
collective motion, synchronization, and self-assembly (37). From the
materials perspective, quantification and characterization of the main
physical mechanisms governing the dynamics of out-of-equilibrium
colloidal systems are crucial for reaching a better understanding of
the dynamic self-assembly and self-organization at the microscale.

Our computational model for ferromagnetic rollers accurately re-
produced the main experimental observations. We have found that
the long-range hydrodynamic forces do not have a qualitative effect
on the overall system behavior. However, this does not exclude the
importance of near-field hydrodynamic interactions on the dynamics
of particles that are almost in contact. In this respect, more accurate
characterization of the hydrodynamic forces, for example, by the
lattice Boltzmann algorithm (38) or by multiparticle collision dynam-
ics (39), would be highly desirable but is computationally prohibitive.
MATERIALS AND METHODS
Experimental setup and image analysis
Nickel spherical particles with an average radius of 60 mm and an
average magnetic moment m = 2 × 10−5 emu (Alfa Aesar Company)
were used for the experiments. Particles (up to 400) were dispersed
at the bottom of a cylindrical container and filled with isopropanol.
The bottom of the container was formed by a concave glass lens with
a radius of curvature of 52 mm and a diameter of 50 mm. The par-
ticles were energized by a uniform uniaxial alternating magnetic
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field,H =H0 sin(2pft), created by a custom-built Helmholtz air-core
solenoid and applied parallel to the axis of the cylindrical container.
The amplitude of the ac magnetic field H0, was in the range of 0 to
75 Oe, and the frequency f, was varied from 20 to 100 Hz.

The container was mounted on a microscope stage (Leica MZ9.5).
The trajectories of the particles were monitored by a fast charge-
coupled device camera (Redlake MotionPro). We recorded image se-
quences (resolution, 1280 × 1024 pixels) at a frame rate of 50 frames/s.
Image and data analysis of the time sequenceswere performed by ImageJ,
MatPIV, and custom scripts. Particle tracking was carried out by a
MATLAB script based on the Crocker and Grier algorithm (40).

The direction of a particlemotionwas color-coded in visualizations
using the following prescription: [red, green, blue] = [(1 + sin(φ))/2,
(1 + cos(φ))/2,0], where f is the angle of the in-plane velocity vector with
respect to the x- axis. The correlation length was determined as an inte-
gral of the absolute value of the velocity correlation function C(r).

Discrete particle simulations
Positions r

→
i and orientations û

→
i ¼ ½sinqicosφi; sinqisinφi; cosqi�of the

particles are described by the following Newton’s equation of motion
[compare to models of Kokot et al. (5) and Belkin et al. (41)]

m
d2 r

→
i

dt2
þ at

d r
→

dt
þ atasaW

→

i ¼ F
→

i ð10Þ

I
dW

→

i

dt
þ arW

→

i � n
→
i ¼ T

→

i þ m
→
i �H

→ þ arx
→

i � û
→
i ð11Þ

where m is the mass of the particle with radius a, m
→
i ¼ mû

→
i is the

magnetic moment directed along the unit vector u
→̂
i , I is the moment of

inertia, at = 6pha = 0.18 is the translation and ar = 0.25 is the ro-
tation drag coefficient, as = 0.25 is the slipping parameter,W

→

i is the
angular velocity of the particle, n

→
i is the vector normal to the surface at

the particle position, andH
→ ¼ ½0;0;H0 sinð2pftÞ� is the applied external

magnetic field with amplitude H0 normalized by a3/m. To account for
the fluctuations due to the shape imperfections of the particles, we
included a Gaussian distributed noise term x

→

with zero mean and
variances〈x

→

iðtÞ⊗x
→

jðt′Þ〉 ¼ 2DRdijdðt � t′ÞI,where I is an identity tensor.
F
→

i andT
→

i are the forces and torques due to the interactions, respectively.
Here,we include three contributions, themagnetic dipole-dipole interaction

UD
ij ¼ m2

4pr3ij
û
→
i⋅û
→
j �

3ðû→i⋅r
→
ijÞðû→ j⋅r

→
ijÞ

r2ij

" #
ð12Þ

with theparticle distance rij and steric interactionsmodeled by a short-range
hard-core repulsion

UH
ij ¼ m2

16pa3
a
rij

� �24

ð13Þ

Furthermore, the particles are confined in a harmonic potential UC
i ¼

kr2i , withri ¼ r
→
i

�� ��. Theparticles are assumed to roll down thepotentialwell,
which causes an additional torque on the particles. For the unit of length, we
chose the radius of the particle a, energy is measured in m2/a3, and time is
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measured in ata
5/m2. Hydrodynamic interactions between the particles are

included in the far-field approximation (see the SupplementaryMaterials
for details) (42).

The particles are initially placed on a square lattice with random
orientations. We equilibrated the system during a time interval of
15,000 field periods and gathered statistics over an interval of at least
30,000 periods of an appliedmagnetic field (corresponding to 5 to 10min
of the experiment). These simulations were implemented on graphical
processing units, and the typical simulation time was about 30 min.

Implementation of hydrodynamic interactions
Hydrodynamic interactions between the particles were included in
the far-field approximation by considering the stokeslet and rotlet
of spherical particles. Therefore, we added the following hydro-
dynamic velocity, whose k – th component can be written as

VHI
k r

→
i

� � ¼ ∑N
i≠j;j¼1Gkl r

→
i j

� �
F j
l þ ∑

N
i≠j;j¼1

r
→
i j

8phr3ij
� T

→

j

 !
k

ð14Þ

where Gkl r
→
ij

� � ¼ 1
8phrij

dkl þ
rij;krij;k
r2ij

� �
is the Oseen tensor in Eq. 10

and the hydrodynamic torque in Eq. 11

THI
i ¼ ∑N

i≠j;j¼1

r
→
i j

r3ij
� F

→

j

8ph

 !
� û

→
i ð15Þ

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/2/e1601469/DC1
movie S1. Experimental movie for the gas-like state at frequency f = 20 Hz.
movie S2. Experimental movie for the flocking state at frequency f = 30 Hz.
movie S3. Animation of the experimentally obtained flocking state at frequency f = 30 Hz,
where the direction of motion is indicated by the color code.
movie S4. Experimental movie for the vortex state at frequency f = 40 Hz.
movie S5. Animation of the experimentally obtained vortex state at frequency f = 40 Hz, where
the direction of motion is indicated by the color code.
movie S6. Experimental movie for the reentrant flocking state at frequency f = 50 Hz.
movie S7. Animation of the experimentally obtained reentrant flocking state at frequency
f = 50 Hz, where the direction of motion is indicated by the color code.
movie S8. Experimental movie for the gas-like state at frequency f = 60 Hz.
movie S9. Numerically obtained gas-like state at frequency f = 6 Hz, indicating the direction of
motion by the color code.
movie S10. Numerically obtained flocking state at frequency f = 20 Hz, indicating the direction
of motion by the color code.
movie S11. Numerically obtained vortex state at frequency f = 47 Hz, indicating the direction
of motion by the color code.
movie S12. Numerically obtained reentrant flocking state at frequency f = 88 Hz, indicating the
direction of motion by the color code.
movie S13. Numerically obtained vortex state, considering hydrodynamic interactions, at
frequency f = 47 Hz, indicating the direction of motion by the color code.
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