Skip to main content
. 2017 Feb 15;12(2):e0172288. doi: 10.1371/journal.pone.0172288

Table 2. Linear regression models for estimating PMFI/FR-total scarred trees/plots, based on the 96-case calibration dataset.

All slopes (ß) were significant (p < 0.001) at α = 0.05.

Estimator ß Outliers n R2adj RMSE§
Mean CFI—all fires 2.440 25, 89 82 0.721 18.14
Median CFI—all fires 2.450 25, 89 74 0.675 18.52
Weibull Scale CFI—all fires 2.655 25, 93 56 0.755 19.05
Weibull Mean CFI—all fires 2.915 25, 93 56 0.762 18.63
Weibull Median CFI—all fires 3.294 25, 93 56 0.730 20.12
Mean CFI—10% scarred 2.467 25, 89 59 0.837 15.65
Median CFI—10% scarred 2.783 25, 89 60 0.812 16.34
Weibull Scale CFI—10% scarred 2.423 25, 93 55 0.856 16.09
Weibull Mean CFI—10% scarred 2.666 25, 93 55 0.865 15.39
Weibull Median CFI—10% scarred 2.992 25, 93 55 0.826 17.66
Mean CFI—25% scarred 1.715 2, 89 69 0.923 11.00
Median CFI—25% scarred 1.834 26, 89 63 0.870 13.67
Weibull Scale CFI—25% scarred 1.597 2 55 0.925 11.96
Weibull Mean CFI—25% scarred 1.749 2 55 0.929 11.36
Weibull Median CFI—25% scarred 1.867 2 55 0.906 13.00
Mean ITFI 1.121 2, 70 65 0.944 10.30
Median ITFI 1.366 24, 26 64 0.896 12.57
Weibull Scale ITFI 1.108 2 55 0.970 8.04
Weibull Mean ITFI 1.216 2 55 0.972 7.52
Weibull Median ITFI 1.361 2 55 0.958 9.46
PMFI/FR-recorders 1.337 None 52 0.961 10.39

† All models have the form: PMFI/FR-total scarred trees/plots = ß * predictor

‡ Numbers represent row numbers in the 96-case calibration dataset (S1 Table)

§ RMSE = root mean square error, the prediction error, in years, from the 10-fold cross validation