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Abstract

Accurate detection of filarial parasites in humans is essential for the implementation and

evaluation of mass drug administration programs to control onchocerciasis and lymphatic fil-

ariasis. Determining the infection levels in vector populations is also important for assessing

transmission, deciding when drug treatments may be terminated and for monitoring recru-

descence. Immunological methods to detect infection in humans are available, however,

cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high

levels of specificity and sensitivity, and can be used to detect infection in both humans and

vectors. In this study we developed loop-mediated isothermal amplification (LAMP) tests to

detect three different filarial DNAs in human and insect samples using pH sensitive dyes for

enhanced visual detection of amplification. Furthermore, reactions were performed in a por-

table, non-instrumented nucleic acid amplification (NINA) device that provides a stable heat

source for LAMP. The efficacy of several strand displacing DNA polymerases were evalu-

ated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays

targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR

each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/

10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy

gene (70 minutes, O. volvulus) or repetitive DNA (40 min, B. malayi and W. bancrofti) was

employed as a biomarker. The NINA heater can be used to detect multiple infections simul-

taneously. The accuracy, simplicity and versatility of the technology suggests that colorimet-

ric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control

programs.
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Introduction

Filariasis is a parasitic disease caused by any one of several tissue-dwelling, filarial nematodes.

The parasites are highly prevalent in regions of Africa, Asia, South and Central America, and

the Yemen peninsula [1]. In Africa alone, more than 25 million people have onchocerciasis, or

‘river blindness’ [2] and worldwide 40 million suffer from lymphatic filariasis (LF), also known

as elephantiasis [3]. Onchocerciasis is caused by the subcutaneous dwelling parasite, Oncho-
cerca volvulus. First stage larvae, known as microfilariae (mf), released upon mating of adult

parasites, migrate throughout the skin and eyes leading to an intense itch associated with papular

dermatitis as well as severe ocular damage culminating in blindness [4]. The clinical manifesta-

tions of LF are primarily due to the tissue localization of long-lived (up to 17 years) adult para-

sites. Infection by any one of several species of these lymphatic dwelling parasites (Wuchereria
bancrofti, Brugia malayi or Brugia timori) is characterized by recurrent fevers, painful adenolym-

phangitis, lymphoedema (elephantiasis), as well as urogenital swelling and scrotal hydrocele in

men. Although not generally considered fatal, filarial infections cause much disfigurement and

morbidity, resulting in social stigma with severe economic consequences. An estimated 5.7 mil-

lion disability-adjusted life years (DALYs) are lost in the diseased population over their lifetime

as a result of onchocerciasis [5] and LF infections [6].

Filarial parasites are transmitted by the bite of a blood-sucking arthropod; mosquitoes are the

vectors of LF whereas black flies are responsible for spreading onchocerciasis. Mf are ingested by

insects while feeding then undergo two molts to become infective third-stage larvae (L3) that are

transmitted to the human host during a subsequent bloodmeal. In the human host, larvae molt

twice to reach sexual maturity.

Accurate parasite detection is essential for the success of any filariasis control program. In

recent years there has been significant progress in the control of filariasis by treating whole

populations with repeated, semi-annual or yearly cycles of ivermectin [7]. Traditionally, diag-

nosis is based on morphological identification of mf in skin biopsies (onchocerciasis) and

blood (LF), as well as insect vectors using light microscopy. While morphological interpreta-

tion is a valuable technique, it requires substantial expertise, is time consuming and can be

subjective. Because mf prevalence decreases in response to mass drug administration (MDA),

screening blood pools has become a necessary and cost-effective procedure [8]. However, this

method is more likely to produce false-negative results in low mf carriers that may still be

infectious to competent insect vectors. Despite these limitations, microscopic detection is still

a popular method owing to its low cost and suitability for laboratories with limited resources.

The inherent insensitivity of parasitological procedures has prompted the development of sev-

eral immunological methods involving detection of either antibody or antigen for W. bancrofti
[9, 10], B. malayi [11–13] and O. volvulus [14, 15]. However, low levels of sensitivity [16] and

cross-reactivity [11, 14, 17, 18] have been reported. Determining the infection levels in vector

populations is also important for assessing transmission and deciding when drug treatments

may be stopped as well as for monitoring recrudescence [19]. Surveillance involves the capture

and dissection of vector insects, followed by microscopic examination of parasites. This method

is tedious and requires considerable expertise to distinguish the various filarial nematodes that

may exist in an insect.

Nucleic acid-based molecular assays offer higher sensitivity than parasitological or immu-

nological methods and can be used to detect infection in both humans and vectors, as well as

to monitor development of drug resistant parasite strains [20]. Polymerase chain reaction

(PCR)-based methods have been used for more than 30 years in research laboratories, however

the requirement for trained personnel and relatively expensive equipment limit their suitability

for field use [21, 22]. More recently, isothermal amplification methods have been developed
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and are particularly useful for low-resource settings [1, 21] [22]. Loop-mediated isothermal

amplification (LAMP) has become the most widely adopted of these methods. LAMP, a single

step reaction, can amplify a few copies of target to 109 copies in less than one hour even when

large amounts of non-target DNA are present [21]. In addition, the Bst DNA polymerases

used in LAMP are more tolerant to inhibitors commonly found in clinical specimens and

insects which can thwart PCR [23–25]. Determination of amplification is based on simple

visual detection of turbidity produced by the precipitation of magnesium pyrophosphate [26];

fluorescence via an intercalating dye [27]; or through a color change of metal-sensitive indica-

tors [28, 29]. This lack of post-amplification processing offers a considerable advantage over

PCR [22]. LAMP assays displaying high levels of specificity and sensitivity have been described

for various filarial nematodes including B. malayi [30], Loa loa [31, 32], O. volvulus [25] and

W. bancrofti [33]. These assays can be performed using a simple electric device such as a heat

block or water bath set at a single constant temperature. More recently, LAMP assays using a

non-instrumented nucleic acid amplification (NINA) heater have been described which

greatly facilitate rapid and simple pathogen detection in rural settings [34–37]. Continued

improvements to LAMP also include the use of pH sensitive dyes for improved visual detec-

tion of the amplification product based on a rapid, distinct and robust color change [38].

In this study, we developed colorimetric NINA-LAMP assays to detect the filarial parasites

B. malayi, O. volvulus and W. bancrofti. We evaluated the efficacy of several strand displacing

DNA polymerases in combination with the two pH sensitive dyes, neutral red and phenol red.

Conditions for amplification and visualization of a positive result were optimized using puri-

fied DNA isolated from each filarial species. Optimized assays were then evaluated further

using clinical samples (W. bancrofti infected blood) or infected insects (O. volvulus infected

black flies or B. malayi infected mosquitoes).

Material and methods

Reagents

DNA and insect samples were generously donated by the following: B. malayi, L.A. McRey-

nolds (New England Biolabs); L. Loa, B.L. Makepeace and C. Hartley (University of Liverpool);

W. bancrofti, M. Y. Osei-Atweneboana (Water Research Institute, Accra, Ghana); O. volvulus
infected Simulium squamosum black flies were obtained as previously described [39]; unin-

fected female Simulium vittatum black flies were obtained from the Black fly Rearing and Bio-

assay Laboratory (University of Georgia). B. malayi infected Aedes albopictus adult mosquitoes

as well as non-infected adults were obtained from TRS Laboratories (Athens, Georgia). DNA

was purified from individual mosquitoes and black flies using a DNeasy Blood and Tissue kit

(Qiagen) as instructed by the manufacturer. Whole genome amplified W. bancrofti DNA was

obtained from the NIH/NIAID Filariasis Research Reagent Resource Center (http://www.

filariasiscenter.org). Homo sapiens genomic DNA was purchased (Promega, G3041). DNA

quantity was determined using a Qubit dsDNA HS Assay kit in conjunction with a Qubit 2.0

Fluorometer as directed by the manufacturer (Life Technologies).

Colorimetric LAMP assays

LAMP reactions containing neutral red (Sigma-Aldrich) or phenol red (Sigma-Aldrich) dye

were set up as described previously [38]. The nucleotide sequences of the Brugia Hha I (BmHha
I), W. bancrofti Long DNA repeat (WbLDR) and O. volvulus glutathione S-transferase 1a (OvG-
st1a) LAMP primer sets used in this study are shown in Table 1. Two loop primers were manu-

ally designed to accelerate W. bancrofti LAMP reactions [33, 40] that were not included in the

published primer set (Table 1). Briefly, LAMP reactions contained 1.6 μM each of primers FIP

Colorimetric NINA-LAMP for diagnosis and surveillance of filariasis
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and BIP, 0.2 μM each of F3 and B3, 0.4 μM each of LF and FB, 10 mM (NH4)2SO4, 8 mM

MgSO4, 1.4 mM of each dNTP, 0.1% v/v Tween-20, 0.1 mM indicator dye, 8U DNA polymer-

ase (New England Biolabs), and 10 mM KCl if using Bst DNA Polymerase, Large fragment

(wtBst, LF) or 50 mM KCl, if using Bst 2.0 DNA polymerase (Bst 2.0) or Bst 2.0 WarmStart

DNA Polymerase (Bst 2.0 WS). Reactions contained template DNA or H2O for non-template

controls (NTC), with a total volume of 25 μl and pH adjusted to an initial value of 8.2–8.6 at

25˚C. A detailed method for reaction setup can be found in S1 Protocol. Reactions were placed

in NINA heaters or a qPCR machine (Bio-Rad CFX96) for amplification. In the NINA heaters,

a temperature of 63˚C was generated by an exothermic reaction initiated by mixing 6 ml of

0.9% saline with a fuel pouch containing 1.15 gm of Mg-Fe mechanically alloyed powder and

buffered thermally using a modified, nominally 65˚C phase change material. The temperature

was monitored inside mock reaction tubes containing 25 μl of H2O using type T thermocouples

and National Instruments SignalExpress data logging software (www.ni.com) [35]. For BmHha
I and WbLDR, LAMP reactions were placed in the preheated NINA heater optimized to hold

samples at 63˚C (approximately 15 min after initiation of the exothermic reaction) then incu-

bated for 40 min. OvGST1a reactions were added to NINA heaters immediately upon activation

with saline and incubated for 70 minutes. When a qPCR machine was used for amplification,

SYTO 9 (ThermoFisher Scientific) was added (2 μM final concentration) and reactions were

incubated at 63˚C for ~ 1h (160 cycles with a plate read step every 15 seconds). To record color

changes, samples were scanned using an Epson Perfection v700 photo flatbed scanner.

Table 1. Sequences of the BmHha I, OvGST1a and WbLDR LAMP primers.

a,bBmHha primers: Sequence (5’-3’)

FIP GCTTTTTTTAGTAGTTTTGGCACTTCTTACATTAGACAAGGAAATTGG

BIP GAAAYTAATTGACTATGTTACGTGCACAACACAATATACGACCAGC

F3 GCGCATAAATTCATCAGC

B3 GCAAAACTTAATTACAAAAGCG

LF AATTARAATTAAAATTGATAAAT

LB ATTGTACCAGT
aOvGST1a primers: Sequence (5’-3’)

FIP AATGTTACAGGTAAAGAAGGCATCTTTTGGATATAAACGATGATTTTTCC

BIP ATCAAGCATAAATGGCCTATTAGCGATGAAACAAATTATAGCGCAAAG

F3 CTCAAAATTACAATTTATCTCTTC

B3 TTTGCCAATGAATGGATT

LF ATGAAAGAATTCTATTTTAT

LB GCAAAAATAGAAATGCAT
aWbLDR primers: Sequence (5’-3’)

FIP CGACTGTCTAATCCATTCAGAGTGTATCTGCCCATAGAAATAACTACG

BIP TCTGTGCTGAATTTTTGTGGATTGCCAAACTAATTGTAAGCAGTCTT

F3 TTTGATCATCTGGGAACGT

B3 AAGCACCTTAAATCTGTCAAT

LF ATAACCAGAGATCCAC

LB GTGACGACAACTAGG

aThe primer sets used to target the Brugia Hha I repeat and O. volvulus GST1a were described previously [25, 41]. Loop primers (LF, LB) were added to the

original WbLDR primer set [33] to increase amplification speed.
bIn the BmHha I primer set, the degenerate nucleotide Y = C or T and R = A or G.

doi:10.1371/journal.pone.0169011.t001
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Results and discussion

The goal of this study was to develop the capacity to diagnose multiple filarial infections of

humans and insects simultaneously in a portable electricity-free device (NINA) using a robust

and simple colorimetric LAMP assay. Previously published DNA biomarkers were used to

detect B. malayi (Hha I repeat, [30]), O. volvulus (OvGST1a, [25]) and W. bancrofti (WbLDT,

[33]) DNAs. A target temperature of 63˚C, ideally suited for the various filarial LAMP assays

(62–63˚C, [25, 30, 33]), was chosen to develop universal conditions for detection of the three

filarial infections using LAMP in the NINA heater [35]. The NINA H.V9 heater is a thermally

insulated incubation device designed for isothermal amplification methods. This version is

designed to operate in a laboratory setting within an ambient temperature range of 20–25˚C

although other versions have been designed for broader, uncontrolled ambient temperature

ranges. Heat is generated by an exothermic reaction initiated by mixing saline with a Mg-Fe

mechanical alloy. The primary exothermic reaction results from the oxidation of Mg with

H2O, producing MgO, Mg(OH)2, and H2(g). A secondary galvanic corrosion reaction between

the Mg-Fe and saline drives the breakdown of the particles thus maintaining the momentum

of the reaction by preventing the buildup of MgO on the accessible surface area of the particles

[42]. A phase change material is used to buffer the exothermic reaction providing a tempera-

ture range of 62–64˚C to samples [37]. To observe the heating dynamics within NINA, the

temperature of mock samples containing 25 μl of water was monitored in four heaters with

type T thermocouples and SignalExpress data logging software. On average it took approxi-

mately 10 minutes for the temperature inside the samples to reach 62˚C and approximately 12

minutes to reach 63˚C. The highest temperature observed in the samples varied between 63.4–

64.3˚C. On average, samples maintained a temperature of� 62˚C for 76 min and a tempera-

ture of� 63˚C for 61 min (Fig 1).

The temperature profile indicated that the NINA device is suited for the development of

colorimetric filarial assays based on published LAMP conditions [25, 30, 33]. Using W. ban-
crofti DNA as template, two pH sensitive indicator dyes, neutral red and phenol red were eval-

uated for colorimetric assay development in NINA-LAMP [38]. Reactions containing neutral

red changed from colorless before amplification to pink when positive, or to a brownish yellow

in the no template control, whereas reactions containing phenol red were pink initially and

remained pink if negative but turned yellow in the presence of template DNA (Fig 2). Both

neutral and phenol red provide a clear distinction between positive and negative samples

unlike many of the metal-sensitive indicators that can be difficult to distinguish by eye [38].

To determine the most suitable DNA polymerase for use, several strand displacing polymer-

ases, wt Bst LF, Bst 2.0 and Bst 2.0 WS were evaluated in the B. malayi colorimetric NINA-

LAMP platform (Fig 3). Bst 2.0 is a recently engineered enzyme that provides faster reaction

speed and increased tolerance to salt and other impurities. Bst 2.0 WS further allows setup of

reactions at ambient temperature due to the presence of a temperature sensitive aptamer. All

three DNA polymerases reliably detected 1.0 pg (1/100th of mf) of genomic B. malayi DNA in 40

minutes as determined by a color change to pink using neutral red (Fig 3A). Negative reactions

turned yellow as seen for the samples containing 0.1 pg B. malayi DNA or water. Increasing the

assay time to 60 minutes did not improve sensitivity (data not shown). While sensitivity of detec-

tion was consistent between DNA polymerases, the intensity of the color observed varied slightly

perhaps due to the different potassium chloride concentrations in the master mix or alterna-

tively, the overall level of amplification that occurred in a particular sample. Given that no differ-

ences in sensitivity were observed between the three strand displacing polymerases tested, Bst 2.0

WS was chosen for amplification of each filarial DNA in all subsequent experiments since its

warm start characteristics enable simplified reaction set up at ambient temperatures. We found

Colorimetric NINA-LAMP for diagnosis and surveillance of filariasis
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the sensitivity of Brugia colorimetric NINA-LAMP to be comparable to that reported for stan-

dard LAMP [30] and PCR [43].

Specificity of the B. malayi colorimetric NINA-LAMP assay was also evaluated and amplifi-

cation was only observed in the presence of DNA from B. malayi. Reactions containing geno-

mic B. malayi DNA scored positive (pink) whereas those containing DNA from the closely

related W. bancrofti and O. volvulus parasites, or from human, black fly or mosquito, were neg-

ative (yellow) (Fig 3B). The LAMP mechanism which employs 4–6 primers that hybridize to

Fig 1. Temperature profile of the NINA heater. The temperature of 25 μl (LAMP reaction volume) of water

in PCR tubes containing a T type thermocouple was monitored in four separate heaters using NI Signal

Express software. The target temperature of 63˚C is denoted by a black line.

doi:10.1371/journal.pone.0169011.g001
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6–8 regions in the target generates exquisite specificity [21, 22, 40] offering a distinct advantage

over the antibody detection assays for Brugia diagnosis [12] [13] which exhibit cross-reactivity

[11, 44] with other filarial nematodes thus limiting their utility in regions where these infec-

tions co-exist. The lack of reactivity with mosquito DNA, enabled us to explore the possibility

of using the B. malayi colorimetric NINA-LAMP assay for insect surveillance. DNA was iso-

lated from both infected and non-infected mosquitoes and examined. Only samples from

infected mosquitoes scored positive (pink), whereas samples containing DNA from non-

infected mosquitoes or water scored negative (yellow) (Fig 3C). Recent studies suggest that

LAMP may be more sensitive than PCR for quantification of infection rates among mosqui-

toes [45] further supporting the use of the colorimetric NINA-LAMP method as a tool for

monitoring transmission.

A colorimetric NINA-LAMP assay for O. volvulus based on a recently described biomarker,

OvGst1a, was also developed. Standard OvGST1a-based LAMP and PCR assays are capable of

differentiating O. volvulus from O. ochengi, a filarial parasite of cattle in West Africa. Both species

are transmitted by the Simulium damnosum sensu lato complex of black fly vectors [46]. Accu-

rate data about O. volvulus infection rates in black flies depends on the ability to differentiate O.

volvulus from O. ochengi in the vector population. The standard nucleic acid target employed for

detection of Onchocerca is O-150, a genus specific repeat family [47, 48]. PCR differentiation

between O-150 repeats from O. volvulus and O. chengi requires additional hybridization steps

with a specific O. volvulus DNA probe to achieve specificity [49] whereas OvGST1a can be used

in a single step reaction without geographical restriction [25].

Sensitivity of colorimetric NINA-LAMP was determined using samples containing

0.00001–1.0 ng of genomic O. volvulus DNA in the presence of either neutral red or phenol

red dyes. Reactions containing neutral red turned pink when positive or brownish yellow if

Fig 2. Color change of neutral red and phenol red indicator dyes in LAMP reactions. The WbLDR

primer set was used to amplify genomic W. bancrofti (Wb) DNA using the colorimetric master mix containing

either neutral red or phenol red dye and Bst 2.0 WS. Before amplification (T0), reactions containing neutral red

are colorless. Samples turn pink if positive or a brownish yellow if negative as shown after a sixty minute (T60)

amplification. Reactions containing phenol red are pink at T0 and remain pink if negative but turn yellow if

positive as shown here after a sixty minute (T60) amplification.

doi:10.1371/journal.pone.0169011.g002
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negative whereas reactions containing phenol red turned yellow if positive and but remained

pink when negative (Figs 2 and 4A). Irrespective of the dye used, 0.01 ng (1/10th of mf) of O.

volvulus DNA was detected using NINA-LAMP (Fig 4A). Reactions containing 0.001 ng of

Fig 3. Sensitivity and specificity of the BmHha I colorimetric NINA-LAMP assay with neutral red dye.

Comparison of sensitivity using Bst DNA polymerase, Large Fragment (wt Bst LF), Bst 2.0 DNA polymerase

(Bst 2.0) or Bst 2.0 WarmStart DNA polymerase (Bst 2.0 WS) on a 10X serial dilution of genomic B. malayi

DNA (A). Species-specificity using 100 pg of various genomic DNAs (B). Detection of B. malayi DNA in

mosquitoes (C). Species names are abbreviated as follows: B. malayi (Bm), W. bancrofti (Wb), O. volvulus

(Ov), Homo sapiens (Hs), Simulium vittatum (Sv) and Aedes aegypti (Aa). The non-template controls (NTCs)

contain water.

doi:10.1371/journal.pone.0169011.g003

Colorimetric NINA-LAMP for diagnosis and surveillance of filariasis
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genomic O. volvulus DNA or less including the NTCs were negative. This is consistent with

the level of sensitivity previously reported using standard LAMP conditions and turbidity or

hydroxy napthol blue as the readout or by PCR [25]. No difference in sensitivity was observed

between neutral red or phenol red when used in the colorimetric NINA-LAMP tests for either

brugian or bancroftian filariasis (data not shown).

The specificity of the O. volvulus colorimetric NINA-LAMP assay was evaluated using phenol

red with Bst 2.0 WS and 1 ng of various genomic DNAs. The assay successfully differentiated

Fig 4. Sensitivity and specificity of the OvGST1a colorimetric NINA-LAMP assay using Bst 2.0 WS.

Sensitivity comparison of neutral red and phenol red dyes on a 10X dilution series of genomic O. volvulus

DNA (A). Species-specificity using 1 ng of various genomic DNAs (B). Detection of O. volvulus in black flies

(C). Species names are abbreviated as follows: O. volvulus (Ov); W. bancrofti (Wb); Loa loa (Ll); B. malayi

(Bm); Aedes aegypti (Aa); Simulium vittatum (Sv); Simulium squamosum (Sa) and Homo sapiens (Hs).

NTC = Non-template control.

doi:10.1371/journal.pone.0169011.g004

Colorimetric NINA-LAMP for diagnosis and surveillance of filariasis
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samples containing O. volvulus (by turning yellow) from those containing closely related filarial

DNAs or DNA from human or black fly vector (remained pink) (Fig 4B).

To further evaluate the suitability of the NINA device for use in field conditions, DNA iso-

lated from experimentally infected Simulium squamosum black flies was assayed (Fig 4C). All

four of the DNA samples purified from the individually infected flies as well as the O. volvulus
genomic DNA control scored positive (yellow) whereas the DNA samples purified from non-

infected flies as well as the NTC scored negative (pink) (Fig 4C). This assay is also likely to be

useful in analyzing pools of infected black flies as we have previously shown high levels of sen-

sitivity in standard LAMP assays using DNA samples prepared from pools containing 200

black flies spiked with 0.1 ng O. volvulus DNA [25]. These results highlight the potential of the

O. volvulus colorimetric NINA-LAMP platform as a surveillance tool for O. volvulus-infected

vectors in endemic communities.

A colorimetric NINA-LAMP assay was developed for W. bancrofti using previously pub-

lished LAMP primer set targeting the nuclear scaffold/matrix attachment region (GenBank

accession no. AY297458) also known as the W. bancrofti Long DNA repeat (WbLDR) [1, 50].

The limit of sensitivity of this assay is reported to be approximately 1/1000th of an mf or 0.1 pg

of genomic W. bancrofti DNA [33]. To increase assay speed, two additional loop primers

(Table 1) were designed and included. Ten-fold serially diluted DNA extracted from 200 W.

bancrofti mf was used as template for colorimetric LAMP reactions containing phenol red and

Bst 2.0 WS to determine sensitivity (Fig 5A). DNA from 1/5000th of an mf scored positive (yel-

low), representing a 5-fold increase in sensitivity compared to the previously published LAMP

assay [33]. A duplicate set of samples containing SYTO 9 were amplified in a qPCR machine

set at 63˚C to monitor the dynamics of the colorimetric LAMP reaction. Analysis of the real-

time amplification signal from the positive LAMP reactions corresponded to the end point

color change in the same samples. Furthermore, a good linear correlation of reaction speed

with log amount of DNA added to the reactions was observed suggesting that the assay is

semi-quantitative and can be used to estimate infection load (Fig 5A). This semi-quantitative

quality of LAMP has been reported elsewhere [51]. Concordant results were obtained using

both the qPCR and NINA devices, confirming the reliability of the NINA heater and the end

point color change.

The specificity of the W. bancrofti NINA-LAMP assay was evaluated using phenol red with

Bst 2.0 WS and 100 pg of various genomic DNAs (Fig 5B). The assay successfully differentiated

the sample containing W. bancrofti DNA (by turning yellow) from samples containing closely

related filarial parasites as well as human and vector DNA samples (remained pink) (Fig 5B).

These results are consistent with the specificity of the previously published WbLDR primer set

[33] using standard LAMP conditions demonstrating that the addition of loop primers did not

compromise assay specificity. With its enhanced sensitivity and high level of specificity, the W.

bancrofti colorimetric NINA-LAMP assay may prove a suitable alternative to the circulating

female antigen assay (CFA) (Alere Filariasis Test Strip) commonly used to diagnose W. ban-
crofti infection that cannot be employed in areas where Loa loa is endemic due to issues with

cross-reactivity [18, 52–54].

To evaluate whether the colorimetric NINA-LAMP platform might be suitable for detecting

infected blood samples under field conditions, DNA extracted from 8 different W. bancrofti
samples of mf was assayed using W. bancrofti colorimetric NINA-LAMP (Fig 5C). All eight

DNA samples and the control scored positive (yellow) whereas the non-template water control

scored negative (pink) (Fig 5C). These results suggest that the enhanced sensitivity of the W.

bancrofti colorimetric NINA-LAMP assay may be suitable for detecting infection in humans.

In addition, questions have arisen regarding the sensitivity of the W. bancrofti CFA assay in

regions where the endemicity of W. bancrofti is low or that have undergone multiple rounds of
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Fig 5. Sensitivity and specificity of the WbLDR colorimetric NINA-LAMP assay using Bst 2.0 WS. (A) LAMP

reactions incubated in the NINA heater exhibit the same sensitivity as those incubated in a qPCR machine with DNA

amplification monitored in real time using a dsDNA binding dye. Genomic W. bancrofti DNA dilutions equivalent to 1/5 mf
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MDA [16]. These issues have prompted the use of the WbLDR LAMP assay for monitoring

mosquitoes as a surrogate for the CFA test in low endemic regions [45]. Therefore, the W. ban-
crofti colorimetric NINA-LAMP may be suited for both diagnosis of infection in humans and

surveillance of insect vectors.

In summary, nucleic acid based approaches to detect filarial infection offer considerable

advantages over traditional parasitological and immunological methods. They offer greater

levels of sensitivity and specificity, and versatility as the same test can be used for human and

insect hosts [1]. In recent years there have been many advances resulting in the availability of

cheaper and simpler molecular diagnostic tests suitable for low resource settings. We describe

the use of a single portable electricity free device (NINA) to perform colorimetric LAMP reac-

tions for the detection of several filarial species present in human samples or insect vectors.

The assay is easily adapted to accommodate multiple different primer/target combinations.

Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus) or a

repetitive DNA target (40 minutes, B. malayi and W. bancrofti) was used. The simplicity and

versatility of the technology indicates that the colorimetric NINA-LAMP filarial assays are ide-

ally suited for monitoring the success of MDA programs.
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