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ABSTRACT mTOR coordinates growth signals with metabolic pathways and protein
synthesis and is hyperactivated in many human cancers. mTOR exists in two com-
plexes: mTORC1, which stimulates protein, lipid, and ribosome biosynthesis, and
mTORC2, which regulates cytoskeleton functions. While mTOR is known to be in-
volved in the DNA damage response, little is actually known regarding the functions
of mTORC1 compared to mTORC2 in this regard or the respective impacts on tran-
scriptional versus translational regulation. We show that mTORC1 and mTORC2 are
both required to enact DNA damage repair and cell survival, resulting in increased
cancer cell survival during DNA damage. Together mTORC1 and -2 enact coordi-
nated transcription and translation of protective cell cycle and DNA replication, re-
combination, and repair genes. This coordinated transcriptional-translational re-
sponse to DNA damage was not impaired by rapalog inhibition of mTORC1 or
independent inhibition of mTORC1 or mTORC2 but was blocked by inhibition of
mTORC1/2. Only mTORC1/2 inhibition reversed cancer cell resistance to DNA dam-
age and replicative stress and increased tumor cell killing and tumor control by DNA
damage therapies in animal models. When combined with DNA damage, inhibition
of mTORC1/2 blocked transcriptional induction more strongly than translation of
DNA replication, survival, and DNA damage response mRNAs.
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The mammalian target of rapamycin (mTOR) is a downstream kinase of the phos-
phatidylinositol 3-kinase (PI3K)/AKT signaling pathway that integrates signals from

growth factors and nutrients to regulate key metabolic and macromolecular processes
and is dysregulated in many human cancers (1–3). mTOR exists in two complexes,
mTOR complex 1 (mTORC1) and mTORC2, which mediate different functions defined by
their molecular composition. In response to nutrient levels, growth factors, and other
mitogenic signals, mTORC1 regulates protein synthesis, lipid synthesis, and ribosome
biogenesis (1, 3). mTORC1 includes the proteins mTOR, Raptor, and G�L, among others
(4), and is responsible for the phosphorylation (inactivation) of the negative regulator
of cap binding protein eukaryotic translation initiation factor 4E (eIF4E) known as
4E-BP1. 4E-BP1 binds and blocks the activity of the translation initiation factor eIF4E by
competing for interaction with translation initiation factor eIF4G, a molecular scaffold
upon which the 40S ribosome and translation factors assemble (5). mTORC2 includes
the proteins mTOR, Rictor, and G�L, among others. mTORC2 regulates cytoskeleton
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organization in response to growth signals and is an upstream activating kinase for the
AGC kinases AKT, SGK1, and protein kinase C (PKC), which can promote cell survival and
proliferation through activation of AKT (6). In fission yeast, TORC2 is required for
recovery from DNA replicative arrest (7) and maintenance of genome stability after
S-phase-specific DNA damage (8). In budding yeast, TORC2 is required for maintenance
of genome stability after double-stranded DNA (dsDNA) damage (9). In mammals, mTOR
also regulates the DNA damage response (DDR) to genotoxic chemotherapeutic agents
and ionizing radiation, in part by mTORC1 regulation of the p53/p21 pathway (10), in part
by acting on cell cycle regulator CHK1 (11), and by mTORC1/2 regulation of FANCD2
expression, an essential DNA repair component of the Fanconi anemia complex (12–14).
mTORC1 itself is inhibited by p53 in response to genotoxic DNA damage (15, 16). Adding
further complexity, interaction of Rictor, a component of mTORC2, with the DDR protein
BRCA1 inhibits mTORC2 phosphorylation of AKT (17). There is also evidence that both
mTORC1 and mTORC2 function in protecting against genotoxic DNA damage in many
types of cancer cells, as shown by selectively silencing Raptor or Rictor (11, 18–20), although
the relative contributions of transcription and translation were not explored.

Allosteric mTOR inhibitors such as everolimus (RAD001) only impair mTORC1 activity
and have a limited anticancer effect, even in combination with conventional genotoxic
(DNA-damaging) chemotherapies (21). More recent ATP-competitive inhibitors of both
mTORC1 and -2 more fully impair cancer cell proliferation and viability than allosteric
mTORC1 inhibitors and show increased antitumor activity, alone or with genotoxic DNA
damage therapies (1, 22, 23). mTOR therefore promotes cell survival from genotoxic
DNA damage, but a mechanistic understanding remains poor. Furthermore, whether
the different mTOR targets and pathways in the DDR involving the p53/p21 axis, cell
cycle checkpoints, DNA repair protein interactions, and selective mRNA translation
coordinate responses to DNA damage has not been explored. Here we have investi-
gated the mTORC1- and mTORC2-dependent responses to DNA damage.

RESULTS
mTORC1/2 but not mTORC1 inhibition sensitizes cancer cells and human tumor

xenografts to genotoxic DNA damage. To determine the role of mTOR in protection
against genotoxic DNA damage, we used ionizing radiation (IR) because it can be
precisely controlled and SUM149 inflammatory breast cancer (IBC) cells because they
are highly resistant to DNA damage-mediated killing (16, 24, 25). SUM149 cells are
mutated in p53 and BRCA1 DNA damage sensors that inhibit mTORC1 and mTORC2,
respectively, like many breast cancers (15–17). Clonogenic survival assays were carried
out to determine the effect of mTORC1 or dual mTORC1/2 inhibition in response to
genotoxic DNA damage by RAD001 (mTORC1) or PP242 (mTORC1/2). The levels of
mTOR-inhibiting drugs used (2.5 �M PP242 and 20 nM RAD001) were chosen based on
titration to the lowest effective level for inhibition of mTORC1 and/or mTORC2 activity
in these cells, at levels that are consistent with selective mTORC1 or mTORC1/2
inhibition (22, 26). Much higher levels (5-fold) have been shown in vivo to also target
the RET receptor, JAK kinases, and ATR (27). Inhibition of mTORC1/2 but not mTORC1
alone increased cell killing over a range of IR-mediated DNA damage by 5- to 8-fold
(Fig. 1A). This was found to require inhibition of mTORC1 and -2. For instance, inhibition
of mTORC1 by silencing Raptor, or of only mTORC2 by silencing Rictor, did not sensitize
cells to genotoxic DNA damage over that of nonsilenced controls, whereas silencing of
both strongly enhanced sensitivity to DNA damage by 6- to 10-fold (Fig. 1B). Inhibition
of mTORC1 or mTORC1/2 activity by RAD001 and PP242, respectively, or silencing
Raptor or Rictor, was shown by reduced phosphorylation of 4E-BP1 T37/46 or P-S6
S240/244 and AKT-S473 (Fig. 1C and D). Of note is the much stronger inhibition of
mTORC1 activity by the ATP site PP242 inhibitor, as shown by 4E-BP1 phosphorylation.

Tumor sensitivity was next assessed with SUM149 tumors grown subcutaneously in
athymic mice, testing inhibition of mTORC1 (RAD001) or mTORC1/2 (PP242) and
concurrent IR, with treatment initiated when tumors reached �150 mm3 in size.
Inhibition of neither mTORC1 alone nor mTORC1/2 alone had a significant effect on
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FIG 1 mTORC1/2 activity is required for resistance to genotoxic DNA damage. (A) Genotoxic cell death
is enhanced by mTORC1/2 but not mTORC1 inhibition. SUM149 cells were plated for colony survival
assays following treatment with PP242, RAD001, or DMSO vehicle for 2 h prior to IR up to 8 Gy. Colonies
were stained 14 days after plating and scored from 3 independent studies; SEM is shown. *, P � 0.01 by
t test. (B) SUM149 cells silenced using small interfering RNAs (siRNAs) against Raptor, Rictor, or both were
subjected to increasing IR dose levels, as shown. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay was used for quantitation of cell death. Results are the averages from
3 independent studies with SEM. (C) SUM149 cells were treated as described above for 2 h prior to IR with
8 Gy and harvested at the indicated times, and equal amounts of protein were examined by immunoblot
analysis. Representative results of 3 independent analyses are shown. (D) SUM149 cells transfected with
siRNAs to silence Raptor or Rictor were mock treated or treated with IR at 8 Gy and then were harvested
24 h later. Equal protein amounts of lysates were used for immunoblot analyses. Representative
immunoblots are shown. (E) Inhibition of mTORC1/2 but not mTORC1 impairs tumor growth when
combined with IR-mediated genotoxic DNA damage. NCR nude mice were injected in the right lower
flank with SUM149 cells, tumors were grown to 150 mm3, animals were treated with 100 mg/kg PP242,
2.5 mg/kg RAD001, or vehicle, and tumor sizes were recorded every 3 days. Tumors were irradiated for
3 consecutive days (days 3 to 5) with 8 Gy, initiating 2 days after the start of drug treatments. (F) Tumors
were excised from animals at day 15, whole-cell lysates were prepared, and equal amounts of soluble
proteins were resolved and immunoblotted for full-length and cleaved PARP. (G) SUM149 cells were
treated with the indicated drugs for 2 h prior to irradiation with 8 Gy. Caspase-3/7 activity was measured
at 48 h after treatment.
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tumor growth (Fig. 1E). However, when combined with IR-mediated DNA damage,
inhibition of mTORC1/2 but not mTORC1 significantly impaired tumor growth. Cleav-
age of poly(ADP-ribose) polymerase (PARP) is a marker of caspase-3-mediated cell
death. Equal amounts of tumor soluble protein lysates showed that whereas mTORC1
or mTORC1/2 inhibition increased PARP cleavage, as did IR, only mTORC1/2 inhibition
with genotoxic DNA damage by IR did so strongly (Fig. 1F), consistent with more
effective tumor control. This was confirmed by analysis of caspase-3/7 activation itself,
with and without IR, in SUM149 cells (Fig. 1G). Collectively, these data show that
inhibition of mTORC1/2 but not mTORC1 strongly sensitizes normally resistant IBC cells
and tumors to genotoxic DNA damage.

mTORC1/2 but not mTORC1 coordinates transcription and translation of mRNAs
associated with cell cycle progression, DNA metabolism, and the DDR. Next, we
explored the extent to which mTORC1 or mTORC1/2 inhibition sensitizes tumor
cells to DNA damage at the level of translation and/or transcription. Downregula-
tion of overall protein synthesis was only slightly greater with inhibition of
mTORC1/2 than with that of mTORC1 at these dose levels and was not further
affected by IR (Fig. 2A).

We therefore carried out simultaneous genome-wide translatome and transcrip-
tome analysis on cells inhibited in mTORC1/2 with PP242 or only mTORC1 with RAD001,
with or without concurrent IR. Total mRNA levels were compared to mRNA levels in the
well-translated (�4-ribosome) fraction, obtained by sorting polyribosomes through
sucrose gradients (Fig. 2B). Polysomal profiling showed only a small reduction in
mRNA-ribosome content with mTORC1/2 inhibition, which was not significantly
changed by IR-mediated DNA damage (Fig. 2C). The small reduction in heavy poly-
somes with mTORC1/2 inhibition is consistent with selective translation reduction of
specific mRNAs. Three sets of conditions were analyzed to fully explore the genome-
wide changes in mRNA abundance and translation: (i) expression levels for total mRNA
(largely transcription activity); (ii) mRNA polysome association, regardless of whether
changes were due to mRNA abundance or translational regulation; and (iii) ratio of
heavy polysome mRNA to total mRNA, which measures stronger translation-specific
changes (translation efficiency). Analyses used cutoffs of log2 1.0 (2-fold) for total mRNA
and log2 0.6 (1.5-fold) for heavy polysome association. The latter cutoff value was lower
because smaller changes in protein expression can have large physiological effects.
Significance was set at a P value of �0.05 for all analyses.

Table 1 lists the number of mRNAs altered at mRNA and/or polysome levels within
the parameters described above by mTORC1 or mTORC1/2 inhibition, with or without
IR-mediated genotoxic DNA damage. For all treatments, the most significant mRNA
changes were downregulation, as expected, whether in abundance, polysomal associ-
ation, or translation efficiency, with a small number of mRNAs upregulated as well. The
number of mRNAs that displayed translation-specific alteration in efficiency (no change
in mRNA abundance) with mTOR inhibition, but without IR, was surprisingly small and
similar in mTORC1 (RAD001)- and mTORC1/2 (PP242)-inhibited cells (Fig. 2C). When
combined with IR-mediated DNA damage, the number of translation-specific events
almost doubled for both groups (Table 1). However, the identities of the mRNAs altered
in abundance and/or translation in mTORC1- or mTORC1/2-inhibited cells, with or
without genotoxic DNA damage, were clearly distinct between the two groups (Fig. 2C;
Tables 1 and 2). mTORC1/2 inhibition more substantially and differentially reduced the
transcriptomic mRNA profile than mTORC1 inhibition, which in turn resulted in a
significantly different and greater reprogramming of the translatome than that seen
with mTORC1 inhibition.

A list of all altered top-scoring mRNAs was subjected to gene ontology analysis for
changes in total abundance, polysome association (regardless of translational regula-
tion), and translation-specific changes (Fig. 3). Using Ingenuity pathway analysis (IPA),
we categorized gene expression changes into experimentally authenticated biochem-
ical and molecular networks, classifying them into biologically significant pathways (Fig.
4). Data output is represented as a z-score that quantifies the level of predicted
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activation or inhibition of a specific network based on the up- or downregulation of
genes or mRNAs within its list. Using cutoff values of z � �2.0 (activation) and z � �2.0
(inhibition), lists of significantly affected biological process were developed for trans-
lational and transcriptional changes with each treatment. mRNAs that were transcrip-
tionally altered by mTORC1/2 inhibition showed particular enrichment in downregula-
tion of pathways involved in DNA damage response (DDR), followed by cell cycle
checkpoint control and a small number of metabolism functions, all of which were also
represented in polysome association (Fig. 3 and 4). These same pathways were en-
riched in both mRNA abundance and polysome association when mTORC1/2 inhibition
was combined with genotoxic DNA damage, again with more effects driven by changes
in mRNA abundance than by translation-specific changes. In contrast, inhibition of
mTORC1, alone or in combination with genotoxic DNA damage, did not significantly
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enrich for regulation of these pathways at the mRNA abundance, polysome association,
or translation-specific level. Instead, there was a small increase in proapoptotic gene
expression, which correspondingly increased translation of these mRNAs in polysomes,
and only a small reduction in the levels of mRNAs in DNA synthesis and cell cycle
progression, but as shown below, there was no significant increase in cell death, in
agreement with other reports (18–20). These results were validated by quantitative
reverse transcription-PCR (qRT-PCR) for key mRNAs (Fig. 5) and by immunoblot analysis
for certain corresponding proteins (see below). Inhibition of mTORC1/2 therefore

TABLE 1 Number of mRNAs differentially expressed or translated with treatments

Differential expression

No. of RNAsa

Downregulated Upregulated

PP242
treatment

RAD001
treatment

PP242
treatment

RAD001
treatment

Without IR
Abundance 171 55 50 34
Polysome association 707 163 221 46
Translation-specific activity 152 149 77 140

With IR
Abundance 187 31 321 64
Polysome association 373 151 205 30
Translation-specific activity 285 328 162 154

aNumber of mRNAs differentially expressed in abundance, polysome association, or translation-specific
activity with the indicated treatments (P � 0.05). mRNA abundance scoring parameters, �1.0 � log2

expression level � 1.0; translation-specific or polysome association scoring parameters, �0.6 � log2

expression level � 0.6.

TABLE 2 DNA replication genes differentially expressed or translated with treatment

Gene symbol DNA replication function

Expression with treatmenta

Polysome association mRNA abundance

PP242 PP242-IR RAD001 RAD001-IR PP242 PP242-IR RAD001 RAD001-IR

GINS2 Pre-ICb/firing �1.59 �1.10 �1.27 �1.59 �2.17 �1.38
MCM10 Licensing and rest �1.63 �1.49 �2.34 �2.74
ORC1 Licensing/pre-IC �1.63 �1.45 �1.64 �2.08
FANCM Firing/pre-IC �1.18 �1.16 �0.94 �0.92 �1.00
POLE2 DNA elongation �1.14 �1.06 �1.45
POLD3 Firing/pre-IC �1.08 �1.05 �1.55
GINS1 Pre-IC/firing �1.08 �0.85 �1.08 �1.82
GINS3 Firing �0.98 �0.63
RFC5 Licensing/pre-IC �0.97 �0.83
RFC2 Firing �0.87 �1.12 �1.49
POLQ DNA elongation �0.85 �0.85
ORC6 Inhibits licensing during S phase �0.77 �0.79
RFC4 Firing �0.75 �0.64 �0.70 �1.16
POLG2 DNA elongation �0.73 �0.68
MCM2 Licensing and rest �1.20
CDC45 Licensing �2.08
RPA1 Origin firing �1.08 �1.11
GMNN Inhibition of rereplication of DNA �0.88 �1.28 �1.55
MCM5 Licensing and rest �2.07
POLA2 DNA elongation �1.39 �1.91
MCM6 Licensing and rest �1.85 �2.57
MCM3 Licensing and rest �1.49 �2.11
CLSPN Monitoring fork integrity �1.30 �2.54
PCNA Firing �1.00 �1.29
RFC3 Firing �1.15
MDC1 Origin firing �0.64
aExpression of genes involved in DNA replication that are differentially expressed in either abundance (P � 0.05, �1.0 � log2 expression level � 1.0) or polysomal
mRNA association (P � 0.05, �0.6 � log2 expression level � 0.6) after treatment with 2.5 �M PP242 or 20 nM RAD001 alone or in combination with 8 Gy IR.
Expression values are on a log2 scale.

bPre-IC, preinitiation complex.
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FIG 3 Graphical representation of Ingenuity pathway analysis (IPA) for enrichment of subsets of mRNAs. mRNAs are
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results in both transcriptional and translational downregulation in DDR and cell cycle
control pathways, resulting in a coordinated physiological response, whereas mTORC1
inhibition primarily results only in translational downregulation of a small number of
cell cycle mRNAs and a small upregulation of proapoptotic mRNAs. We suspect that the

Cell Cycle
Abundance Polysome Translation AbundancePolysome Translation

DNA Replication, Recombination and Repair

FIG 4 Graphical representation of mRNAs associated with cell cycle or DNA replication, recombination, and repair. mRNAs were identified to be
differentially expressed in abundance (P � 0.05, �1.0 � log2 expression level � 1.0) or polysome association or translation-specific activity (P � 0.05,
�0.6 � log2 expression level � 0.6) after treatment with 2.5 �M PP242 or 20 nM RAD001 alone or in combination with 8 Gy IR. The color scale represents
log2 values for expression levels.
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reason there is no significant increase in cell death in mTORC1-inhibited cells is that the
increase in proapoptotic gene expression is either too small or countered by inhibition
of cell replication or induction of autophagy.

mTORC1/2 but not mTORC1 inhibition specifically disrupts DDR pathways and
induces replicative cell stress. We therefore investigated the functional effects of
inhibition of mTORC1/2 compared to mTORC1 on DDR pathways, including the kinetics
of activation in response to DNA damage. A primary event in induction of the DDR is
the rapid phosphorylation of H2AX (known as �H2AX) and its recruitment to sites of
dsDNA damage as distinct foci (28). H2AX phosphorylation is mediated by kinase ATM,
ATR, or DNA-PK, all members of the PI3K family (29, 30). Collectively, the PI3K family of
kinases stimulates a variety of signaling pathways, all of which promote cell cycle
checkpoint activation and induction of DNA repair mechanisms.

DNA damage by IR rapidly and strongly induced �H2AX foci, with resolution of
dsDNA breaks typically occurring by 24 h, as indicated by disappearance of foci (Fig. 6A
and B). In contrast, while IR plus mTORC1/2 inhibition initially resulted in a similar
number of dsDNA breaks decorated by �H2AX as with IR alone, resolution of DNA
damage was significantly delayed compared to that in untreated cells, with 4 to 5
times as many unresolved dsDNA breaks at 24 h, a time when DNA damage in
untreated cells was largely resolved (Fig. 6B). We also noted the presence of a
subpopulation of mTORC1/2-inhibited cells that exhibited a sustained pan-nuclear
�H2AX staining pattern independent of genotoxic DNA damage (Fig. 6C). This was
found to correspond to �10 to 15% of cells, as determined by flow cytometry after
staining for �H2AX but not propidium iodide, a marker of extensive DNA damage
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(Fig. 6D). A sustained pan-nuclear pattern of DNA damage is indicative of cells
undergoing replicative stress, such as after treatment with CHK1 inhibitors (31) or
inhibitors of DNA replication (32). The pan-nuclear �H2AX-staining cells accumu-
lated preferentially in S phase (Fig. 7), which is also indicative of replicative stress
(31, 32). Thus, inhibition of mTORC1/2 activity, and not that of mTORC1 alone,
induces replicative stress.
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We characterized the activation (phosphorylation) state of key DDR pathway effec-
tors that are involved in replicative stress. Prolonged (33-h) inhibition of mTORC1/2 but
not mTORC1 strongly increased phosphorylation (activation) of DNA-PKcs (T2609), the
catalytic subunit of nuclear DNA-PK (which includes Ku antigen), and CHK2 (T68),
surrogates for activation of DNA-PK and ATM, respectively (33, 34) (Fig. 8A). When
combined with IR-mediated DNA damage, the inhibition of mTORC1/2 but not mTORC1
strongly and continuously increased DNA-PKcs, CHK2, and ATM phosphorylation, in-
dicative of unresolved DNA damage, as shown in Fig. 5. These data also demonstrate
the specificity of PP242 in these studies, in that DNA-PKcs, ATR (CHK1 substrate), and
ATM all retained activity in the presence of drug at these concentrations.

To examine resolution of DNA damage, cells were treated with mTOR inhibitors and
irradiated 2 h later, and the phosphorylation status of key DDR effectors was followed
for 24 h. Inhibition of mTORC1/2 but not mTORC1 resulted in sustained phosphoryla-
tion of CHK2 and DNA-PK at 24 h (Fig. 8B). ATM and CHK2 form an axis that functions
mainly during replicative stress and DNA damage and whose inhibition is linked to the
pan-nuclear �H2AX distribution (31). Thus, our data indicate that while key kinases
responsible for sensing dsDNA damage, ATM and DNA-PK, are properly activated in
response to genotoxic stress, mTORC1/2 inhibition impairs the process of DNA repair
through a failure to strongly express DDR mRNAs and efficiently translate them in an
integrated response, impairing resolution of dsDNA breaks and increasing cell death.

The specific roles of mTORC1 and mTORC2 in dsDNA break repair were further
explored by selectively silencing Raptor (mTORC1) or Rictor (mTORC2). Despite effective
silencing of Raptor or Rictor and downregulation of mTORC1 or mTORC1/2 activity, as
shown earlier by reduced phosphorylation of their target substrates (Fig. 1), neither
alone activated DDR signaling or enhanced DDR signaling by genotoxic stress com-
pared to PP242 treatment (Fig. 9A and B). This is evident in the failure to increase
phosphorylation of DNA-PKcs, CHK2, or H2AX. However, combined silencing of Raptor
and Rictor with IR did induce strong evidence of sustained dsDNA breaks and activation
of DDR signaling, as shown by increased phosphorylation of P-CHK2 and H2AX (Fig. 9C).
Therefore, both mTOR complexes are required for DNA repair following genotoxic DNA
damage. Alkaline comet assays, which detect both single- and double-stranded DNA
breaks, showed that mTORC1/2 (PP242) but not mTORC1 (RAD001) inhibition more
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strongly impairs the ability of cells to resolve DNA damage caused by IR (Fig. 9D). It
should be noted that DNA tail length is an imperfect indicator of the extent of DNA
damage in comet assays, in that mean tail length increases only while DNA breaks are
first established, typically at lower levels of DNA damage, due to activation of repair
functions (35). This likely accounts for the apparent lower tail break length in PP242/IR
samples. It was evident that inhibition of mTORC1/2 in the absence of added genotoxic
stress also increased the population of cells with DNA damage, but as shown above, in
the absence of excessive DNA damage by IR this was largely reversible. This was further
investigated by specifically inhibiting mTORC1 by silencing Raptor, inhibiting mTORC2
by silencing Rictor, or both and subjecting cells to a low level (10 �M) of etoposide,
which causes both single- and double-strand DNA breaks. The number of DNA break
foci was visualized in 100 to 200 cells by �H2AX immunofluorescence (Fig. 9E). Silencing
Raptor actually slightly reduced the incidence of �H2AX foci, consistent with the effects
of RAD001 in the comet assay (Fig, 9D). mTORC1 inhibition has been previously
reported to have no effect or even reduce sensitivity to apoptosis in many types of
cancer cells (18, 19), consistent with these data. There was a small (2-fold) increase in
DNA break foci in cells silenced for Rictor compared to the nonsilencing control.
However, only in cells silenced for both Raptor and Rictor was a strong increase in
�H2AX-decorated DNA breaks observed, averaging 3 to 4 times that for Rictor alone.
Our genomic analysis can account for the enhanced DNA damage effects of mTORC1/2
inhibition seen with genotoxic DNA damage by IR (Table 2). For example, there was
strong representation of transcriptionally and translationally downregulated DNA poly-
merases and DNA repair factors evident with mTORC1/2 inhibition. These include DNA
polymerases Pol-E2, Pol-Q, PolG2, and PolA2 and a number of licensing factors. None
of these changes were evident with mTORC1 inhibition with DNA damage.

mTORC1/2 inhibition promotes dysregulation of cell cycle checkpoint controls
in response to genotoxic stress. mTOR inhibition is associated with impaired cell cycle
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progression and checkpoint signaling (36, 37), which we show is exacerbated by DNA
damage (Table 1). The cellular response to dsDNA breaks occurs principally through the
protein kinase ATM, which signals to both CHK2 and p53 to block entry into S phase by
activating the G1 checkpoint (38). SUM149 cells, like many highly malignant cancer
cells, are mutated in p53 (39) and therefore do not activate the G1 checkpoint. Instead,
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they rely on G2/M checkpoint activation to repair DNA damage. Accordingly, following
genotoxic DNA damage, the proportion of cells in G2/M increased 1.5-fold with a
reciprocal reduction of cells in G1, as did that of cells treated with IR in combination
with mTORC1 inhibition (Fig. 10A). In contrast, inhibition of mTORC1/2, with or without
IR-mediated DNA damage, resulted in G2/M checkpoint bypass and accumulation of
cells mainly in G1. G2/M bypass typically results from reduced expression of CCNE1 and
SKP2, which stabilize p27 (38), which was seen here with IR and exacerbated by PP242
inhibition of mTORC1/2 (Fig. 10B). This typically reduces expression of cyclin-dependent
kinase 2 (CDK2), as also observed here (Table 2), and impairs cyclin E/CDK2-mediated
progression through the G1/S transition.

As mTORC1/2 inhibition increases the population of cells in G1, we tested whether
with DNA damage mTORC1/2 inhibition also restores G1 checkpoint arrest. Cells were
treated with PP242 plus IR, followed by nocodazole to arrest cells in G2 or M phase. Cell
cycle profiles indicate that control and IR-treated cells progressed through the cell cycle
with the vast majority of cells arrested at M phase by nocodazole treatment, with no
induction of the G1 checkpoint (Fig. 11A). Inhibition of mTORC1/2, with or without
added DNA damage, strongly increased the number of cells in G1, with some cells
remaining in S but not reaching M-phase arrest from nocodazole treatment. Therefore,
mTORC1/2 inhibition partially restores G1 checkpoint activation in response to DNA
damage.

These results also demonstrated that mTORC1/2 inhibition delays progression
through S phase in p53-mutated cells. We therefore tested these data by asking
whether cells can exit and progress through S phase when mTORC1/2 is inhibited. Cells
were arrested in early S phase with a double thymidine block, followed by release in the
presence or absence of PP242 and IR (Fig. 11B). Control cells returned to normal cell
cycle profiles within 24 h after release, whereas cells treated with IR progressed through
the cell cycle with kinetics similar to that of control cells but with substantial accumu-
lation in G2/M. As observed with nocodazole treatment, inhibition of mTORC1/2 caused
a delay in progression through S phase and partially bypassed activation of G2/M arrest
in response to IR. These results show that mTORC1/2 activity is required for both the
regulated expression and translation of mRNAs that are required for activation of early
and late G2 cell cycle checkpoints in response to genotoxic DNA damage, as well as for
progression through S phase. While mTORC1/2 inhibition did not fully restore the G1

checkpoint in response to genotoxic DNA damage, it did promote accumulation of cells
in G1, likely as a result of downregulation of the CCNE/CDK2 complex and stabilization
of p27 through the downregulation of SKP2.
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DISCUSSION

DDR pathways demonstrate remarkable plasticity, redundancy, and compensatory
biochemical circuitry, which underlies cell survival mechanisms (40, 41). While the DDR
is a critical target for genotoxic cancer therapies, induced by ionizing radiation or
alkylating chemotherapy, it is the compensatory complexity of the DDR program that
provides strong antitherapeutic resilience. A hallmark of the DDR in cancer cells is the
upregulation of DNA repair factors among the multiple types of DNA repair mecha-
nisms, whether in various base excision repair pathways, nonhomologous end-joining
pathways, or others (40). Targeting these different DDR factors individually has at times
been successful, as with PARP inhibition in the setting of BRCA-mutated breast and
ovarian cancers, but sensitization involves the realignment of repair functions and
increased dependency on a single DDR mechanism due to mutation-driven vulnera-
bility. There has therefore been a focus on better understanding higher-level forms of
regulation in DDR pathways whereby more effective actionable approaches can be
explored.

A number of studies have found that mTOR is more strongly activated and essential
for the survival of many human cancers (6, 42, 43). Moreover, inhibition of mTOR also
increases the genotoxicity of chemotherapies and radiation therapies through a variety
of mechanisms, which is not surprising since mTOR is required for cell growth, prolif-
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eration, and survival (6, 44). However, there has been only a poor understanding of how
both mTOR complexes are involved in protecting against genotoxic DNA damage. It is
now appreciated that mTOR acts on specific genes and functions to promote genomic
integrity, such as transcription of FANCD2, a key component of the DDR machinery (12,
45). Gene ablation of mTOR, which blocks both mTORC complexes, enhances genotoxic
sensitivity and greatly reduces FANC2 expression (12, 45). As shown in our study,
mTORC1/2 activity is actually required for expression (both transcriptional and trans-
lational) of many DDR factors, in addition to survival factors. Thus, in addition to FANC2,
many DNA repair polymerases and other DNA repair factors are increased in expression
as a result of increased mTORC1 and -2 activity. Studies have previously shown that
mTOR is also required for deoxynucleoside triphosphate (dNTP) production and DNA
synthesis, in part through mTORC1 stimulation of cap-dependent mRNA translation of
ribonucleotide reductase subunits (12, 46). Inhibition of mTORC1 enhances genotoxic
sensitivity in part through this mechanism (12, 46). Previous studies in yeast and
mammalian cells implicated mTORC2 activity in the maintenance of genome stability
involving checkpoint kinases CHK1 and CHK2 (8, 9, 11). Our results support this, further
demonstrating that inhibition of both mTORC1 and mTORC2 is required to prevent
DNA repair following genotoxic DNA damage, consistent with persistent CHK2 phos-
phorylation and increased cancer cell killing. Thus, both mTOR complexes 1 and 2 are
required to coordinate and integrate DDR pathways through the combined reprogram-
ming of transcription and translation at a genome-wide level.

mTOR is therefore involved in the integrated and coordinated responses between
DNA damage and cell cycle control, including the inhibition of cell cycling (47, 48), and
the activity of the ATM/ATR-CHK1/CHK2-p53 axis (40, 41). Studies have shown speci-
ficity in mTOR complex function in this regard. For instance, mTORC2 but not mTORC1
was shown to regulate CHK1 following DNA damage (11), with increased mTORC2
activity associated with increased genotoxic resistance in glioblastoma cells (49). A key
feature of both mTORC1 and mTORC2 activity in genotoxic DNA damage is the status
of p53. While mTOR is involved in DDR signaling, its activity is ultimately downregu-
lated in nontransformed cells by DNA damage through the action of p53, a DNA
damage sensor, which stimulates activation of AMP-activated protein kinase (AMPK) by
sestrins 1 and 2 (15, 16), and acts as an inhibitor of mTOR and protein synthesis (50).
The AMPK-mTOR node is yet another regulatory point by which mTORC1/2 functions,
as AMPK regulates a variety of transcription factors that are involved in cell stress,
glucose metabolism, and mitochondrial biogenesis functions and consequently en-
hances genotoxicity to chemotherapeutics and radiation (50).

Our results suggest an explanation for the disappointing clinical results of mTORC1
inhibitors when combined with conventional DNA genotoxic chemotherapy, and they
indicate a strategy for more effective utilization of ATP site mTOR inhibitors. The
demonstration that that inhibition of mTORC1/2 collectively impairs both transcription
and translation of a subset of well-established genes that are essential components of
DDR and cell cycle function, including activation of ATR/CHK1 responses, induction of
ATM and DNA-PK signaling, DNA repair, resolution of DNA damage, and cell cycle
checkpoint control, indicates that inhibition of mTORC1/2 inhibitors will be expected to
be most efficacious when combined with DNA-damaging genotoxic chemotherapy and
radiation therapy.

MATERIALS AND METHODS
Cell culture. SUM149 inflammatory breast cancer (IBC) cells were provided by Stephen Ethier

(Karmanos Cancer Institute, Wayne State University, Detroit, MI) and grown in Ham’s F-12 medium
supplemented with 5% fetal bovine serum (FBS), 1 mg/ml 1-hydrocortisone, 5 �g/ml 1-gentamicin, 5
�g/ml insulin, and 10 �g/ml epidermal growth factor (EGF).

Clonogenic cell survival assays. Cells were seeded in triplicate into 10-cm plates in a range of 102

to 105 cells/plate according to the test condition and different cell lines. For IR experiments, a single dose
of gamma irradiation was applied once cells were attached (24 h). Cells were cultured for up to 14 days.
Colonies were fixed in 70% methanol and stained with crystal violet. All colonies of 50 cells or greater
were counted in quantitative assays. The survival fraction (SF) was estimated according to the following
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formula: SF � number of colonies formed under test condition/(number of cells seeded � plating
efficiency of control group).

Caspase-3/7 assay. Five thousand SUM149 cells/well were seeded in 96-well white assay plates in
100 �l of Ham’s F-12 medium and treated with dimethyl sulfoxide (DMSO), PP242, or RAD001 for 48 h.
Irradiated samples were treated with a single fraction of 8 Gy at 2 h after drug addition, and caspase-3/7
cleavage was measured after 48 h using the Promega Caspase-Glo 3/7 assay systems (G8091) according
to the manufacturer’s instructions. The luminescence of each sample was measured using the Spectra-
Max luminometer (Molecular Devices). Assays were performed in triplicate, and results are reported as
mean � standard error of the mean (SEM).

Flow cytometry for cell cycle analysis and quantification of �H2AX and phospho-H3 levels. For
cell cycle analysis, treated cells were collected by trypsinization, washed with phosphate-buffered saline
(PBS), fixed with ice-cold 70% ethanol, and stored at 4°C until time of analysis. Fixed cells were washed
with PBS plus 2% FBS and incubated in a solution containing 0.2 mg/ml RNase A and 20 �g/ml
propidium iodide (PI). For �H2AX quantification, treated cells were collected by trypsinization, followed
by processing and staining according to the manufacturer’s instructions for the H2AX phosphorylation
kit (Upstate), followed by incubation in propidium iodide as described above in order to determine DNA
content. For phospho-H3 labeling, treated cells were processed and labeled according to the instructions
for the FlowCellect bivariate cell cycle kit for G2/M analysis (Millipore). �H2AX-decorated breaks were
quantified from 6 images for each condition selected at random and containing at least 50 cells. All foci
with distinct punctate staining were scored at a magnification of �63 by focusing in and out of the plane.
Time zero represents cells prior to IR or etoposide treatment.

Cell cycle synchronization. The nocodazole treatment protocol was adapted from a previous report
(51). Cells were treated with PP242 or vehicle 2 h before irradiation with a single 8-Gy dose. At 30 min
after irradiation, 50 ng/ml nocodazole was added to the culture, and cells were collected by trypsiniza-
tion at the indicated time points and fixed in ice-cold 70% ethanol for cell cycle analysis using propidium
iodide staining and fluorescence-activated cell sorting (FACS) analysis as described above. In order to
synchronize cells in S phase, cells were subjected to a double thymidine treatment. Briefly, growing cells
were incubated with 2 mM thymidine for 24 h, followed by washing and replacing with fresh medium
for 18 h and incubation for an additional 24 h with thymidine before treating with PP242 or vehicle
control. At 2 hours after drug addition, cells were irradiated, washed three times with Hanks balanced salt
solution (HBSS), and harvested at the indicated time points for cell cycle analysis using propidium iodide
staining and FACS analysis as described above.

Comet assays. Cells treated with the indicated drug/irradiation protocols were subjected to alkaline
comet assays as directed by the manufacturer (Trevigen Inc.). Briefly, treated cells were trypsinized,
washed with Ca2�- and Mg2�-free PBS, counted, and mixed with low-melting-point agarose before being
placed onto slides. Cells were lysed with the provided lysis solution, immersed in alkaline unwinding
solution (300 mM NaOH, 1 mM EDTA), and then electroporated in alkaline buffer (300 mM NaOH, 1 mM
EDTA) for 1 h. Electroporated samples were stained with 1� SYBR Gold (Life Technologies) and allowed
to dry before photographing with an immunofluorescence microscope. At least 10 images per condition
were taken and analyzed by using the Open Comet ImageJ plug-in. Data analysis was performed using
GraphPad Prism.

Polysome fractionation and mRNA Isolation. Polysome isolation was performed by separation of
ribosome-bound mRNAs via sucrose gradient centrifugation as previously described (52). Beckman
Ultra-Clear centrifuge tubes were loaded with 5.5 ml of 50% sucrose in low-salt buffer (LSB) (200 mM
Tris-HCl [pH 7.4] in diethyl pyrocarbonate [DEPC] H2O, 100 mM NaCl, and 30 mM MgCl2) with 1:1,000
RNasin (Fermentas) and 100 �g/ml cycloheximide (CHX) in ethanol. Columns were layered with 5.5 ml
of 15% sucrose-LSB with RNasin and CHX and incubated at 4°C horizontally overnight. Medium was
removed from cell cultures and replaced with medium containing 100 �g/ml CHX, and cells were
incubated at 37°C for 15 min to halt protein synthesis and trypsinized in trypsin-EDTA containing 100
�g/ml CHX. Cells were washed twice in PBS containing CHX, RNasin, and Roche Complete EDTA-free
protease inhibitor tablet and lysed in LSB with CHX and RNasin. Lysates were incubated on ice for 3 min
before addition of Triton detergent buffer (1.2% Triton N-100 and 0.2 M sucrose in LSB) and homoge-
nization using a Dounce homogenizer. Samples were transferred to cold sterile Eppendorf centrifuge
tubes and centrifuged at 13,000 rpm for 10 min at 4°C. Supernatants were transferred to centrifuge tubes
containing 100 �l heparin solution (10 mg/ml heparin and 1.5 M NaCl in LSB) with RNasin and CHX and
layered onto sucrose gradients. Gradients were ultracentrifuged at 36,000 rpm at 4°C for 2 h and
fractionated on an ISCO fractionator. Samples were collected into tubes containing 20 �l RNase-free 0.5
M EDTA and kept on ice. Fractions were pooled based on their relative rates of translation, with fractions
containing four or more ribosomes considered heavily translated and used for gene chip analysis. RNA
from pooled fractions was purified using the RNeasy minikit (Qiagen). RNA quality was examined by
Bioanalyzer (Agilent Technologies).

Animal tumor model. All studies were approved by the NYU School of Medicine Institutional Animal
Care and Use Committee (IACUC) and conducted in accordance with IACUC guidelines. Six- to 8-week-old
female NCR nude mice (Taconic) were caged in groups of four or fewer and fed a diet of animal chow
and water ad libitum. SUM149 tumor cells (2 � 106 cells) were injected subcutaneously (s.c.) into the right
posterior fourth mammary fat pad. When tumors grew to a mean volume of 150 mm3, the mice were
randomized to treatment groups (8 mice per group). At time zero, treatment was begun with RAD001
(2.5 mg/kg) or PP242 (100 mg/kg) alone or in combination with IR as indicated. Drug was administered
daily by oral gavage before commencing radiotherapy. Both RAD001 and PP242 were delivered by oral
gavage once daily Monday to Friday for 4 weeks; control mice received the vehicle alone. Mice were

mTOR in DNA Damage Response Molecular and Cellular Biology

March 2017 Volume 37 Issue 5 e00577-16 mcb.asm.org 17

http://mcb.asm.org


treated with 3 once-daily fractions of 8 Gy delivered on days 3 to 5. Irradiation was performed using a
Varian Linac 2300 linear accelerator at a dose rate of 4 Gy/min with animals restrained to allow exposure
of the tumor while shielding of the rest of the body. To obtain a tumor growth curve, perpendicular
diameter measurements of each tumor were done every 2 to 3 days with calipers, and volumes were
calculated using the formula (�/6 � length � width2). Drug treatment was continued for 4 weeks, and
tumors were followed individually until they measured greater than 600 mm3. Tumors that failed to
regrow were followed for 90 days after treatment. The mean growth delay for each treatment group was
calculated as the number of days for the mean of the treated tumors to grow to 800 mm3 minus the
number of days for the mean of the control group to reach the same size. Each animal study was
conducted in accordance with the principles and procedures outlined in the NIH Guide for the Care and
Use of Animals under an IACUC-approved protocol.

Antibodies and immunoblot analysis. Mouse monoclonal anti-eIF4A antibody was provided by W.
Merrick (Case Western Reserve University, Cleveland, OH). Horseradish peroxidase (HRP)-conjugated
secondary antibodies were from GE Healthcare. All other antibodies were from Cell Signaling Technol-
ogy. An enhanced chemiluminescence (ECL) system (Amersham) was used for detection. Following
treatments, cells were washed twice in ice-cold PBS and lysed in radioimmunoprecipitation assay (RIPA)
buffer (150 mM NaCl, 50 mM Tris-HCl [pH 8.0], 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM
EDTA, 1� Halt phosphatase inhibitor cocktail [Thermo Scientific], and Complete protease inhibitor
cocktail [Roche]) at 4°C). RIPA lysates were clarified by centrifugation at 13,000 � g for 10 min and protein
concentrations determined with the DC protein assay (Bio-Rad, Hercules, CA). To determine the total
levels and phosphorylation status of specific proteins, equal amounts of protein were resolved by
SDS-PAGE and analyzed by protein immunoblotting with specific antibodies as indicated. The phos-
phorylation status of most proteins was determined by first immunoblotting the membrane with
phospho-specific antibody and then stripping the membranes using Restore Western blot stripping
buffer (Pierce), followed by reprobing the membranes with non-phospho-specific antibodies. Represen-
tative blots were selected from a minimum of three experimental replicates.

Microarrays and data analysis. Purified mRNAs (50 ng) from total or polysome-associated fractions
were processed using the GeneChip WT Plus reagent kit and hybridized to human transcriptome array
2.0 chips from Affymetrix according to the manufacturer’s instructions. Affymetrix chips were processed
by the NYU School of Medicine Genome Technology Core and analyzed through the NYU School of
Medicine Bioinformatics Core. Gene-level probe set summaries of microarray data were obtained using
the GCCN and SST transformation algorithm, RMA background correction, and quantile normalization
provided in Expression Console software, version 1.4.1 (Affymetrix). Control probe sets and probe sets
lacking mRNA accession tags were removed from further analysis. To quantify translational efficiency, the
difference in log2 intensity between matched polysomal RNA and total RNA was determined. To examine
differences in transcription and translation, total RNA and polysome RNA were quantile normalized
separately. Statistical analysis was performed using the limma R package (53).

[35S]methionine incorporation assay. Cells were incubated with 20 �Ci of 35S-labeled amino
acids/ml (Easytag Express protein labeling mix; Dupont/NEN) in methionine-free Dulbecco’s modified
Eagle’s medium (DMEM) for 1 h, washed twice with ice-cold phosphate-buffered saline (PBS), and lysed
by incubation in 0.5% NP-40 lysis buffer (0.5% NP-40, 50 mM HEPES [pH 7.0], 250 mM NaCl, 2 mM EDTA,
1� Halt phosphatase inhibitor cocktail [Thermo Scientific], and Complete protease inhibitor cocktail
[Roche]) at 4°C for 10 min. Lysates were clarified by centrifugation for 10 min at 13,000 � g. Specific
activity of methionine incorporation was determined by trichloroacetic acid precipitation onto GF/C
filters and liquid scintillation counting (54).

Real-time qPCR. cDNA was generated using the GoScript reverse transcriptase kit (Promega) as
suggested by the manufacturer and used as a template for quantitative PCR (qPCR). PCRs were carried
out using the SYBR green JumpStart Taq ReadyMix (Sigma) and the indicated primers using the Applied
Biosystems 7500 Fast real-time PCR system. mRNA changes were quantified using the ΔΔCT method with
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and EEF2 mRNAs as internal controls (55). Primer
sequences used for the reactions are available upon request.

Immunofluorescence. Cells grown in multiwell Teflon-coated glass slides (Polysciences Inc., Wash-
ington PA) were washed twice with PBS, followed by fixation with 4% paraformaldehyde in PBS. Cells
were then permeabilized by incubation in 0.25% Triton-X in PBS and blocked in 3% BSA, followed by
incubation by indicated primary antibodies overnight at 4°C, washing 3 times in PBS, and incubation for
1 h with fluorescein isothiocyanate (FITC)- or Texas Red-conjugated secondary antibodies (Jackson
ImmunoResearch). Cells were mounted using Vectashield mounting medium with DAPI (4=,6=-diamidino-
2-phenylindole) (Vector Laboratories). Image acquisition was performed by confocal microscopy using a
Zeiss Axiophot microscope.

Statistical analysis. Unpaired t tests or two-way analysis of variance (ANOVA) tests were used when
applicable to determine significance. Data were analyzed using Prism 6.0f. Minimum significant values
were considered to be a P value of �0.05 or as noted.

Accession number(s). The main GEO accession number for the microarray is GSE92598.
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