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ABSTRACT Relapsing fever (RF) spirochetes colonize and are transmitted to mammals
primarily by Ornithodoros ticks, and little is known regarding the pathogen’s life cycle in
the vector. To further understand vector colonization and transmission of RF spirochetes,
Borrelia turicatae expressing a green fluorescent protein (GFP) marker (B. turicatae-gfp)
was generated. The transformants were evaluated during the tick-mammal infectious cy-
cle, from the third nymphal instar to adult stage. B. turicatae-gfp remained viable for at
least 18 months in starved fourth-stage nymphal ticks, and the studies indicated that
spirochete populations persistently colonized the tick midgut and salivary glands. Our
generation of B. turicatae-gfp also revealed that within the salivary glands, spirochetes
are localized in the ducts and lumen of acini, and after tick feeding, the tissues re-
mained populated with spirochetes. The B. turicatae-gfp generated in this study is an im-
portant tool to further understand and define the mechanisms of vector colonization
and transmission.

IMPORTANCE In order to interrupt the infectious cycle of tick-borne relapsing fever
spirochetes, it is important to enhance our understanding of vector colonization and
transmission. Toward this, we generated a strain of Borrelia turicatae that constitu-
tively produced the green fluorescent protein, and we evaluated fluorescing spiro-
chetes during the entire infectious cycle. We determined that the midgut and sali-
vary glands of Ornithodoros turicata ticks maintain the pathogens throughout the
vector’s life cycle and remain colonized with the spirochetes for at least 18 months.
We also determined that the tick’s salivary glands were not depleted after a trans-
mission blood feeding. These findings set the framework to further understand the
mechanisms of midgut and salivary gland colonization.

KEYWORDS relapsing fever spirochetes, Borrelia turicatae, Ornithodoros, soft tick,
argasid, vector colonization

Defining the intricacies of pathogen colonization and transmission from hema-
tophagous arthropod vectors is essential for disease detection, control, and pre-

vention. The primary vectors of relapsing fever (RF) spirochetes are argasid ticks of the
genus Ornithodoros. The biology of these vectors is complex and unique compared to
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other pathogen-transmitting arthropods. Throughout their life history, Ornithodoros
ticks may pass through six or more nymphal stages before molting to adults, and each
stage requires a blood meal (1). The vectors also live up to 20 years and can also endure
prolonged periods (five years) of starvation (1, 2).

Blood feeding is an important process for the survival of Ornithodoros species, and
it influences the tick’s colonization and subsequent transmission of RF spirochetes.
Ornithodoros ticks quickly engorge, completing the blood meal within five to 60 min
after host attachment (1, 3). Therefore, RF Borrelia spp. evolved mechanisms to facilitate
colonization and maintenance through the complex life history of their long-lived
rapid-feeding vectors. However, very little is known regarding the life cycle of RF
Borrelia spp. in Ornithodoros ticks.

Two current systems used to study the tick-mammal transmission cycle of RF
spirochetes include the Borrelia hermsii-Ornithodoros hermsi and Borrelia turicatae-
Ornithodoros turicata models (4–6). These models demonstrated initial midgut coloni-
zation following an infectious blood meal, and in the following weeks, spirochetes
migrated to colonize the salivary glands (6, 7). Given the tick’s short blood meal
duration, the salivary gland population is important to continue the pathogen’s life
cycle in the mammal (4, 8). Moreover, after tick feeding and through the molt, RF
spirochetes are maintained transstadially (8, 9). While the generalities are known, the
details of vector colonization throughout the tick’s life cycle and localization in different
tissues remain to be fully understood. This knowledge could be translated into disease
control approaches that interrupt essential stages in the life cycle of RF spirochetes.

In this study, our goal was to begin to understand the intricacies of vector coloni-
zation by RF spirochetes. Toward that, recent advances in B. turicatae genetics were
utilized (7), and a gene coding for the green fluorescent protein (gfp) was inserted into
a plasmid. We demonstrated that after genetic manipulation, the transformants re-
tained their �10 plasmids. The spirochetes constitutively expressed gfp, and we
evaluated vector colonization and transmission. Visualization of B. turicatae-gfp during
the infectious cycle, beginning with infected third-stage nymphal instars, indicated that
the spirochetes were maintained in O. turicata ticks through the adult stage. Interest-
ingly, evaluation of the tick revealed that the midgut and salivary glands remain
persistently colonized with two spirochete populations. This study lays the foundation
to further define and identify essential processes in the life cycle of RF spirochetes in
the tick vector.

RESULTS
Insertion of gfp into B. turicatae lp150 and assessment of transformants in

vitro. Integration of gfp into B. turicatae was accomplished with the PCR2.1::gfp suicide
vector. Four clones were assessed, and all spirochetes within a given population
fluoresced (data not shown). Interestingly, PCR evaluation of clone 1 for integration of
PflaB kan-gfp between fhbA and bta003, which are located on lp150, failed to generate
a larger amplicon of the expected size (Fig. 1). Primer pair F1-R2 produced the
parent-sized amplicon, and the primer pairs F1-R3 and F3-R2 did not produce an
amplicon, which indicated that gfp was not inserted in the intended location on lp150
(Fig. 1A and B). However, primer pair F3-R3 amplified PflaB kan-gfp from genomic DNA
of B. turicatae-gfp, showing that the construct remained intact within the transformants
(Fig. 1A and B). Also, PCR of the three remaining clones was similar and further
indicated that PflaB kan-gfp unexpectedly recombined elsewhere in the genome (data
not shown).

Previous work reported segmental recombination of B. turicatae plasmids during in
vitro cultivation (10). Therefore, we performed pulsed-field electrophoresis and South-
ern blotting, which indicated that PflaB kan-gfp had recombined to a smaller plasmid
(Fig. 1C to F). Imaging of plasmid profiles of the parental spirochetes, B. turicatae-gfp,
and B. turicatae that were transformed without DNA indicated a change in the molec-
ular weight of an �40-kb plasmid only in genomic DNA isolated from B. turicatae-gfp
(Fig. 1C). Southern blotting with a probe for gfp localized the gene to an �40-kb
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plasmid (Fig. 1D), while probes for fhbA (Fig. 1E) and bta003 (Fig. 1F) localized the genes
on lp150. All four clones evaluated demonstrated the recombination of PflaB kan-gfp to
this smaller plasmid (data not shown). Given that B. turicatae-gfp grew comparably in
vitro to the parental strain (Fig. 2) and that the transformants fluoresced, we proceeded
with infection of mice and evaluation of O. turicata colonization.

B. turicatae-gfp expression after needle inoculation of mice. During in vitro
cultivation, B. turicatae-gfp was visualized by microscopy (Fig. 3A and B). To evaluate gfp
expression in vivo, mice were needle inoculated with 1 � 105 B. turicatae-gfp or
wild-type spirochetes, and within 2 days, there were �1 � 107 spirochetes/ml of blood.
The parental strain spirochetes were not detected by fluorescence microscopy (Fig. 3C)
but were detected by dark-field microscopy (Fig. 3D). B. turicatae-gfp fluoresced in the

FIG 1 Integration of PflaB kan-gfp into B. turicatae. (A) PflaB kan-gfp was initially targeted for insertion
between fhbA and bta003 with primer locations shown as thin arrows. (B) PCR was performed using
wild-type B. turicatae (Bt) or B. turicatae-gfp (Bt-gfp) with primer combinations shown on the right of each
gel image. (C to F) Pulsed-field electrophoresis (C) and Southern blotting (D to F) were performed to
determine the recombination location of PflaB kan-gfp within the B. turicatae genome. (C) A shift in
molecular weight was observed for a 40-kb linear plasmid of B. turicatae-gfp (white asterisk), which was
not observed in the parental strain (parental B. tur) or B. turicatae that was electroporated without DNA
(�DNA). (D to F) A probe designed for gfp localized the gene to a 40-kb linear plasmid (D), while fhbA
and bta003 remained localized to lp150 (E and F). The probes for gfp, fhbA, and bta003 are shown
beneath each Southern blot image. Molecular weights and circular plasmids (CP) are shown on the left
of the gels and Southern blot.

FIG 2 In vitro growth of B. turicatae-gfp (�) and the parental strain (X). Cultures were inoculated with 5 �
105 spirochetes and counted for six consecutive days. Error bars represent the standard deviations for
triplicate counts.
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blood (Fig. 3E). These results further indicated that gfp remained stable in B. turicatae
during murine infection.

Acquisition of B. turicatae-gfp by O. turicata and subsequent transmission. To
evaluate GFP production in the tick, cohorts of third-stage nymphal O. turicata from
Kansas (O. turicata-KS) and from southern Texas (O. turicata-TX) were fed to repletion
when mice were spirochetemic with B. turicatae-gfp or wild-type spirochetes. Live
bacteria were detected in the midgut of 10 ticks from the KS and TX colonies by
fluorescence microscopy immediately following the blood meal, indicating that the
ticks had ingested the pathogens (data not shown). Upon molting into fourth-stage
nymphal instars (four weeks after the acquisition blood meal), 15 ticks were dissected,
and B. turicatae-gfp was visualized in the midgut. The midgut from a single O. turicata
(Fig. 4A to F) was representative of the remaining ticks that were evaluated. Similarly,
salivary glands were excised (Fig. S1 and 5A), and evaluation of the tissues detected
fluorescing spirochetes in regions of the lumen and duct of acini (Fig. 5B to I).

Tick transmission and relapse of B. turicatae-gfp or the parental strain in mice were
visually confirmed under fluorescence (Movie S1) and by quantitative PCR (qPCR) (Fig.
6). All five animals that were fed upon by ticks colonized by the parental strain of B.
turicatae became infected and relapsed within 10 days (Fig. 6). Three of five animals
were infected with B. turicatae-gfp, and a relapse of fluorescing spirochetes in the blood

FIG 3 Evaluation of B. turicatae-gfp in vitro and in murine blood after needle inoculation. B. turicatae-gfp
grown in vitro is shown under fluorescent (A) and dark-field microscopy (B). In the blood, wild-type
spirochetes failed to fluoresce (C) yet were detected by dark-field microscopy (D). (E) B. turicatae-gfp
remained fluorescent in the blood after needle inoculation. Images were captured using a 63� oil
immersion objective, and a scale is shown as a white bar toward the bottom left of each image.
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was detected within 10 days after tick feeding (Fig. 6). Within a population of B.
turicatae-gfp, all spirochetes visualized by dark-field microscopy fluoresced when as-
sessed by fluorescent microcopy. The two mice that were negative by qPCR failed to
seroconvert (Fig. 7A and B), indicating that a low-level infection that was under the limit
of detection by qPCR did not occur. Interestingly, the antibody response generated
against B. turicatae-gfp appeared less robust than that in mice infected with wild-type
spirochetes.

Similar successful transmission frequencies were detected regardless of whether O.
turicata-KS or -TX colonies were used in the study. In total, we observed 100% (15/15)
and 60% (9/15) murine infection rates for ticks colonized with the parental strain of B.
turicatae or B. turicatae-gfp, respectively. Similar transmission frequencies were ob-
served at the fifth nymphal stage and as adult ticks, which confirmed the maintenance
of B. turicatae-gfp through three molts and as adults.

Since successful transmission frequencies were not identical between positive-
control ticks and those infected with B. turicatae-gfp, the cohort of O. turicata that failed

FIG 4 Assessment of B. turicatae-gfp in the tick midgut. (A) Following the molt, the cuticle of O. turicata
was removed exposing the midgut. The tissue was excised (B) and viewed by dark-field microscopy (C)
and under fluorescence (D) using a 63� oil immersion objective. (D) White arrows point to fluorescing
spirochetes. (E and F) Tick midguts infected with wild-type B. turicatae are shown as a negative control.
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to deliver an infectious dose was further evaluated. The remaining 12 live ticks were
mixed in one vial, separated into two six-tick cohorts, and salivary glands were assessed
by fluorescence microscopy and PCR. Live spirochetes were visualized in four of six
salivary gland sets by fluorescence microscopy, while PCR using primers for gfp
detected spirochete DNA in three of six salivary glands (Fig. 8A). Uninfected ticks were
used as a negative control in the assays (Fig. 8B). In total, evidence of salivary gland
colonization by B. turicatae-gfp was detected in seven of 12 ticks. From ticks that
successfully transmitted B. turicatae-gfp, spirochetes were visualized in 10 of 12 salivary
gland sets. These results suggested that a lower infectious dose of B. turicatae-gfp may
have been delivered during the blood meal.

Evaluation of the stability of gfp during the tick-mammal transmission cycle. To
further assess stability of the gfp cassette after transmission to mice by tick bite, B.
turicatae-gfp was reisolated from murine blood after feeding of infected O. turicata.
Southern blotting using genomic DNA of wild-type spirochetes, B. turicatae-gfp initially
used to needle inoculate mice, and B. turicatae-gfp reisolated from murine blood after
tick transmission indicated that the gfp cassette remained stable and localized on the
�40-kb plasmid (Fig. 9). Moreover, PCR analysis failed to amply portions of the suicide
vector and indicated that only PflaB kan-gfp integrated into the �40-kb plasmid (data

FIG 5 Demonstration of salivary gland colonization by B. turicatae-gfp. (A) Intact salivary glands were
excised from infected O. turicata ticks. (B and C) Agranular acini along the peripheral margin of the
posterior region of the salivary gland (B) were assessed for spirochete colonization based upon location
of the lumen and efferent duct, as illustrated in the artistic rendition of salivary gland tissue (C). Each
acinus is composed of secretory cells that produce saliva, which drains into the lumen and through the
efferent duct. A single acinus is shown in panels D to I and was viewed with a 63� oil immersion
objective. (D to F) Spirochete colonization in the acini lumen is demonstrated. A dark-field image shows
the acinus structural outline and location of the lumen (D), followed by fluorescent-filtered image
showing localization of fluorescing spirochetes (E), indicated by white arrows, and an overlay of dark-field
and fluorescent images (F). (G to I) Spirochete colonization in the efferent duct region in the same acinus
is also demonstrated. Shown is a dark-field image of the acinus structural outline and location of the
efferent duct (G), followed by fluorescent-filter image showing the localization of fluorescing spirochetes
(H), as indicated by the white arrows. (I) An overlay of dark-field and fluorescent images is also shown.
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not shown). While the mechanism of gfp-recombination remains unclear, the gene was
not mobile during the tick-mammal transmission cycle.

Long-term maintenance of B. turicatae-gfp in the tick vector. Previous work
reported the ability of B. turicatae to remain viable in ticks that were starved for 5 years
(2). To begin understanding long-term vector colonization, we assessed a cohort of B.
turicatae-gfp-infected ticks that had not fed in 18 months. Persistent colonization of the
spirochetes in infected O. turicata-KS ticks was demonstrated by visualizing fluorescing
spirochetes in the midgut and salivary glands from 10 starved ticks. Notably, the midgut
remained populated with spirochetes after 18 months, and the pathogens were motile
and fluorescing (Movie S2).

Characterization of salivary gland colonization after a blood meal. With the
short blood meal duration of Ornithodoros ticks (9), the salivary gland population of RF
spirochetes is essential for transmission and establishing mammalian infection. How-
ever, it is unknown whether these tissues become entirely depleted of spirochetes after

FIG 6 Transmission of B. turicatae-gfp by tick bite. Five mice were fed upon by ticks infected with B.
turicatae expressing gfp (Bt-gfp, colored circles) or wild-type spirochetes with the same genetic back-
ground (Bt-wt, colored triangles). Mice were sampled daily and spirochete densities in the blood
determined by qPCR. A horizontal red line within a given day represents the average spirochete density
for the group of positive animals.

FIG 7 Immunoblotting using serum samples from mice infected with B. turicatae-gfp (A) or wild-type
spirochetes (B). Animal number is indicated above each immunoblot, and molecular weight standards
are shown on the left.
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feeding. Evaluation of salivary glands from O. turicata-KS and -TX cohorts that were
excised and rinsed immediately after a blood meal revealed that a population of
spirochetes remained localized in the lumen region (Table 1 and Fig. S2). In one tick, B.
turicatae-gfp was undetectable by microscopy in the midgut and salivary glands after
feeding (Table 1), which suggested that the tick may not have imbibed the infectious
dose required for vector colonization. These results indicated that the salivary glands
remain populated through the transmission cycle of RF spirochetes.

DISCUSSION

In this study, we demonstrated the stable integration of gfp into B. turicatae and the
ability of O. turicata ticks to maintain the genetically modified spirochetes and transmit
them during blood feeding on mice. The spirochetes that successfully colonized
immature O. turicata ticks were transmitted transstadially to the adult-stage tick. B.
turicatae-gfp also remained fluorescing in ticks starved for 18 months. Collectively,
these findings indicate that B. turicatae-gfp can be utilized to understand the mecha-
nisms of Ornithodoros colonization and transmission.

The site for PflaB kan-gfp insertion between fhbA and bta003, at the 5= end of the B.
turicatae megaplasmid, was selected because previous work with B. hermsii demon-
strated integration of gfp into that region (11). However, in our study, the gfp insert
recombined into an �40-kb linear plasmid (Fig. 1). Given that PflaB kan-gfp was
detected on this smaller plasmid in clones passaged once after transformation, recom-
bination likely occurred early after genetic manipulation. Additionally, plasmid profiles
from spirochetes that were transformed without DNA were identical to the parental B.
turicatae strain. This observation suggests that transformation alone did not have a role
in plasmid recombination. Our attempts to determine the precise location of the PflaB

FIG 8 PCR to detect B. turicatae-gfp DNA in tick salivary glands (SGs). Primers for gfp were used with DNA
from infected (A, top) and uninfected (B, top) ticks. Plasmid DNA containing gfp (gfp-pDNA) was used as
a positive control in the assays in addition to primers for O. turicata 28s (A and B, bottom). Molecular
weights are shown to the left of each image.

FIG 9 Assessment of gfp localization from spirochetes isolated from murine blood. Southern blotting
using a probe for gfp and genomic DNA from wild-type B. turicatae (Bt-wt), B. turicatae-gfp that was
originally used to needle inoculate mice (Bt-gfp #1) prior to tick feeding, and B. turicatae-gfp that was
recovered from mouse blood after infected ticks fed (Bt-gfp #2). Molecular weights are indicated on the
left of the Southern blot.
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kan-gfp were hindered because a complete assembly of B. turicatae plasmids was not
available at the time of this study.

Genetic relocalization was previously observed for RF spirochetes. In B. hermsii and
B. turicatae, relocalization of the plasmid genes resT, chbC, and fhbA was reported after
continuous spirochete passage in vitro, which did not alter infectivity by needle
inoculation (10). In our study, gfp remained localized on an �40-kb plasmid during the
tick-mammal infectious cycle, and B. turicatae transformants were infectious by tick
feeding. While the association of gfp recombination and the observed transmissibility
of the spirochetes from the tick will be addressed in future studies, B. turicatae-gfp was
utilized to further understand vector colonization.

Visualization of GFP-producing spirochetes in the salivary gland lumen and ducts
indicated that the pathogens are localized in regions that would promote rapid
transmission upon tick bite. Surprisingly, a population of B. turicatae-gfp was also
consistently detected in the salivary glands immediately after a blood meal, revealing
that the tissues were not depleted of RF spirochetes after tick feeding. The results,
along with the observed transmission of B. turicatae within 15 s of tick attachment (4),
further indicate that a relatively low inoculum is delivered to the host at the bite site
during blood feeding.

An additional population of RF spirochetes is present in the midgut of Ornithodoros
species after they imbibe an infectious blood meal (6, 7); yet, their role in pathogenesis
remains vague. By indirect immunofluorescence assay, Schwan and Hinnebusch de-
tected B. hermsii in the midguts of 80% of O. hermsi ticks during the nearly 5 months
after the ticks ingested spirochetes (6). In our current report, the midgut population was
still detected in ticks 18 months after they initially imbibed an infectious blood meal.
It is unlikely that the midgut population is involved with transmission to the host
during tick blood feeding, as observed with Lyme disease-causing spirochetes. For
example, Borrelia burgdorferi persistently colonizes the midgut of Ixodes species (12–
14), and during a blood meal, a 36- to 48-h lapse is required for the pathogens to
migrate from the midgut to the salivary glands before transmission to vertebrate hosts
can occur (12–14).

Depending on the life stage, Ornithodoros species complete the blood meal within
five to 60 min (9), and a full blood meal is not required for RF spirochete transmission
(4). Transmission kinetics indicate that there is insufficient time for the midgut popu-
lation to migrate to the salivary glands and enter the vertebrate host. One putative role
of the midgut population may be to replenish the salivary glands after a blood meal.
Ornithodoros ticks infected with RF spirochetes maintain and transmit the pathogens
throughout their life history (2, 9, 15), which can include over five nymphal instars.
Adult ticks also feed and reproduce multiple times (1, 16). Therefore, as RF spirochete
densities in the tick diminish over time, the nutrient-rich blood meal may facilitate
replication in the midgut and subsequent migration to the salivary glands. This is an

TABLE 1 Detection of B. turicatae-gfp in the midgut and salivary glands of unfed O.
turicata and immediately after ticks fed

Tick no.

Unfed ticks Fed ticks

Midgut Salivary glands Midgut Salivary glands

1 � � � �
2 � � � �
3 � � � �
4 � � � �
5 � � � �
6 � � � �
7 � � � �
8 � � � �
9 � � � �
10 � � � �

Total (no. infected/total no.) 8/10 9/10 7/10 8/10
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aspect of pathogenesis that can now be evaluated using the B. turicatae-gfp reported
here.

The utilization of B. turicatae-gfp could also help define the mechanisms of vector
competence observed for RF spirochetes, because of the specific vector-pathogen
interactions that have evolved between species of RF Borrelia and Ornithodoros ticks. An
early example of vector specificity was demonstrated in 1953 when Luiz Mazzotti
recovered an RF spirochete, later named Borrelia mazzotti, from Ornithodoros talaje
collected in Mexico (17). Several Ornithodoros species from Latin America were infected
with B. mazzotti; however, subsequent tick feedings on mice indicated that only O.
talaje successfully transmitted the pathogens. More recent work with O. hermsi, Orni-
thodoros parkeri, and O. turicata infected with B. hermsii indicated that the tick’s salivary
glands may be a restrictive environment for vector competence (5). O. hermsi, O. parkeri,
and O. turicata were allowed to engorge on a mouse infected with B. hermsii. Spiro-
chetes disseminated out of the midgut from the three tick species, but only O. hermsi
transmitted B. hermsii. The ability to infect ticks with fluorescing B. turicatae will further
enable vector competency studies to assess the kinetics of salivary gland colonization
and subsequent pathogen transmission between Ornithodoros species.

Our findings with B. turicatae-gfp revealed key aspects of RF spirochete pathogen-
esis that warrant future investigation. For example, details of the kinetics and molecular
mechanisms of RF spirochete escape from the midgut, migration through the hemo-
coel, and salivary gland colonization remain to be fully understood. An understanding
of whether B. turicatae migration to the salivary glands is a stochastic process is needed,
and identification of the molecular signals is essential. Additionally, understanding
whether the midgut population of B. turicatae serves as a depot to replenish the
salivary glands upon blood feeding is important toward developing strategies to
interrupt the pathogen’s life cycle in the tick. As progress with the genetic manipulation
of RF spirochetes has been made (7, 11, 18, 19), a refined mechanistic understanding
of vector colonization and transmission is foreseeable. These studies will help advance
new control and prevention methods to mitigate the health burden of tick-borne RF
Borrelia species.

MATERIALS AND METHODS
Ethical statement. Mouse transmission studies were approved by the Institutional Animal Care and

Use Committee (IACUC) at Baylor College of Medicine, protocol numbers AN-6563 and AN-6580, whose
laboratory animal program complies with standards and guidance established by the Association for
Assessment and Accreditation of Laboratory Animal Care and the National Institutes of Health Office of
Laboratory Animal Welfare. Animal husbandry was provided by the veterinary staff and animal care
technicians.

Constructing a suicide vector for kan-gfp insertion. The 91E135 isolate of B. turicatae (20) was
used in this study, and gfp was targeted for insertion between fhbA and bta003 on the 150-kb linear
megaplasmid (lp150), in an approach similar to that described by Fine and colleagues for B. hermsii (11).
The GoTaq Flexi DNA polymerase kit (Promega, Madison, WI, USA) was used to amplify �500 bp of fhbA
and bta003 with primer combinations F1-R1 and F2-R2, respectively (Table 2 and Fig. 10A). Amplicons
were digested with SphI, ligated, and cloned into PCR2.1 (Life Technologies, Carlsbad, CA, USA) (Fig. 10B
to D), and Escherichia coli was transformed by electroporation. Colonies were screened by PCR for
insertion, PCR2.1::fhbA-bta003 was purified using QIAprep (Qiagen, Valencia, CA) from positive colonies,
and DNA sequencing was performed to confirm that errors were not introduced during PCR (Fig. 10B to
D). The gfp gene was amplified from the pABG5 cloning vector (21) using gfp F SpeI and gfp R SgrAI

TABLE 2 Primers used in the study

Primer Sequence (5= to 3=)
F1 GGTAAGTTCTACTTATGATGCTTATGC
R1 GGGGCATGCGGGCCTAGGATGAACTTAACTTTCTAAAAGTGACATTATTCTC
F2 GGGGCATGCGGGGCTAGCTTTTAACACTTAAGATTTATCTCTTACACGC
R2 TTCTCAATTTGATTTAACTGATTACC
F3 GGGCCTAGGGGCAATTCCTAATCAGAAAAATGTGG
R3 GGGGCTAGCTTATTTGTATAGTTCATCCATGCCATGTG
gfp F SpeI GCGACTAGTAAAGATTAACTTTATAAGGAGGAAAAACATATGAGTAAA

GGAGAAGAACTTTTCACTGG
gfp R SgrAI GCGCGCCGGTGTTATTTGTATAGTTCATCCATGCCATGTGTAATCC
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primers (Table 2) and cloned into a B. turicatae vector, which contained the flagellin (flaB) promoter
driving the kanamycin acetyltransferase (Fig. 10D). The construct (PflaB kan-gfp) was amplified with F3 and
R3 primers, which contained AvrII and NheI restriction sites, respectively. The amplicon was cloned into
PCR2.1::fhbA-bta003, generating the PCR2.1::gfp suicide vector (Fig. 10E). E. coli was transformed, colonies
were selected for plasmid isolation, and sequencing was performed.

Generation of B. turicatae-gfp. Electrocompetent B. turicatae 91E135, passaged 17 times in mod-
ified Barbour-Stoenner-Kelly (mBSK) medium (18, 22), was produced as previously described and
transformed with 20 �g of PCR2.1::gfp (7, 18). Spirochetes were transferred into 5 ml of mBSK medium
for 24 h, after which the cultures were added to 40 ml of mBSK medium with 200 �g/ml kanamycin. Once
live spirochetes were observed by dark-field microscopy, 1 ml was transferred to a vial containing 4 ml
of fresh mBSK medium and 200 �g/ml kanamycin. After spirochetes attained stationary growth, the
transformants were evaluated for fluorescence with an EVOS FL microscope (Thermo Fisher Scientific,
Waltham, MA, USA) and cloned by limiting dilution, as previously described (7, 18).

To evaluate the in vitro growth of transformants compared to that of the parental strain of B.
turicatae, 5-ml culture tubes containing mBSK medium were inoculated in triplicate with a given clone
at 5 � 105 spirochetes. The bacteria were quantified for six consecutive days using Petroff-Hausser
counting chambers (Hausser Scientific, Horsham, PA, USA) and a Zeiss Axio Imager A2 dark-field

FIG 10 Pictorial depiction of the approach to construct the gfp insertion vector. fhbA and bta003 were amplified
using primers (A), adding the appropriate restriction enzyme sites (B), and digested and ligated (C). The ligation
reaction was cloned into the PCR2.1 TOPO vector, generating PCR2.1::fhbA-bta003 (D, left plasmid). The kanamycin
acetyltransferase gene and gfp driven by the B. turicatae flaB promoter (PflaB kan-gfp) were amplified by PCR adding
AvrII and NheI restriction sites to the 5= and 3= ends of the amplicon, respectively, and cloned into PCR2.1::fhbA-
bta003 (D, left plasmid, and E).
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microscope (Zeiss, Munich, Germany). Daily counts were performed in triplicate, and spirochete averages
and standard deviations calculated. Fifty-milliliter cultures were also generated from a given clone, and
genomic DNA was isolated by phenol-chloroform extraction, as detailed below. Insertion of gfp into B.
turicatae was assessed by PCR and Southern blotting, as previously described (20, 23).

Genomic DNA isolation, pulsed-field gel electrophoresis, and Southern blotting. Genomic DNA
was isolated from four clones of B. turicatae-gfp, untransformed parental strain, and the parental strain
that had been electroporated without DNA. Spirochetes were grown in 50 ml of 1� mBSK medium, and
genomic DNA was prepared when they attained a density of 1 � 107 bacteria/ml. B. turicatae was
centrifuged and pellets washed with 1� phosphate-buffered saline (PBS) and 5 mM MgCl2. Spirochete
pellets were resuspended in 2.4 ml of N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES)
buffer (50 mM Tris [pH 8.0], 50 mM EDTA, 15% sucrose) and cells lysed with 4 mg/ml lysozyme for 10 min
on ice. Cell homogenate was treated with 3 ml of TES and 1% deoxycholic acid on a rocker for 10 min
at room temperature. Genomic DNA was organically isolated by phenol-chloroform extraction using
phase-lock gel conical tubes (VWR, Houston, TX), precipitated, and resuspended in Tris-EDTA (TE) buffer,
as previously described (24). DNA concentration was determined by NanoDrop (Thermo Fisher Scientific).

Reverse-field electrophoresis was performed as previously described (20). Total genomic DNA
samples were electrophoresed into a 1% agarose gel at 100 V for 15 min and then on Program 3 of a
PPI-200 programmable power inverter (MJ Research, Watertown, MA) for �20 h. Gels were stained with
GelRed (Phenix Research, Candler, NC) at a 1:10,000 dilution and visualized with UV transillumination.
Transfer of DNA onto polyvinylidene difluoride (PVDF) membranes and Southern blotting were per-
formed as previously described (20). Probes were generated for fhbA, gfp, and bta003 using the PCR DIG
Probe synthesis kit (Roche Applied Science, Indianapolis, IN, USA).

Murine infection by needle inoculation. B. turicatae-gfp and the parental strain were cultured at
35°C in mBSK medium, and 1 � 108 spirochetes were inoculated by intraperitoneal injection into Institute
of Cancer Research (ICR) mice (a Swiss derivative in colony at Baylor College of Medicine). Blood was
collected by tail nick for two consecutive days, and 2.5 �l was viewed by dark-field microscopy and under
fluorescence with a Zeiss Axio Imager A2 (Zeiss) to evaluate gfp expression. For fluorescence microscopy,
images were captured with an exposure time of 300 to 500 ms. Another 2.5 �l of blood was added to
47.5 �l of lysis stabilization buffer (Agilent Technologies, Santa Clara, CA, USA) for quantitative PCR
(qPCR). Within 2 days after needle inoculation, the animals had �1 � 107 spirochetes/ml of blood, and
O. turicata ticks were allowed to feed on the mice.

O. turicata colonies and B. turicatae-gfp acquisition and transmission by tick bite. Nymphal ticks
used in this study were progeny of adult O. turicata from laboratory-reared colonies, and an uninfected
cohort was reared through the second-instar nymphs. The two colonies originated from Kansas (O.
turicata-KS) (7) and southern Texas (O. turicata-TX) (25). Ticks were housed at 25°C and 85% relative
humidity (26). Acquisition of B. turicatae-gfp or the parental strain was performed by feeding third-instar
nymphal ticks on infected mice. Salivary glands and midguts from specimens in a given tick colony were
assessed at the following time points: (i) immediately after the spirochete acquisition blood meal (O.
turicata-KS and -TX colonies), (ii) immediately following the molt (O. turicata-KS and -TX), (iii) 18 months
after the B. turicatae-gfp acquisition blood meal (O. turicata-KS), and (iv) immediately following the
subsequent transmission blood meal by fourth-instar nymphs (O. turicata-KS and -TX). Fifteen to 20 ticks
were evaluated at each experimental procedure. For fluorescence microscopy, images and movies were
captured with an exposure time of 300 to 500 ms. Transmission was assessed by feeding 10 ticks infected
with B. turicatae-gfp or the parental strain per mouse, and five animals were used per study. Mice were
sampled for 10 consecutive days for qPCR, as previously described (7, 27). Following transmission, ticks
were kept in separate vials based on the animal upon which they fed, and transmission was reevaluated
on naive mice at the fifth nymphal instar and adult stage.

Reisolation of B. turicatae-gfp from mice. gfp recombination into other B. turicatae plasmids was
evaluated by reisolating B. turicatae-gfp from murine blood after tick transmission. O. turicata-KS ticks,
which were infected for over 18 months, were used. Upon visualization of spirochetes in the blood,
animals were exsanguinated, and 50 to 100 �l of blood was used to inoculate mBSK medium. Once
spirochetes attained stationary growth, they were inoculated into a 50-ml culture of mBSK medium.
Genomic DNA from B. turicatae-gfp was isolated from the cultures and Southern blotting performed, as
stated above.

Assessment of B. turicatae-gfp in ticks. Tick dissections involved excising midguts using an Axio
Stemi (Zeiss) dissecting microscope and placing the tissues in 5 to 10 �l of mBSK medium on a clean
microscope slide. A coverslip was gently placed on the midguts, and 50 microscopic fields were scanned
for B. turicatae-gfp. Similarly, salivary glands were excised from the same cohort of ticks, rinsed with 1�
PBS-MgCl2, and transferred to a clean slide containing mBSK medium, and a coverslip was placed over
the tissues. Midguts and salivary glands were evaluated by microscopy for B. turicatae-gfp colonization
within 5 min after dissection. Imaging B. turicatae-gfp was accomplished with an Axio Imager A2 (Zeiss)
fluorescence microscope, and images were analyzed with the ZEN 2012 digital imaging software (Zeiss).

qPCR of murine blood and detection of B. turicatae-gfp DNA in ticks. Quantification of B.
turicatae-gfp and the parental strain in murine blood was performed as previously described (7). Blood
samples in lysis buffer were thawed and diluted 1:10 in nuclease-free water. qPCR was performed using
a primer and probe set for the flagellin gene (7) and the Brilliant II QPCR master mix (Agilent
Technologies). Assays were run on the Applied Biosystems ViiA7 real-time PCR system, as previously
described (7).

To detect B. turicatae-gfp in O. turicata salivary glands, infected ticks were dissected. The cuticle was
cut longitudinally, peeled back, and the midgut exposed. Intact salivary glands were excised, rinsed with
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1� PBS, and frozen at �80°C in 50 �l of 1� PBS. DNA was extracted using the DNeasy blood and tissue
kit (Qiagen), according to the manufacturer’s instructions. PCR for gfp was performed as previously
described (23), using primers 5=-GCGACTAGTAAAGATTAACTTTATAAGGAGGAAAAACATATGAGTAAAGGA
GAAGAACTTTTCACTGG-3= and 5=-GCGCGCCGGTGTTATTTGTATAGTTCATCCATGCCATGTGTAATCC-3=.
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