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Control of chaos teaches that control theory can
tame the complex, random-like behaviour of chaotic
systems. This alliance between control methods
and physics—cybernetical physics—opens the door
to many applications, including dynamics-based
computing. In this article, we introduce nonlinear
dynamics and its rich, sometimes chaotic behaviour
as an engine of computation. We review our
work that has demonstrated how to compute using
nonlinear dynamics. Furthermore, we investigate
the interrelationship between invariant measures
of a dynamical system and its computing power
to strengthen the bridge between physics and
computation.

This article is part of the themed issue ‘Horizons of
cybernetical physics’.

1. Introduction

Linearity is usually praised as a positive feature and
property in many disciplines, and even in common
language. Linearity is considered synonymous to, and
associated with, ease of use and predictability. Abundant
tools and techniques to solve and analyse linear
systems exist. System designers and engineers favour
linearity because linearity keeps system behaviour
simple, predictable and easy to manage and alter. System
analysts prefer linearity because they can describe, model
and solve linear systems efficiently.

Unlike linearity, nonlinearity is sometimes considered
as a negative feature, as a hurdle, as an uncertainty and
with a lack of ease. Designing nonlinear systems can
be harder because nonlinear interactions or behaviours
in the system must be taken into account, and there is
no generic tool to analyse and solve nonlinear systems.
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Simply put, nonlinearity refers to a relationship that cannot be modelled or explained as
a linear algebraic or differential combination of input or state variables. The consequences of
this lack of linearity are fundamental and substantial, and nonlinear systems differ completely
from linear systems. The behaviour of a nonlinear system can be sensitive to the parameters
of the systems and the initial conditions of the system. More specifically, by changing a
nonlinear system’s parameters, the behaviour of the system can change qualitatively, as well
as quantitatively. For example, upon changing a bifurcation parameter, the system can switch
between different periodic states, and eventually it can reach full chaos. Or a nonlinear system
can be globally stable, but locally unstable, meaning that, despite having an attractor, it can be
extremely sensitive to initial conditions. A chaotic system contains an infinite number of different
periodic orbits, which are dense in the state space of the system.

These arguments might mislead us to believing that nonlinearity is a feature to be avoided.
But we live in a nonlinear world. Nature is nonlinear, and its nonlinearity plays a fundamental
role in its performance and functionality. The flexibility of natural and living systems and their
ability to adapt to and cope with different conditions is believed to originate from nonlinearity
[1]. Even human-made systems such as transistors, vacuum tubes and triodes are nonlinear in
nature, although their nonlinearity has not been fully used in engineered systems.

In a nutshell, a nonlinear system can be considered to be a complex library of different
behaviours. Starting in the 1990s, advances in control theory and dynamical systems theory
enabled us to hack into these nonlinear complex systems and use their inner complexity better.
Ditto & Pecora [2] published one of the earliest reports on the applications of chaos theory that
were enabled by the introduction of control of chaos. Andrievskii & Fradkov [3,4] provide an
extensive list of different categories of chaos control methods and applications. And we discuss
[5] how complex nonlinear dynamics can be tailored and used to perform different types of
computation. With the help of such control and dynamical systems theory techniques, also called
cybernetics, the chaos was tamed and complex systems were revealed to be vast libraries of diverse
and accessible behaviours. This application of cybernetical methods to nonlinear complex systems
in order to transform, control, synchronize or use their dynamics is called cybernetical physics [6].

Nonlinear dynamics-based computing was one of the applications that emerged as a
consequence of chaos control and the taming of chaos. The driving motivation behind nonlinear
dynamics-based computing, or chaos computing for short, was the question: what if chaotic
systems are actually performing some form of computation? And how can we tame and
domesticate these chaotic systems to perform computation for us [7]? In this paper, and the
previous literature related to this paper, the terms chaos computing, dynamics-based computing
and nonlinear dynamics-based computing are used interchangeably, and they all refer to the
same concept, namely the utilization of the inherent, complex dynamics of nonlinear dynamical
systems to perform computation. The main advantage of nonlinear dynamics-based computing
is that each intrinsic behaviour of the dynamical system can represent a different type of
computation, and a nonlinear dynamical system contains many different behaviours, each of
which can be selected. As a result, a nonlinear dynamical system can embody different types
of computations, and one can dynamically programme the system to perform different types
of computations.

A simple Turing machine can also be programmed to implement different types of
computation. However, in nonlinear dynamics-based computing all the different types of
computation coexist in the dynamics of the same system, and are embodied by the same
system, whereas the Turing machine must be programmed to ‘simulate’ these different types of
computation one by one. This is the difference between actual implementation and simulation.
The difference becomes even more vivid when we consider the implementation of nonlinear
dynamics-based computing [8], where we show how even a simple ideal transistor circuit
contains an infinite number of different functions.

It is important to note that a conventional computer system is a nonlinear dynamical system
by itself, and the circuits within this system are all nonlinear dynamical systems. However,
we do not call conventional computers nonlinear dynamics-based computing systems because
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the nonlinearity and its complex dynamics are not fully and directly used in the computation.
Analogously, despite conventional computers being all composed of microscopic particles
governed by quantum mechanics, conventional computer systems are not called quantum
computers because the quantum mechanics is not directly used in the computation. In nonlinear
dynamics-based computing, the computing is carved from nonlinear dynamics, and nonlinear
dynamics is the engine of the computation. It is the mechanism that maps the inputs to the
outputs, and it is nonlinear dynamics that is used to programme the nonlinear dynamics-based
computer to perform different computation.

In §2, we review nonlinear dynamics-based computing. In §3, we connect nonlinear dynamics
and invariant measures to inherent computational powers using the computing exponent. The
paper is concluded in §4.

2. Dynamics-based computing

Many abstract computing machines, such as a Turing machine or cellular automata, have been
regarded and studied as discontinuous dynamical systems or as symbolic dynamical systems
[9-11]. The complexity of a general dynamical system has been characterized by its computing
power [12], and the dynamical properties of a dynamical system have been linked to its
computational properties [13].

In the majority of such approaches, the focus has been on traditional abstract computing
models with less work on physical circuits and systems, how the dynamics of physical
systems could perform computation, and how to use such physical systems as actual computer
systems. We introduced a practical dynamics-based approach for computation where the intrinsic
dynamics of a physical system can be used to perform combinational logic operations [5,7]. In
such an approach, the intrinsic dynamics of a physical system is observed as a function that maps
the initial condition of the dynamical system to future states. Signals in a majority of real-world
systems are analogue, meaning that the dynamical variables of a real-world dynamical system
are continuous in value. To implement digital functions, we used encoder and decoder maps that
encode incoming binary data as an analogue initial condition and decode a binary output from
the analogue output.

Because a nonlinear system contains many different behaviours, and its dynamics—the
mapping between inputs and outputs—can be dynamically controlled and altered using different
cybernetical methods, nonlinear dynamics can provide us with a universal computing system that
can be programmed to implement different functions. We call our dynamics-based reconfigurable
computing system ‘universal’ in the sense that it can be programmed to implement many
functions.

A block diagram for our nonlinear dynamics-based computing model is depicted in figure 1.
Binary data inputs, denoted by d, are encoded as an initial condition of the nonlinear system.
And an output, O, is decoded from the final state of the nonlinear system. Two control inputs,
¢ and p, programme the nonlinear system to implement different functions. Input p changes
the bifurcation parameter of the nonlinear system and alters the dynamics of the system,
and therefore changes the mapping between inputs and outputs and the type of function
the nonlinear system builds. Input ¢ perturbs the nonlinear system and therefore changes the
dynamical evolution of the system, especially when the nonlinear system is in a chaotic regime.
As a result, ¢ can be used to programme the dynamical system to also implement different
functions. Furthermore, when the dynamics is chaotic, or periodic with a long periodicity, the
observed state of the dynamical system x;, varies with evolution time #, and as a result different
outputs and different types of functions can be obtained for different evolution time n. We have
previously discussed techniques to programme a nonlinear dynamical system to implement
different functions in detail [5].

When the nonlinear dynamical system is in a chaotic regime, noise can, and does, change
the future states of the system. However, in this method, the evolution time is set to be short
enough that noise does not have enough time to evolve, great enough to smear the future state
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Figure 1. Block diagram for a nonlinear dynamics-based computing system.

of the system and change the output, but long enough so that the relatively large control inputs
¢ can change the future state of the system and programme the nonlinear system to implement a
different function. Kia et al. [14,15] analyse the effects of noise on chaos computing and discuss
how dynamically coupling identical nonlinear systems, performing reconfigurable computing,
can systematically reduce the noise sensitivity of this type of computation and improve its
robustness to noise [16].

The advantage of this nonlinear dynamics-based approach for computing is twofold. Firstly,
different types of functions coexist within a nonlinear dynamical system. In other words, one
nonlinear circuit or system can implement different types of functions and computations. This is
a very important capability given that Moore’s law is approaching physical limits.

Moore’s law is an observation and prediction that the number of transistors on an integrated
chip doubles every 24 months, and this exponential increase of transistors fulfils market needs
and demands for computers with exponentially increasing performance [17]. But today this trend
is slowing down because the size of devices is reaching atomic levels [18]. Furthermore, the
power consumption of transistors over successive generations has not continued to scale with
decreasing transistor size. Consequently, power consumption has become another limiting factor
in determining the maximum transistor density that can be effectively used on many integrated
circuits [18]. As a result, we cannot simply increase the performance of computers by packing
more and more devices in an integrated circuit any more. One of the major alternative methods
that semiconductor companies and academia have taken is to enhance and improve the utilization
of currently available transistors rather than trying to pack more transistors into the chip. In other
words, the main idea of such approaches is to get more out of few transistors, such as by using
enhanced computer architecture [18] or by improving the bit handling capacity of devices [19].

Nonlinear dynamics-based computing introduces a new solution. In this dynamics-based
approach, the computation is performed at the dynamical level, where many different types
of computation coexist, with special thanks to the complex dynamics of nonlinear systems.
Furthermore, very simple transistor circuits can have very complex nonlinear dynamics.
Therefore, by utilizing dynamical systems for computation, we can perform many different
types of computation using very simple transistor circuits. Recently [8], we showed that an
ideal nonlinear circuit contains an infinite number of different functions. This opens the door
for better utilization of transistors to gain more computation out of a fixed number of transistors
by reconfiguring the same circuit to implement multiple different types of computation, rather
than needing multiple different circuits for different types of computation.

The second advantage of the nonlinear dynamics-based approach is that programming and
reconfiguring a nonlinear dynamical system to implement a different type of computation does
not require any halting of the system or a separate programming phase. Rather, the programming
inputs are fed to the system along with the data inputs at the same time, and processing and
programming happen in the same clock cycle. This enables us to design processing units that at
each clock cycle, depending on the needs or the specific instruction that the unit has to execute,
the unit can be instantaneously and dynamically programmed to implement the new type of
computation. The main reason is that different types of computations coexist within the same
system, and we are just picking them up from the system rather than loading a new function to
the system—the scenario that happens in programmable gate arrays, or in short FPGAs.
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We have recently designed, fabricated, and tested and verified an integrated circuit for
nonlinear dynamics-based computing. The fabricated circuit can be dynamically programmed
to implement all two-input, one-output digital functions [20]. In this paper, we do not discuss
the details of hardware design for such a reconfigurable system. Such topics are the focus of our
other papers. Instead, here we focus on an abstract ideal, mathematical model for how such a
nonlinear dynamics-based reconfigurable system works, and how the amount of computation
such a nonlinear dynamics-based computing system can perform is connected to its physics.

3. Computing measures complexity

A dynamical system maps its initial conditions to its future states like a function maps inputs to
outputs. In this way, linear dynamical systems implement simple linear functions, while nonlinear
dynamical systems implement complex, nonlinear functions. Dynamics is intrinsic computation.

Understanding and measuring complexity are important problems. Complexity has different
aspects and different measures have been introduced to quantify them [21]. Lloyd [22] has even
estimated the computational capacity of the Universe. In this section, we consider dynamical
systems, which naturally instantiate functions, and introduce a metric, the computing exponent,
to measure the amount of computation they can perform.

(@) Three metrics

The computing exponent is related to two other important complexity measures, the Lyapunov
exponent and the topological entropy. For simplicity, we consider one-dimensional maps
Xn4+1 = M][x,] parametrized by discrete time or iteration number n (rather than flows parametrized
by continuous time ¢). In a chaotic system, the separation of nearby orbits

Sx o eth (3.1a)

increases exponentially with time, where Ap is the maximum Lyapunov exponent [23].
Furthermore, the number of distinguishable orbits

N, o et (3.1b)

increases exponentially with time, where Ag=ht is the topological entropy [24]. We have
discovered that the number of distinguishable functions

Ny e (B.1¢0)

(and hence the complexity) also increases exponentially with time, where Ac is the computing
exponent. Figure 2 heuristically compares the Lyapunov exponent, the topological entropy
and the computing exponent, assuming a state space numerical resolution or granularity éx.
The Lyapunov exponent quantifies the divergence of small changes in initial conditions, the
topological entropy quantifies the divergence in distinguishable orbits, and the computing
exponent quantifies the divergence in distinguishable functions (or distinct mappings of the
state space).

The rich dynamics of nonlinear systems facilitate the implementation of different
computations. For example, if the nonlinear system were chaotic, the future states would be
highly sensitive to the initial conditions [25]. A very small change in the initial condition would
dramatically change the future states and, therefore, the type of computation that the chaotic
system instantiates [5,8,14,26]. This suggests a conceptual connection between the amount of
computation a nonlinear system can perform and the Lyapunov exponent of the same system.
However, chaos is not a necessary condition for computation. Even in non-chaotic regimes, the
nonlinear convolutions of an iterated map, as in figure 3, can scramble orbits among partitions of
the invariant set and thereby create diverse functions.
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Figure 2. The complexity of a nonlinear map of the unit interval typically increases exponentially with iteration number n. The
Lyapunov exponent | quantifies the divergence 5x of nearby orbits (a). The topological entropy Af = hy quantifies the number
N, of distinguishable orbits differing by at least 5x at some step n (b). The computing exponent A measures the number N
of distinguishable functions the map can implement given the coarseness x of the encoding and decoding, which represents
different inputs and outputs in different sections of the state space (c). (Online version in colour.)

(b)
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Figure 3. Even a simple nonlinear map () gets complicated after only five iterations (b). (Online version in colour.)

(b) Definitions

To motivate the computing exponent definition, consider a dynamics-based computing example
[5,8]. If the dynamical system is the nonlinear map of the unit interval

Xn+1=Mp[xs] €[0,1], (3.2)
where p is a bifurcation parameter, then N-fold iterations of the map MPN define binary functions

£:10,1) — (0,1}, (3.30)
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by
fenpld] = DIMY[E[d]]], (3.3b)

where the data d ={dy,d>, . ..,d,,} and the controls ¢ ={cy,cy,...,cn }, where dy, c; €{0,1}. One
possible encoding is

20y 4 - 27 1g, 21200 4. 4 2T, )

SC [d] = an""”c 7

(3.4)

where the data bits are higher and controls bits are lower so function inputs are clustered together.
(Alternately, if the data and control bits are interchanged, data bits are lower and control bits are
higher so function inputs are spread out.) One possible decoding is

_ Round[2"x]

D] S

(3.5)

From a digital logic viewpoint, the map M, thereby instantiates a family of discrete functions.
The nq data bits comprise D = 2" inputs. The 7. control bits create up to C =2"< functions by
shuffling those inputs. The ny, base bits define the B =2" disjoint unit interval [0,1] outputs: for
example, B =2! =2 creates Boolean functions with two possible outputs, while B=2* =16 creates
hexadecimal functions with 16 possible outputs.

Abstract this definition, and use symbolic dynamics to define the computing exponent.
For granularity, partition an invariant interval ACR into B disjoint subsets, and let o, €
{0, 1, ..., B — 1} be the symbol representing x, € A. Choose C x D initial conditions xg and apply
the n-fold iterated map M’Ij\] to induce the output symbolic vector o,. Group the components
of the output vector into a collection of C sets of D symbols. Let N¢ <C be the cardinality of
the collection, which typically contains duplicates. In computer simulations, we observe that the
number of unique sets Ny increases exponentially with iteration number # (until it plateaus due
to the finite number of initial conditions). The computing exponent is the least upper bound over
all initial parameters of the logarithm of the function number Nj.

As an example, choose 11y =2 data bits and 1. = 3 control bits, with data high (yellow highlight)
and controls low (cyan highlight), to create C x D =2223=2%=32 binary initial conditions in
23 =8 columns

00000 00PO1 COE1O P11l 00100 011 GO110 00111
O1lENEEE O1CHEEE O LGREE O 1GEEE O 1SSCHEE O 1ARNGEE O 1SRG 0O 1 S
lOGHCEE 1OCNORE 1OGENE 1OBEEE 1 OBNES 1OHEGEN 1 OMEEE 1 O
1195080 110808 11 G580 1 1S5l 1 1HSOS 1 1N0EE 1 1 SESEE 1 1 Sl

where each column yields the domain of a function. Normalize each initial condition to the unit
interval [0,1] by dividing by C x D =32 to get the decimal initial conditions

o L L 2 1 5 3 7

32 16 32 8 32 16 32
: s 5 o 3 13 7 15
4 32 16 32 8 32 16 32
O N O A |
2 32 16 32 8 32 16 32
3 025 18 2 1 2 15 3
4 32 16 32 8 32 16 32

Dynamically evolve each initial condition (by the equation (3.6) tent map with n =15 iterations at
parameter p =1.7) to get the approximate decimal numbers

0.000000 0.443705 0.812589 0.368884 0.584821 0.671473 0.639232 0.617063
0.336642 0.780348 0.702047 0.258342 0.695364 0.560931 0.749774 0.506520
0.447185 0.506520 0.749774 0.560931 0.695364 0.258342 0.702047 0.780348
0.336642 0.617063 0.639232 0.671473 0.584821 ©0.368884 0.812589 0.443705
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Using np, =1 base bits, decode each result by rounding to 0 or 1 to get the eight binary outputs

oo oo
N S o
H R R
H - oo
T
[CI IS
H B R
O R

where each column is the range of a function. Convert each column construed as a binary number
into a decimal number

® 7 15 3 15 12 15 14

Take the union of these numbers to eliminate duplicates and find

03712 14 15

The cardinality N =6 of this set is the number of unique functions. One such function f.[d] is

f111[0, 0] =
f111 [0, 1] =
fi1[1, 0] =
fi11[1, 1] =0

S

Similarly, use symbolic dynamics to define the topological entropy. As before, given a map
My, partition an invariant interval A C R into B disjoint subsets, and let 5, € {0,1, ... ,B—1} be the
symbol representing x, € A. Choose N; =2" initial conditions xy and apply the map n times to
each to induce symbolic orbits. Let N, < N; be the cardinality of the set of orbits. We observe that
the number of unique orbits N, increases exponentially with iteration number n (until it plateaus
due to the finite number of initial conditions). The topological entropy is the least upper bound
over all parameters of the logarithm of the orbit number N,

Although the topological entropy and the computing exponent are defined similarly, two
apparent differences exist: when counting functions and orbits, the function number depends
only on the final symbols while the orbit number depends also on the intermediate symbols;
furthermore, the function number depends only on groups of final symbols, not on the final
symbols individually. Because the set of functions is a fair sample of the set of orbits, we expect the
computing exponent to be similar to the topological entropy, and in fact numerically we observe
AL S Ac & Ag and we conjecture that the final equality is true in general.

() Numerical examples

The approach we use in this paper to estimate the computing exponent is a kind of ‘analysis
by synthesis’ in the sense that we analyse and measure the computing power of the system by
actually trying different configurations and counting the number of different functions that the
system in these different configurations can implement. Of course, we cannot apply and try all
possible configurations in a system with continuous variables; however, we can use a subset of
these configurations to get a measure on the number of different observed functions, and estimate
the rate at which the number of these functions increases as evolution time increases. This rate,
which is an exponent, and we named it the computing exponent, is independent of the details
of the analysis by synthesis method for its estimation, such as the size of data input ngq, or the
size of control inputs 7. or the base of the computation (the number of levels for each symbol).
That being said, these parameters should be adjusted carefully so that the numerical method can
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estimate a relatively precise value for the computing exponent. As an example, imagine we want
to estimate the computing exponent of a dynamical system by implementing two-input, one-
output digital functions, where the base is 2. There are just 16 different such functions, and when
we plot the number of observe functions for different iteration numbers, it will quickly saturate
to its maximum possible number after perhaps one or two iterations. As a result we will not be
able to observe this exponential increase in the number of functions over the iteration number for
a large window to be able to estimate the exponent out of it.

We numerically estimate the computing exponent, topological entropy and Lyapunov
exponent for two famous one-dimensional maps, the tent map and the logistics map. Although
these two maps are topologically conjugate [27], the former is piecewise linear and has multiple
exactly solvable properties, while the latter has a generic quadratic maximum. We obtain similar
results with other nonlinear maps.

Define the tent map by

Pxn/ Xn < 5/
Xn+1 :Mp[xn] = (3.6)

1
p(1 —xp), 5 =X

where the state 0 <x, <1 and the bifurcation parameter p determines the type of dynamics.
In the interval 1 <p <2, chaos is possible and the tent map topological entropy and Lyapunov
exponent can be exactly calculated and are the same, Ag =iy =In p > 0. Furthermore, the tent
map computing exponent can also be exactly calculated. For p=2, the tent map is a nonlinear
transformation of the bit shift map. Hence, the length of the graph, the number of periodic orbits,
the number of turning points and the number of state space partitions double with each iteration.
Consequently, the number of functions doubles with each iteration, and Ny = C2" = Celn2n g4
Ac =In2. More generally, for the tent map, similar behaviour holds on average, and plausibly
Ni=Cp" =Ce"P) " 50 p\c =Ag =L =Inp.

Using the definitions of §2, we numerically estimate the number of orbits N, and the number
of functions N¢ versus the number of map iterations n. For large parameters, optimal fits to
the exponentially increasing regions of number N versus iteration n before the plateau, as in
figure 4a plots, estimate the topological entropy and the computing exponent. Hexadecimal
base B=2*=16 provides the necessary resolution of the tent map’s narrow attractor at small
bifurcation parameter values p, according to figure 44, inset. The exponents of figure 4b agree
that A, < Ac &~ Ag. These relationships are consistent with Pesin’s theorem [28], which equates the
entropy of a dynamical system with its total expansion rate. The close agreement between theory
and numerics in figure 4b implies that even a single set of evenly spaced initial conditions can
produce good estimates of the topological entropy and the computing exponent.

Define the logistics map by

Xni1 = Mplxn] = pxu(1 — xn), (3.7)

where the state 0 < x;, <1, and the bifurcation parameter p determines the type of dynamics. In the
interval 3.57 S p <4, chaos is possible and the logistics map topological entropy and Lyapunov
exponent can be positive. (Although the Lyapunov exponent remains negative for a dense set of
parameters p.)

Again using the definitions of §2, including the equation 3.3(a) encoding, for a choice of
finite parameters, we count the number of orbits N, and the number of functions N versus the
number of map iterations n. Optimal fits to the exponentially increasing regions of number N
versus iteration n before the plateau, as in figure 5a plots, estimate the topological entropy and
the computing exponent. Binary base B =2 provides adequate resolution, according to figure 54,
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Figure 4. (a) Tent map logarithm of function number N; and orbit number N, versus iteration number n for bifurcation
parameter p = 1.76. As in encoding equation 3.3(a), functions have ny = 4 data bits high and n. = 12 control bits low, orbits
have n; =15 initial bits, and both use hexadecimal base b =2* =16 intervals. Slopes before the plateaus estimate the
entropy and computing exponents. Inset is the bifurcation diagram. (b) Chaotic tent map topological entropy A¢ = hy estimate
(red squares), computing exponent A¢ estimate (blue discs) and Lyapunov exponent theory (grey curve) versus bifurcation
parameter p. Parameters are the same as in (a). (Online version in colour.)

inset. The exponents of figure 5b are again consistent with A1, S Ac &~ Ag. We do not observe the
topological entropy or the computing exponent dipping in periodic windows, such as the famous
period-3 window beginning at p = 1 + +/8 & 3.83. This may relate to the many unstable periodic
orbits acting as repellers in these parameter regions.

(d) Applications

The computing exponent measures a kind of complexity that is of both theoretical and practical
interest. Nonlinear systems are ubiquitous and so the computing exponent can measure and
quantify Nature’s complexity in terms of computing power. In addition, the computing exponent
can guide engineers to select parameters that optimize dynamics-based computing [7,29].
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Figure 5. (a) Logistics map logarithm of function number N¢ and orbit number N, versus iteration number n for bifurcation
parameter p = 3.8. Asin encoding equation 3.3(a), functions have ny = 4 data bits high and n. = 12 control bits low, orbits have
n; =15 initial bits, and both use binary base B = 2 intervals. Slopes before the plateaus estimate the entropy and computing
exponents. Inset is the bifurcation diagram. (b) Chaotic logistics map topological entropy A¢ = hy estimate (red squares),
computing exponent A estimate (blue discs) and Lyapunov exponent theory (grey curve) versus bifurcation parameter p.
Parameters are the same as in (a). (Online version in colour.)

4. Conclusion

Dynamical systems naturally and intrinsically have computational capability. Since nonlinear
dynamical systems have a very rich, complex dynamics, their computational capabilities are also
enormous. We discussed how a nonlinear dynamical system can perform computation. And we
studied the amount of computation that can be instantiated by such nonlinear dynamical systems.
We demonstrated that the number of functions N¢ that a nonlinear map M, can instantiate
exponentially increases with time and related the corresponding computing exponent Ac to the
system’s topological entropy Ag = ht and Lyapunov exponent Ar. We argued that the computing
exponent and the topological entropy are numerically equal, despite their distinct definitions, so
that the number of orbits and functions increase at the same rate.
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We highlighted an important but subtle connection between a nonlinear system’s Lyapunov
and computing exponents. The Lyapunov exponent characterizes the average rate of exponential
divergence of nearby orbits, whereas the computing exponent characterizes the exponential
increase in the number of observed functions, instantiated and programmed by perturbing
the system’s initial conditions. The convolutions of the nonlinear mapping M, generate new
functions often—but not always—in response to the divergence of nearby orbits. Thus, the
computing and Lyapunov exponent are related by conceptually distinct complexity measures
that can and do differ for some parameter ranges.

More generally, the science of nonlinear dynamics allows us to transform, control, synchronize,
use and exploit complex dynamics. In this way, cybernetical physics enables nonlinear dynamics
to be an engine of computation, which can be of great importance in the era in which Moore’s law
is failing and the search for alternative approaches to increase the performance of computers is at
its peak.
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