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ABSTRACT

Introns are found in 5′ untranslated regions (5′UTRs) for 35% of all human transcripts. These 5′UTR introns are not randomly
distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously,
transcripts lacking 5′UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and
understand the connection between coding-region sequence and 5′UTR intron status, we developed a classifier that can
predict 5′UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier
identifies transcripts with 5′ proximal-intron-minus-like-coding regions (“5IM” transcripts). Unexpectedly, we found that the
early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts.
The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start
codon and near the 5′ cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM
transcripts are bound by the exon junction complex (EJC) at noncanonical 5′ proximal positions. Finally, N1-methyladenosines
are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a
distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5′ proximal introns, presence of
specific RNA sequence features associated with low translation efficiency, N1-methyladenosines in the early coding region,
and enrichment for noncanonical binding by the EJC.
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INTRODUCTION

Approximately 35% of all human transcripts harbor introns
in their 5′ untranslated regions (5′UTRs) (Hong et al. 2006;
Cenik et al. 2010). Among genes with 5′UTR introns
(5UIs), those annotated as “regulatory” are significantly over-
represented, while there is an underrepresentation of genes
encoding proteins that are targeted to either the endoplasmic
reticulum (ER) ormitochondria (Cenik et al. 2011). For tran-

scripts that encode ER- and mitochondria-targeted proteins,
5UI depletion is associated with the presence of specific RNA
sequence properties (Palazzo et al. 2007, 2013; Cenik et al.
2011). Specifically, nuclear export of an otherwise inefficient-
ly exported microinjected mRNA or cDNA transcript can be
promoted by an ER-targeting signal sequence-containing re-
gion (SSCRs) or mitochondrial signal sequence coding re-
gion (MSCRs) from a gene lacking 5′UTR introns (Cenik
et al. 2011; Lee et al. 2015). However, more recent studies
suggest that many SSCRs have little impact on nuclear export
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for RNAs transcribed in vivo (Lee et al. 2015), but rather en-
hance translation in a RanBP2-dependent manner
(Mahadevan et al. 2013).
Among SSCR- andMSCR-containing transcripts (referred

to hereafter as SSCR and MSCR transcripts), ∼75% lack
5′UTR introns (“5UI−” transcripts) and ∼25% have them
(“5UI+” transcripts). These two groups have markedly differ-
ent sequence compositions at the 5′ ends of their coding se-
quences. 5UI− transcripts tend to have lower adenine content
(Palazzo et al. 2007) and use codons with fewer uracils and
adenines than 5UI+ transcripts (Cenik et al. 2011). Their sig-
nal sequences also contain leucine and arginine more often
than the biochemically similar amino acids isoleucine and ly-
sine, respectively. Leucine and arginine codons contain fewer
adenine and thymine nucleotides, consistent with adenine
and thymine depletion. This depletion is also associated
with the presence of a specific GC-rich RNAmotif in the ear-
ly coding region of 5UI− transcripts (Cenik et al. 2011).
Despite some knowledge as to their early coding region

features, key questions about this class of 5UI− transcripts
have remained unanswered: Do the above sequence features
extend beyond SSCR- and MSCR-containing transcripts to
other 5UI− genes? Do 5UI− transcripts having these features
share common functional or regulatory features? What bind-
ing factor(s) recognize these RNA elements? A more com-
plete model of the relationship of early coding features and
5UI− status would begin to address these questions.
Here, to better understand the relationship between early

coding region features and 5UI status, we undertook an
integrative machine learning approach. We reasoned that a
machine learning classifier which could identify 5UI− tran-
scripts solely from early coding sequence would potentially
provide two types of insight. First, it could systematically
identify predictive features. Second, the subset of 5UI− tran-
scripts that could be identified by the classifier might then
represent a functionally distinct transcript class. Having
developed such a classifier, we found that it identified
∼21% of all human transcripts as harboring coding regions
characteristic of 5UI− transcripts. While many of these tran-
scripts encode ER- and mitochondrial-targeted proteins,
many others encode nuclear and cytoplasmic proteins.
This class of transcripts shares characteristic tendencies to
lack 5′ proximal introns, to contain noncanonical exon junc-
tion complex (EJC) binding sites, to have multiple features
associated with lower intrinsic translation efficiency, and
to have an increased incidence of N1-methyladenosine
modification.

RESULTS

A classifier that predicts 5UI status using only early
coding sequence information

To better understand the previously reported enigmatic rela-
tionship between certain early coding region sequences and

the absence of a 5UI, we sought to model this relationship.
Specifically, we used a random forest classifier (Breiman
2001) to learn the relationship between 5UI absence and a
collection of 36 different sequence features extracted from
the first 99 nt of all human coding regions (CDS) (Fig. 1A–
C; Supplemental Table S1; Materials and Methods). We then
used all transcripts known to contain an SSCR (a total of
3743 transcripts clusters; Materials and Methods), regardless
of 5UI status, as our training set. This training constraint en-
sured that all input nucleotide sequences were subject to sim-
ilar functional constraints at the protein level. Thus, we
sought to identify sequence features that differ between
5UI− and 5UI+ transcripts at the RNA level.
Our classifier assigns to each transcript a “5′UTR-intron-

minus-predictor” (5IMP) score between 0 and 10, where
higher scores correspond to a higher likelihood of being
5UI− (Fig. 1C). Interestingly, preliminary ranking of the
5UI− transcripts by 5IMP score revealed a relationship be-
tween the position of the first intron in the coding region
and the 5IMP score. 5UI− transcripts for which the first in-
tron was more than 85 nt downstream from the start codon
had the highest 5IMP scores. Furthermore, the closer the first
intron was to the start codon, the lower the 5IMP score
(Fig. 1D). We explored this relationship further by training
classifiers that increasingly excluded from the training set
5UI− transcripts according to the distance of the first intron
from the 5′ end of the coding region. This revealed that
classifier performance, as measured by the area under the
precision recall curve (AUPRC), increased as a function of
the distance from start codon to first intron distance
(Materials and Methods, Fig. 1E). Thus, the RNA sequence
features we identified as being predictive of 5UI− transcripts
are more accurately described as being predictors of tran-
scripts without 5′-proximal introns.
To minimize the impact of transcripts that may “behave”

as though they were 5UI+ due to an intron early in the
coding region, we eliminated 5UI− SSCR transcripts with
a first intron <90 nt downstream from the start codon
(Materials and Methods) and generated a new classifier.
Discriminative motif features were learned independently
(Materials and Methods), and performance of this new clas-
sifier was gauged using 10-fold cross validation. We assessed
cross-validation performance in two ways: (i) in terms of
the area under the receiver operating curve (AUC)—which
can be thought of as a measure of average recall across a range
of false positive rates; (ii) in terms of area under the precision
versus recall curve (AUPRC), which can be thought of as the
average precision (fraction of predictions which are correct)
across a range of recall values. Specifically, the classifier
showed an AUC of 74% and AUPRC of 88% (Fig. 2A, yellow
curves; exceeding AUC 50% and AUPRC 71%, the perfor-
mance values expected of a naïve predictor). We used this
optimized classifier for all subsequent analyses.
SSCR transcripts exhibited markedly different 5IMP score

distributions for the 5UI+ and 5UI− subsets (Fig. 2B). The
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5UI+ score distribution was unimodal with a peak at ∼2.4. In
contrast, the 5UI− score distribution was bimodal with one
peak at ∼3.6 and another at ∼9, suggesting the existence of
at least two underlying 5UI− transcript classes. The peak at
score 3.6 resembled the 5UI+ peak. Also contributing to the
peak at 3.6 is the set of 5UI− transcripts harboring an intron
in the first 90 nt of the CDS (55% of all 5UI− transcripts). The
other distinct high-scoring 5UI− class (peak at score 9) is
composed of transcripts that have specific 5UI−-predictive
RNA sequence elements within the early coding region.

We next wished to evaluate whether our classifier was dis-
criminating 5UI+ and 5UI− SSCR transcripts using signals
that appear specifically in the early coding region as opposed
to signals that appear broadly across the coding region. To do
so, for every transcript we randomly chose 99 nt from the
region downstream from the third exon. The 5IMP score dis-
tributions of these “3′ proximal exon” sets were identical for
5UI+ and 5UI− transcripts (Fig. 2A,C), confirming that the
sequence features that distinguish 5UI+ and 5UI− transcripts
are specific to the early coding region.

RNA elements associated with 5UI− transcripts are
pervasive in the human genome

Having trained the classifier on SSCR transcripts, we won-
dered how well it would predict the 5UI status of other tran-

scripts. Despite having been trained exclusively on SSCR
transcripts, the classifier performed remarkably well on
MSCR transcripts, achieving an AUC of 86% and AUPRC
of 95% (Fig. 2A, purple line; Fig. 2D; when compared with
50% and 77%, respectively, expected by chance). This result
suggests that RNA elements within early coding regions of
5UI− MSCR-transcripts are similar to those in 5UI− SSCR-
transcripts despite distinct functional constraints at the pro-
tein level.
We next wondered whether the class of 5UI− transcripts

that can be predicted on the basis of early coding region fea-
tures is restricted to transcripts encoding proteins trafficked
to the ER or mitochondria, or is instead a more general
class of transcripts. We therefore asked whether the classifier
could predict 5UI− status in transcripts that contain neither
an SSCR nor an MSCR (“S–/M–

” transcripts). Because unan-
notated SSCRs could confound this analysis, we first used
SignalP 3.0 to identify S–/M– transcripts most likely to con-
tain an unannotated SSCR (Bendtsen et al. 2004). These
“SignalP+” transcripts had a 5IMP score distribution compa-
rable to those of known SSCR and MSCR transcripts (Fig.
2E), and the classifier worked well to identify the 5UI− subset
of these transcripts (AUC 82% and AUPRC 95%, Fig. 2A,
light blue line). While 5UI+ SignalP+ transcripts had pre-
dominantly low 5IMP scores, 5UI− SignalP+ 5IMP scores
were strongly skewed toward high 5IMP scores (peak at ∼9;

FIGURE 1. Modeling the relationship between sequence features in the early coding region and the absence of 5′UTR introns (5UIs). (A) For all
human transcripts, information about 36 sequence features of the early coding region (first 99 nt) and 5UI presence was extracted. (B)
Transcripts containing a signal sequence coding region (SSCR) were used to train a random forest classifier that modeled the relationship between
5UI absence and 36 sequence features. (C)With this classifier, all human transcripts were assigned a score that quantifies the likelihood of 5UI absence
based on specific RNA sequence features in the early coding region. Transcripts with high scores are thus considered to have 5′-proximal intron mi-
nus-like coding regions (5IMs). (D) “5′UTR-intron-minus-predictor” (5IMP) score distributions for SSCR-containing transcripts shift to higher
scores with later-appearing first introns, suggesting that 5IM coding region features not only predict lack of a 5UI, but also lack of early coding region
introns. (E) Classifier performance was optimized by excluding 5UI− transcripts with introns appearing early in the coding region. Cross-validation
performance (area under the precision recall curve, AUPRC) was examined for a series of alternative 5IM classifiers using different first-intron-po-
sition criterion for excluding 5UI− transcripts from the training set (Materials and Methods).
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Fig. 2E). These results were consistent with the idea that
SignalP+ transcripts do contain many unannotated SSCRs.
Having considered SignalP+ transcripts as well as SSCR-

and MSCR-containing transcripts, we used the classifier to
calculate 5IMP scores for all remaining “S–/M–/SignalP–”
transcripts. Although the performance was weaker on this
gene set, it was still better than expected of a naïve predictor
(Fig. 2A, green line). 5UI+ S–/M–/SignalP– transcripts were
strongly skewed toward low 5IMP scores (Fig. 2F).
Surprisingly, however, a significant fraction of 5UI− S–/M–/
SignalP– transcripts had high 5IMP scores (∼18%). Thus,
our results suggest a broad class of transcripts with early cod-
ing regions carrying sequence signals that predict the absence
of a 5′ proximal intron, or in other words, a class of transcripts
with 5′ proximal-intron-minus-like coding regions. Hereafter
we refer to transcripts in this class as “5IM” transcripts.
We sought to identify what fraction of transcripts have

5IMP scores that exceed what would be expected in the
absence of 5UI−-predictive early coding region signals. To
establish this expectation, we used the above-described neg-
ative control set of equal-length coding sequences from out-
side of the early coding region. By quantifying the excess of
high-scoring sequences in the real distribution relative to

this control distribution, we estimate that 21% of all human
transcripts are 5IM transcripts (a 5IMP score of 7.41 corre-
sponds to a 5% false discovery rate; Fig. 2G). The set of
5IM transcripts defined by our classifier (Supplemental
Table S2) includes many that do not encode ER-targeted or
mitochondrial proteins. The distribution of various classes
of mRNAs among the 5IM transcripts was: 38% ER-targeted
(SSCR or SignalP+), 9% mitochondrial (MSCR), and 53%
other classes (S–/M–/SignalP–) (Fig. 2G). These results sug-
gest that RNA-level features prevalent in the early coding
regions of 5UI− SSCR and MSCR transcripts are also found
in other transcript types (Fig. 2F,G), and that 5IM transcripts
represent a broad class.

Functional characterization of 5IM transcripts

5IM transcripts are defined by mRNA sequence features.
Hence, we hypothesized that 5IM transcripts may be func-
tionally related through shared regulatory mechanisms me-
diated by the presence of these common features. To this
end, we collected large-scale data sets representing diverse
attributes covering six broad categories (see Supplemental
Table S3 for a complete list): (i) Curated functional

FIGURE 2. Predicting 5UI status accurately using only early coding sequences. (A) As judged by area under the receiver operating characteristic curve
(AUROC) and AUPRC, the 5IM classifier performed well for several different transcript classes. (B) The distribution of 5IMP scores reveals clear
separation of 5UI+ and 5UI− transcripts for SSCR-containing transcripts, where each SSCR-containing transcript was scored using a classifier that
did not use that transcript in training (Materials and Methods). (C) Coding sequence features that are predictive of 5′ proximal intron presence
are restricted to the early coding region. This was supported by identical 5IM classifier score distributions with respect to 5UI presence for negative
control sequences, each derived from a single randomly chosen “window” downstream from the third exon from one of the evaluated transcripts. (D)
MSCR transcripts exhibited a major difference in 5IMP scores based on their 5UI status even though no MSCR transcripts were used in training the
classifier. (E) Transcripts predicted to contain signal peptides (SignalP+) had a 5IMP score distribution similar to that of SSCR-containing transcripts.
(F) After eliminating SSCR, MSCR, and SignalP+ transcripts, the remaining S–/MSCR– SignalP– transcripts were still significantly enriched for high
5IM classifier scores among 5UI− transcripts. (G) The control set of randomly chosen sequences downstream from the third exon from each transcript
was used to calculate an empirical cumulative null distribution of 5IMP scores. Using this function, we determined the P-value corresponding to the
5IMP score for all transcripts. The red dashed line indicates the P-value corresponding to 5% false discovery rate. The inset depicts the distribution of
various classes of mRNAs among the input set and 5IM transcripts.
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annotations, e.g., Gene Ontology terms, annotation as a
“housekeeping” gene, genes subject to RNA editing; (ii)
RNA localization, e.g., to dendrites, to mitochondria; (iii)
protein and mRNA half-life, features that decrease mRNA
stability, e.g., AU-rich elements; (iv) sequence features asso-
ciated with regulated translation, e.g., codon optimality, sec-
ondary structure near the start codon; (v) known
interactions with RNA-binding proteins or complexes such
as Staufen-1, TDP-43, or the exon junction complex
(EJC); (vi) RNA modifications, i.e., N1-methyladenosine
(m1A).

We adjusted for multiple hypotheses testing at two levels.
First, we took a conservative approach (Bonferroni correc-
tion) to correct for the number of tested functional character-
istics. Second, some of the functional categories were
analyzed in more depth and multiple sub-hypotheses were
tested within the given category. In this in-depth analysis a
false discovery-based correction was adopted. Below, all re-
ported P-values remain significant (P-adjusted <0.05) after
multiple hypothesis test correction.

No associations between 5IM transcripts and features in
categories (i), (ii), and (iii) were found, other than the al-
ready-known enrichments for ER- and mitochondrial-

targeted mRNAs. However, analyses for the remaining cate-
gories yielded the significant results described below.

5IM transcripts have features suggesting lower
translation efficiency

Translation regulation is a major determinant of protein
levels (Vogel and Marcotte 2012). To investigate potential
connections between 5IM transcripts and translational regu-
lation, we examined features associated with translation.
Features found to be significant were:

I. “Secondary structures near the start codon” can affect ini-
tiation rate by modulating start codon recognition
(Parsyan et al. 2011). We observed a positive correlation
between 5IMP score and the free energy of folding
(−ΔG) of the 35 nt immediately preceding the start codon
(Fig. 3A; Spearman ρ = 0.39; P < 2.2 × 10−16). This sug-
gests that 5IM transcripts have a greater tendency for sec-
ondary structure near the start codon, presumably making
the start codon less accessible.

II. Similarly, “secondary structures near the 5′cap” can
modulate translation by hindering binding by the 43S-

FIGURE 3. 5IM transcripts have sequence features associated with lower translation efficiency. (A) The 5IM classifier score was positively correlated
with the propensity for mRNA structure preceding the start codon (−ΔG) (Spearman ρ = 0.39; P < 2.2 × 10−16). For each transcript, 35 nt imme-
diately upstream of the AUG were used to calculate −ΔG (Materials and Methods). (B) The 5IM classifier score was positively correlated with the
propensity for mRNA structure near the 5′cap (−ΔG) (Spearman ρ = 0.18; P = 7.9 × 10−130; Materials and Methods). (C) Transcripts that are trans-
lationally up-regulated in response to eIF4E overexpression (Larsson et al. 2007) (blue) were enriched for higher 5IMP scores. Light green shading
indicates 5IMP scores corresponding to 5% FDR. (D) Transcripts with non-AUG start codons (blue) exhibited significantly higher 5IMP scores than
transcripts with a canonical ATG start codon (yellow). (E) Higher 5IMP scores were associated with less optimal codons (as measured by the tRNA
adaptation index, tAI) for the first 33 codons. For all transcripts within each 5IMP score category (blue, high; orange, low), the mean tAI was cal-
culated at each codon position. Start codon was not shown. (F) Transcripts with lower translation efficiency were enriched for higher 5IMP scores.
Transcripts with translation efficiency one standard deviation below the mean (“LOW” translation, yellow) and one standard deviation higher than
the mean (“HIGH” translation, blue) were identified using ribosome profiling and RNA-seq data from human lymphoblastoid cell lines (Materials
and Methods).

Cenik et al.

274 RNA, Vol. 23, No. 3



preinitiation complex to the mRNA (Babendure et al.
2006). We observed a positive correlation between
5IMP score and the free energy of folding (−ΔG) of the
5′ most 35 nt (Fig. 3B; Spearman ρ = 0.18; P = 7.9 ×
10−130). This suggests that 5IM transcripts have a greater
tendency for secondary structure near the 5′cap, presum-
ably hindering binding by the 43S-preinitiation complex.

III. “Increased translation upon eIF4E overexpression.” The
heterotrimeric translation initiation complex eIF4F
(made up of eIF4A, eIF4E, and eIF4G) is responsible
for facilitating the translation of transcripts with strong
5′UTR secondary structures (Parsyan et al. 2011). The
eIF4E subunit binds to the 7mGpppG “methyl-G” cap,
and the ATP-dependent helicase eIF4A (scaffolded by
eIF4G) destabilizes 5′UTR secondary structure
(Marintchev et al. 2009). A previous study identified
transcripts that were more actively translated under con-
ditions that promote cap-dependent translation (overex-
pression of eIF4E) (Larsson et al. 2007). In agreement
with the observation that 5IM transcripts have more sec-
ondary structure upstream of the start codon and near
the 5′cap, transcripts with high 5IMP scores were more
likely to be translationally, but not transcriptionally,
up-regulated upon eIF4E overexpression (Fig. 3C;
Wilcoxon rank sum test P = 2.05 × 10−22, and P = 0.28,
respectively).

IV. “Non-AUG start codons.” Transcripts with non-AUG
start codons also have intrinsically low translation
initiation efficiencies (Hinnebusch and Lorsch 2012).
These mRNAs were greatly enriched among transcripts
with high 5IMP scores (Fisher’s exact test P = 0.0003;
odds ratio = 3.9) and have a median 5IMP score that is
3.57 higher than those with an AUG start (Fig. 3D).

V. “Codon optimality.” The efficiency of translation elonga-
tion is affected by codon optimality (Hershberg and
Petrov 2008). Although some aspects of this remain
controversial (Charneski and Hurst 2013; Shah et al.
2013; Zinshteyn and Gilbert 2013; Gerashchenko and
Gladyshev 2015), it is clear that decoding of codons by
tRNAs with different abundances can affect the transla-
tion rate under conditions of cellular stress (for review,
see Gingold and Pilpel 2011). We therefore examined
the tRNA adaptation index (tAI), which correlates with
copy numbers of tRNA genes matching a given codon
(dos Reis et al. 2004). Specifically, we calculated the me-
dian tAI of the first 99 coding nucleotides of each tran-
script, and found that 5IMP score was negatively
correlated with tAI (Supplemental Fig. S1A; Spearman
correlation ρ =−0.23; P < 2 × 10−16 median tAI and
5IMP score). This effect was restricted to the early coding
regions as the negative control set of randomly chosen se-
quences downstream from the third exon from each tran-
script did not exhibit a relationship between 5IMP score
and codon optimality (Supplemental Fig. S1B,C). Thus,
5IM transcripts show reduced codon optimality in early

coding regions, suggesting that 5IM transcripts have de-
creased translation elongation efficiency.

To more precisely determine where the codon optimality
phenomenon occurs within the entire early coding region,
we grouped transcripts by 5IMP score. For each group, we
calculated the mean tAI at codons 2–33 (i.e., nts 4–99).
Across this entire region, 5IM transcripts (5IMP >7.41; 5%
FDR) had significantly lower tAI values at every codon except
codons 24 and 32 (Fig. 3E; Wilcoxon Rank Sum test Holm-
adjusted P < 0.05 for all comparisons). To eliminate potential
confounding variables, including nucleotide composition,
we performed several additional control analyses (Materials
and Methods); none of these altered the basic conclusion
that 5IM transcripts have lower codon optimality than
non-5IM transcripts across the entire early coding region.

VI. “Ribosomes per mRNA.” Finally, we examined the rela-
tionship between 5IMP score and translation efficiency,
as measured by the steady-state number of ribosomes
per mRNA molecule. To this end, we used a large set
of ribosome profiling and RNA-seq experiments from
human lymphoblastoid cell lines (Cenik et al. 2015).
From this, we calculated the average number of ribo-
somes on each transcript and identified transcripts
with high or low ribosome occupancy (respectively de-
fined by occupancy at least one standard deviation above
or below the mean; see Materials and Methods). 5IM
transcripts were slightly but significantly depleted in the
high ribosome-occupancy category (Fig. 3F; Fisher’s ex-
act test P = 0.0006, odds ratio = 1.3). Moreover, 5IMP
scores exhibited a weak but significant negative correla-
tion with the number of ribosomes per mRNA molecule
(Spearman ρ =−0.11; P = 5.98 × 10−23).

Taken together, all of the above results reveal that 5IM
transcripts have sequence features associated with lower
translation efficiency, at the stages of both translation initia-
tion and elongation.

Non-ER trafficked 5IM transcripts are enriched
in ER-proximal ribosome occupancy

We next investigated the relationship between 5IMP score
and the localization of translation within cells. Exploring
the subcellular localization of translation at a transcrip-
tome-scale remains a significant challenge. Yet, a recent study
described proximity-specific ribosome profiling to identify
mRNAs occupied by ER-proximal ribosomes in both yeast
and human cells (Jan et al. 2014). In this method, ribosomes
are biotinylated based on their proximity to a marker protein
such as Sec61, which localizes to the ER membrane (Jan et al.
2014). For each transcript, the enrichment for biotinylated ri-
bosome occupancy yields a measure of ER-proximity of
translated mRNAs.
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We reanalyzed this data to explore the relationship be-
tween 5IMP scores and ER-proximal ribosome occupancy
in HEK-293 cells. As expected, transcripts that exhibit the
highest enrichment for ER-proximal ribosomes were SSCR-
containing transcripts and transcripts with other ER-target-
ing signals. Yet, we noticed a surprising positive correlation
between ER-proximal ribosome occupancy and 5IM tran-
scripts with no ER-targeting evidence (Fig. 4). This relation-
ship was true for both mitochondrial genes (Fig. 4; Spearman
ρ = 0.43; P < 2.2 × 10−16) and genes with no evidence for ei-
ther ER- or mitochondrial-targeting (Fig. 4; Spearman ρ =
−0.36; P < 2.2 × 10−16). These results suggest that 5IM tran-
scripts are more likely than non-5IM transcripts to engage
with ER-proximal ribosomes.

5IM transcripts are strongly enriched in noncanonical
EJC occupancy sites

Shared sequence features and functional traits among 5IM
transcripts cause one to wonder what common mechanisms
might link 5IM sequence features to 5IM traits. For example,
5IM transcripts might share regulation by one or more RNA-
binding proteins (RBPs). To investigate this idea further, we
tested for enrichment of 5IM transcripts among the experi-
mentally identified targets of 25 different RBPs (including
CLIP-seq and variants; see Materials and Methods). Only
one data set was substantially enriched for high 5IMP scores
among targets (Supplemental Fig. S2): a transcriptome-wide
map of binding sites of the exon junction complex (EJC) in
human cells, obtained via tandem-immunoprecipitation fol-
lowed by deep sequencing (RIPiT) (Singh et al. 2012, 2014).
The EJC is a multiprotein complex that is stably deposited

upstream of exon–exon junctions as a consequence of pre-
mRNA splicing (Le Hir et al. 2000). RIPiT data confirmed
that canonical EJC sites (cEJC sites; sites bound by EJC
core factors and appearing ∼24 nt upstream of exon–exon
junctions) occupy ∼80% of all possible exon–exon junction
sites and are not associated with any sequence motif.
Unexpectedly, many EJC-associated footprints outside of
the canonical −24 regions were observed (Fig. 5A; Singh
et al. 2012). These “noncanonical” EJC occupancy sites
(ncEJC sites) were associated with multiple sequence motifs,
three of which were similar to known recognition motifs for
SR proteins that copurified with the EJC core subunits (Singh
et al. 2012). Interestingly, another motif (Fig. 5B; top) that
was specifically found in first exons is not known to be bound
by any known RNA-binding protein (Singh et al. 2012). This
motif was CG-rich, a sequence feature that also defines 5IM
transcripts. This similarity presages the possibility of enrich-
ment of first exon ncEJC sites among 5IM transcripts.
Positional analysis of called EJC peaks revealed that while

only 9% of cEJCs reside in first exons, 19% of all ncEJCs
are found there. When we investigated the relationship be-
tween 5IMP scores and ncEJCs in early coding regions, we
found a striking correspondence—the median 5IMP score
was highest for transcripts with the greatest number of
ncEJCs (Fig. 5C; Wilcoxon rank sum test; P < 0.0001).
When we repeated this analysis by conditioning on 5UI sta-
tus, we similarly found that ncEJCs were enriched among
transcripts with high 5IMP scores regardless of 5UI status
(Fisher’s exact test, P < 3.16 × 10−14, odds ratio >2.3; Fig.
5D). These results suggest that the striking enrichment of
ncEJC peaks in early coding regions was generally applicable
to all transcripts with high 5IMP scores regardless of 5UI
presence.

Transcripts harboring N1-methyladenosine (m1A)
have high 5IMP scores

It is increasingly clear that ribonucleotide base modifications
in mRNAs are highly prevalent and can be a mechanism for
post-transcriptional regulation (Frye et al. 2016). One RNA
modification present toward the 5′ ends of mRNA transcripts
is N1-methyladenosine (m1A) (Dominissini et al. 2016; Li
et al. 2016), which was initially identified in total RNA and
rRNAs (Dunn 1961; Hall 1963; Klootwijk and Planta
1973). Intriguingly, the position of m1A modifications has
been shown to be more correlated with the position of the
first intron than with transcriptional or translational start
sites (Fig. 2G from Dominissini et al. 2016). When the dis-
tance of m1As to each splice site in a given mRNA was calcu-
lated, the first splice site was found to be the nearest one for
85% of m1As (Dominissini et al. 2016). When 5′UTR introns
were present, m1A was found to be near the first splice site
regardless of the position of the start codon (Dominissini
et al. 2016). Given that 5IM transcripts are also characterized
by the position of the first intron, we investigated the

FIGURE 4. 5IM transcripts are more likely to exhibit ER-proximal ri-
bosome occupancy, even where there is no evidence of ER-targeting. A
moving average of ER-proximal ribosome occupancy was calculated by
grouping genes by 5IMP score (see Materials and Methods). We plotted
the moving average of 5IMP scores for transcripts with no evidence of
ER- or mitochondrial targeting (green) or for transcripts predicted to
be mitochondrial (purple). We plotted a random subsample of tran-
scripts on top of the moving average (circles).
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relationship between 5IMP score andm1A RNAmodification
marks.
We analyzed the union of previously identified m1A mod-

ifications (Dominissini et al. 2016) across all cell types and
conditions. Although there is some evidence that these marks
depend on cell type and growth condition, it is difficult to be
confident of the cell type and condition-dependence of any
particular mark given experimental variation (see Materials
and Methods). Nevertheless, we found that mRNAs with
m1A modification early in the coding region (first 99 nt)
had substantially higher 5IMP scores than mRNAs lacking
these marks (Fig. 6A; Wilcoxon rank sum test P = 3.4 ×
10−265), and were greatly enriched among 5IM transcripts
(Fig. 6A; Fisher’s exact test P = 1.6 × 10−177; odds ratio =
3.8). In other words, the sequence features within the early
coding region that define 5IM transcripts also associate
with m1A modification in the early coding region.
We next wondered whether 5IMP score was related tom1A

modification generally, or only associated with m1A modifi-
cation in the early coding region. Indeed, many of the previ-
ously identified m1A peaks were within the 5′UTRs of
mRNAs (Li et al. 2016). Interestingly, 5IMP scores were
only associated with m1Amodification in the early coding re-
gion and not with m1A modification in the 5′UTR (Fig. 6B).
This offers the intriguing possibility that the sequence fea-
tures that define 5IMP transcripts are colocalized with m1A
modification.

DISCUSSION

Coordinating the expression of functionally related tran-
scripts can be achieved by post-transcriptional processes
such as splicing, RNA export, RNA localization, or transla-
tion (Moore and Proudfoot 2009). Sets of mRNAs subject
to a common regulatory transcriptional process can exhibit
common sequence features that define them to be a class.
For example, transcripts subject to regulation by particular
miRNAs tend to share certain sequences in their 3′UTRs

FIGURE 5. 5IM transcripts harbor noncanonical exon junction complex (EJC) binding sites. (A) Observed EJC binding sites (Singh et al. 2012) are
shown for an example 5IM transcript (LAMC1). Canonical EJC binding sites (purple) are∼24 nt upstream of an exon–intron boundary. The remain-
ing binding sites are considered to be noncanonical (green). (B) A CG-rich sequence motif previously identified to be enriched among ncEJC binding
sites in first exons (Singh et al. 2012) is shown. (C) 5IMP score for transcripts with zero, one, two, or more noncanonical EJC binding sites in the first
99 coding nucleotides reveals that transcripts with high 5IMP scores frequently harbor noncanonical EJC binding sites. (D) Transcripts with high
5IMP scores are enriched for noncanonical EJCs regardless of 5UI presence or absence.

FIGURE 6. 5IM transcripts are enriched for mRNAs with early coding
region m1A modifications. (A) Transcripts with m1A modifications
(blue) in the first 99 coding nucleotides exhibit significant enrichment
for 5IM transcripts and have higher 5IMP scores than transcripts with-
out m1A modifications in the first 99 coding nucleotides (yellow). (B)
Transcripts with m1A modifications (blue) in the 5′UTR do not display
a similar enrichment.
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that are complementary to these regulatory miRNAs (Ameres
and Zamore 2013). Similarly, transcripts that share a 5′ ter-
minal oligopyrimidine tract are coordinately regulated by
mTOR and ribosomal protein S6 kinase (Meyuhas 2000).
Here we quantitatively define “5IM” transcripts as a class
that shares common sequence elements and functional prop-
erties. We estimate the 5IM class to comprise 21% of all
human transcripts.

Whereas 35% of human transcripts have one or more
5′UTR introns, the majority of 5IM transcripts have neither
a 5′UTR intron nor an intron in the first 90 nt of the ORF.
Other shared features of 5IM transcripts include sequence
features associated with low translation initiation rates.
These are (i) a tendency for RNA secondary structure in
the region immediately preceding the start codon (Fig. 3A),
and near the 5′cap (Fig. 3B); (ii) translational up-regulation
upon overexpression of eIF4E (Fig. 3C); and (iii) more fre-
quent use of non-AUG start codons (Fig. 3D). Also consistent
with low intrinsic translation efficiencies, 5IM transcripts ad-
ditionally tend to depend on less abundant tRNAs to decode
the beginning of the open reading frame (Fig. 3E). Taken to-
gether, our analyses support a model in which 5IM transcripts
have properties that would normally lead to diminished trans-
lation efficiency. Future work will be needed to experimental-
ly validate this computationally supported model.

We had previously reported that transcripts encoding pro-
teins with ER- and mitochondrial-targeting signal sequences
(SSCRs andMSCRs, respectively) are overrepresented among
the 65% of transcripts lacking 5′UTR introns (Cenik et al.
2011). Transcripts in this set are enriched for the sequence
features detected by our 5IM classifier. By examining these
enriched sequence features, we showed that the 5IM class ex-
tends beyond mRNAs encoding membrane proteins. Jan et al.
(2014) recently developed a transcriptome-scale method to
identify mRNAs occupied by ER-proximal ribosomes in
both yeast and human cells. As expected, transcripts known
to encode ER-trafficked proteins were highly enriched for
ER-proximal ribosome occupancy. However, their data also
showedmany transcripts encoding non-ER trafficked proteins
to also be engaged with ER-proximal ribosomes (Reid and
Nicchitta 2015b). Similarly, several other studies have suggest-
ed a critical role of ER-proximal ribosomes in translating sev-
eral cytoplasmic proteins (Reid andNicchitta 2015a). Here, we
found that 5IM transcripts—including those that are not ER-
trafficked or mitochondrial—were significantly more likely to
exhibit binding to ER-proximal ribosomes (Fig. 4).

In addition to ribosomes directly resident on the ER, an
interesting possibility is the presence of a pool of peri-ER
ribosomes (Jan et al. 2015; Reid and Nicchitta 2015a).
Association of 5IM transcripts with such a peri-ER ribosome
pool could potentially explain the observed correlation of
5IM status with binding to ER-proximal ribosomes. The
ER is physically proximal to mitochondria (Rowland and
Voeltz 2012), so peri-ER ribosomes may include those trans-
lating mRNAs on mitochondria (i.e., mRNAs with MSCRs)

(Sylvestre et al. 2003). However, even when transcripts corre-
sponding to ER-trafficked and mitochondrial proteins were
excluded from consideration, ER-proximal ribosome enrich-
ment and 5IMP scores were highly correlated (Fig. 4). Thus
another shared feature of 5IM transcripts is their translation
on or near the ER regardless of the ultimate destination of the
encoded protein.
In an attempt to identify a common factor binding 5IM

transcripts, we asked whether 5IM transcripts were enriched
among the experimentally identified targets of 25 RBPs.
Only one RBP emerged—the exon junction complex (EJC).
Specifically, we observed a dramatic enrichment of nonca-
nonical EJC (ncEJC) binding sites within the early coding re-
gion of 5IM transcripts. Further, the CG-rich motif identified
for ncEJCs in first exons is strikingly similar to the CG-rich
motif enriched in the first exons of 5IM transcripts (Fig.
5B). The interaction between the cap-binding proteins and
splicing machinery (Izaurralde et al. 1994; Pabis et al. 2013)
may also be pertinent to first exons and ncEJC deposition.
Previous work implicated RanBP2, a protein associated
with the cytoplasmic face of the nuclear pore, as a binding
factor for some SSCRs (Mahadevan et al. 2013). This finding
suggests that nuclear pore proteins may influence EJC occu-
pancy on these transcripts.
EJC deposition during the process of pre-mRNA splicing

enables the nuclear history of an mRNA to influence post-
transcriptional processes including mRNA localization,
translation efficiency, and nonsense-mediated decay (Chang
et al. 2007; Kervestin and Jacobson 2012; Choe et al. 2014).
While canonical EJC binding occurs at a fixed distance up-
stream of exon–exon junctions and involves direct contact
between the sugar–phosphate backbone and the EJC core an-
choring protein eIF4AIII, ncEJC binding sites likely reflect
stable engagement between the EJC core and other mRNP
proteins (e.g., SR proteins) recognizing nearby sequence mo-
tifs. Although some RBPs were identified for ncEJC motifs
found in internal exons (Singh et al. 2012, 2014), to date
no candidate RBP has been identified for the CG-rich
ncEJC motif found in the first exon. If this motif does result
from an RBP interaction, it is likely to be one or more of the
∼70 proteins that stably and specifically bind to the EJC core
(Singh et al. 2012).
Finally, we observed a dramatic enrichment for m1A mod-

ifications among 5IM transcripts, with specific enrichment
for m1A modifications in the early coding region. Given
this striking enrichment it is perhaps not surprising that
m1A containingmRNAs were also shown to have more struc-
tured 5′UTRs that are CG-rich compared to m1A lacking
mRNAs (Dominissini et al. 2016). Similar to 5IM transcripts,
m1A-containing mRNAs were found to decorate start codons
that appear in a highly structured context. While ALKBH3
has been identified as a protein that can demethylate m1A,
it is currently unknown whether there are any proteins that
can specifically act as “readers” of m1A. Recent studies have
begun to identify such readers for other mRNAmodifications
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such as YTHDF1, YTHDF2, WTAP, and HNRNPA2B1 (Liu
et al. 2014; Ping et al. 2014; Wang et al. 2014, 2015; Alarcón
et al. 2015). Our study highlights a possible link between
noncanonical EJC binding and m1A. Hence, our results yield
the intriguing hypothesis that one or more of the ∼70 pro-
teins that stably and specifically bind to the EJC core can
function as an m1A reader. Future work involving directed
experiments would be needed to test this hypothesis.
Given that 5IM transcripts are enriched for ER-targeted

and mitochondrial proteins, it is plausible that the observed
functional characteristics of 5IM transcripts are driven solely
by SSCR and MSCR-containing transcripts. Hence, we re-
peated all analyses for the subclasses of 5IM transcripts
(MSCR-containing, SSCR-containing, S–/M–/SignalP+, or
S–/M–/SignalP–). We found the observed associations had
the same direction of effect, even after eliminating SSCR-
and MSCR-containing transcripts, despite the fact that all
training of the 5IM classifier was performed using only
SSCR transcripts (Supplemental Figs. S3–S9). We also found
that 5IMP score was equally or more strongly associated with
each of the functional characteristics compared to the 5UI
status. In conclusion, the molecular associations we report
apply to 5IM transcripts as a whole, and are not driven solely
by the subset of 5IM transcripts encoding ER- or mitochon-
dria-targeting signal peptides, and seem to indicate shared
features beyond simple lack of a 5′UTR intron.
An intriguing possibility is that 5IM transcript features

associated with lower intrinsic translation efficiency may
together enable greater “tunability” of 5IM transcripts at
the translation stage. Regulated enhancement or repression
of translation, for 5IM transcripts, could allow for rapid
changes in protein levels. There are analogies to this scenario
in transcriptional regulation, wherein highly regulated genes
often have promoters with low baseline levels that can be rap-
idly modulated through the action of regulatory transcription
factors. As more ribosome profiling studies are published
examining translational responses transcriptome-wide under
multiple perturbations, conditions under which 5IM tran-
scripts are translationally regulated may be revealed. Directed
experiments will be needed to test translational status of
5IM transcripts hypothesized via this computational analysis.
Taken together, our analyses reveal the existence of a dis-

tinct “5IM” class comprising 21% of human transcripts.
This class is defined by depletion of 5′ proximal introns, pres-
ence of specific RNA sequence features associated with low
translation efficiency, noncanonical binding by the EJC and
an enrichment for N1-methyladenosine modification.

MATERIALS AND METHODS

Data sets and annotations

Human transcript sequences were downloaded from the NCBI
Human Reference Gene Collection (RefSeq) via the UCSC Table
Browser (hg19) on June 25, 2010 (Kent et al. 2002; Pruitt et al.

2005). Transcripts with fewer than three coding exons, and tran-
scripts where the first 99 coding nucleotides straddle more than
two exons were removed from further consideration. The criteria
for exclusion of genes with fewer than three coding exons were to
ensure that the analysis of downstream regions was possible for all
genes that were used in our analysis of early coding regions.
Specifically, the downstream regions were selected randomly from
downstream from the third exons. Hence, genes with fewer exons
would not be able to contribute a downstream region, potentially
creating a skew in representation. In total there were ∼3000 genes
that were removed from consideration due to this filter. Therefore,
our classifier is limited in its ability to assess transcripts from these
genes. However, the performance measures reported in our manu-
script are robust to exclusion of these genes, in the sense that the
same class of transcripts was used in both training and test data sets.
Transcripts were clustered based on sequence similarity in the first

99 coding nucleotides. Specifically, each transcript pair was aligned
using BLAST with the DUST filter disabled (Altschul et al. 1990).
Transcript pairs with BLAST E-values <1 × 10−25 were grouped
into transcript clusters. In total, there were 15,576 transcript clusters
that were considered further. These clusters were subsequently as-
signed to one of four categories: MSCR-containing, SSCR-contain-
ing, S–/MSCR– SignalP+, or S–/MSCR– SignalP– as follows:
MSCR-containing transcripts were annotated using MitoCarta

and other sources as described in Cenik et al. (2011). SSCR-contain-
ing transcripts were the set of transcripts annotated to contain signal
peptides in the Ensembl Gene v.58 annotations, which were down-
loaded through Biomart on June 25, 2010. For transcripts without
an annotatedMSCR or SSCR, the first 70 amino acids were analyzed
using SignalP 3.0 (Bendtsen et al. 2004). Using the eukaryotic pre-
diction mode, transcripts were assigned to the S–/MSCR– SignalP+

category if either the hidden Markov model or the Artificial
Neural Network classified the sequence as signal peptide containing.
All remaining transcript clusters were assigned to the S–/MSCR–

SignalP– category. The number of transcript clusters in each of
the four categories was: 3743 SSCR, 737 MSCR, 696 S–/MSCR–

SignalP+, 10400 S–/MSCR– SignalP–.
For each transcript cluster, we also constructed matched control

sequences. Control sequences were derived from a single randomly
chosen in-frame “window” downstream from the third exon from
the evaluated transcripts. If an evaluated transcript had fewer than
99 nt downstream from the third exon, no control sequence was ex-
tracted. 5UI labels and transcript clustering for the control sequenc-
es were inherited from the evaluated transcript. The rationale for
this decision is that our analysis depends on the position of the first
intron; hence genes with fewer than two exons need to be excluded,
as these will not have introns. We further required the matched con-
trol sequences to fall downstream of the early coding region. In the
vast majority of cases the third exon fell outside the first 99 nt of the
coding region, making this a convenient criterion by which to
choose control regions.

Sequence features and motif discovery

Thirty-six sequence features were extracted from each transcript
(Supplemental Table S1). The sequence features included the ratio
of arginines to lysines, the ratio of leucines to isoleucines, adenine
content, the length of the longest stretch without adenines, and pref-
erence against codons that contain adenines or thymines. These fea-
tures were previously found to be enriched in SSCR-containing and

Defining a new mRNA class with distinct features

www.rnajournal.org 279

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.059105.116/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.059105.116/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.059105.116/-/DC1


certain 5UI− transcripts (Palazzo et al. 2007; Cenik et al. 2011). In
addition, we extracted ratios between several other amino acid pairs
based on having biochemical/evolutionary similarity, i.e., having
positive scores, according to the BLOSUM62 matrix (Henikoff
and Henikoff 1992). To avoid extreme ratios given the relatively
short sequence length, amino acid ratios were regularized by distrib-
uting additional pseudo-counts to raw amino acid counts in propor-
tion to proteome-wide amino-acid prevalence.

In addition, we used three published motif-finding algorithms
(AlignACE, DEME, and MoAN [Roth et al. 1998; Redhead and
Bailey 2007; Valen et al. 2009]) to discover RNA sequencemotifs en-
riched among 5UI− transcripts. AlignACE (Roth et al. 1998), which
implements a Gibbs sampling approach for motif discovery, was
modified to restrict motif searches to only the forward strand of
the input sequences to enable RNA motif discovery. DEME and
MoAN adopt discriminative approaches to motif finding by search-
ing for motifs that are differentially enriched between two sets of se-
quences (Redhead and Bailey 2007; Valen et al. 2009). MoAN has
the additional advantage of discovering variable length motifs, and
can identify co-occurring motifs with the highest discriminative
power.

In total, six motifs were discovered using the three motif finding
algorithms (Supplemental Table S1). Position-specific scoring ma-
trices for all motifs were used to score the first 99− l positions in
each sequence, where l is the length of the motif. We assessed the
significance of each motif instance by calculating the P-value of en-
richment (Fisher’s exact test) among 5UI− transcripts considering
all transcripts with a motif instance achieving a PSSM score greater
than or equal to the instance under consideration. The significance
score and position of the two best motif instances were used as fea-
tures for the classifier (Supplemental Table S1).

5IM classifier training and performance evaluation

We modified an implementation of the random forest classifier
(Breiman 2001) tomodel the relationship between sequence features
in the early coding region and the absence of 5′UTR introns (5UIs).
This classifier discriminates transcripts with 5′proximal-intron-mi-
nus-like-coding regions and hence is named the “5IM” classifier.
The training set for the classifier was composed of SSCR transcripts
exclusively. There were two reasons to restrict model construction to
SSCR transcripts: (i) we expected the presence of specific RNA ele-
ments as a function of 5UI presence based on our previous work
(Cenik et al. 2011); and (ii) we wanted to restrict model building to
sequences that have similar functional constraints at the protein level.

We observed that 5UI− transcripts with introns proximal to the 5′

end of the coding region have sequence characteristics similar to
5UI+ transcripts (Fig. 1D). To systematically characterize this rela-
tionship, we built different classifiers using training sets that exclud-
ed 5UI− transcripts with a coding region intron positioned at
increasing distances from the start codon. We evaluated the perfor-
mance of each classifier using 10-fold cross validation.

Given that a large number of motif discovery iterations were
needed, we sought to reduce the computational burden. We isolated
a subset of the training examples to be used exclusively for motif
finding. Motif discovery was performed once using this set of se-
quences, and the samemotifs were used in each fold of the cross val-
idation for all the classifiers. Imbalances between the sizes of positive
and negative training examples can lead to detrimental classification

performance (Wang and Yao 2012). Hence, we balanced the train-
ing set size of 5UI− and 5UI+ transcripts by randomly sampling from
the larger class. We constructed 10 subclassifiers to reduce sampling
bias, and for each test example, the prediction score from each sub-
classifier was summed to produce a combined score between 0 and
10. For the rest of the analyses, we used the classifier trained using
5UI− transcripts where the first coding intron falls outside the first
90 coding nucleotides (Fig. 1E).

We evaluated classifier performance using a 10-fold cross valida-
tion strategy for SSCR-containing transcripts (i.e., the training set).
In each fold of the cross-validation, the model was trained without
any information from the held-out examples, including motif dis-
covery. For all the other transcripts and the control sets (see above),
the 5IMP scores were calculated using the classifier trained using
SSCR transcripts as described above. 5IMP score distribution for
the control set was used to calculate the empirical cumulative null
distribution. Using this function, we determined the P-value corre-
sponding to the 5IMP score for all transcripts. We corrected for
multiple hypotheses testing using the qvalue R package (Storey
2003). Based on this analysis, we estimate that a 5IMP score of
7.41 corresponds to a 5% false discovery rate and suggest that
21% of all human transcripts can be considered as 5IM transcripts.

While the theoretical range of 5IMP scores is 0–10, the highest
observed 5IMP is 9.855. We note that for all figures that depict
5IMP score distributions, we displayed the entire theoretical range
of 5IMP scores (0–10).

Functional characterization of 5IM transcripts

We collected genome-scale data sets from publicly available databas-
es and from supplementary information provided in selected articles.
For all analyzed data sets, we first converted all gene/transcript iden-
tifiers (IDs) into RefSeq transcript IDs using the Synergizer web-
server (Berriz and Roth 2008). If a data set was generated using a
nonhuman species (e.g., targets identified by TDP-43 RNA immu-
noprecipitation in rat neuronal cells), we used HomoloGene release
64 (downloaded on September 28, 2009) to identify the correspond-
ing ortholog in humans. If at least onemember of a transcript cluster
was associated with a functional phenotype, we assigned the cluster
to the positive set with respect to the functional phenotype. If
more than one member of a cluster had the functional phenotype,
we only retained one copy of the cluster unless they differed in a
quantitative measurement. For example, consider two hypothetical
transcripts: NM_1 and NM_2 that were clustered together and
have a 5IMP score of 8.5. If NM_1had anmRNAhalf-life of 2 hwhile
NM_2’s half-life was 1 h, then we split the cluster while preserving
the 5IMP score for both NM_1 and NM_2.

Once the transcripts were partitioned based on the functional
phenotype, we ran two statistical tests: (i) Fisher’s exact test for
enrichment of 5IM transcripts within the functional category;
(ii) Wilcoxon rank sum test to compare 5IMP scores between tran-
scripts partitioned by the functional phenotype. Additionally, for
data sets where a quantitative measurement was available (e.g.
mRNA half-life), we calculated the Spearman rank correlation be-
tween 5IMP scores and the quantitative variable. In these analyses,
we assumed that the test space was the entire set of RefSeq tran-
scripts. For all phenotypes where we observed a preliminary statisti-
cally significant result, we followed up with more detailed analyses
described below.
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Analysis of features associated with translation

For each transcript, we predicted the propensity for secondary struc-
ture preceding the translation start site and following the 5′cap.
Specifically, we extracted 35 nt preceding the translation start site
or the first 35 nt of the 5′UTR. If a 5′UTR was shorter than 35 nt,
the transcript was removed from the analysis. Hybrid-ss-min utility
(UNAFold package version 3.8) with default parameters was used to
calculate the minimum folding energy (Markham and Zuker 2008).
Codon optimality was measured using the tRNA Adaptation

Index (tAI), which is based on the genomic copy number of each
tRNA (dos Reis et al. 2004). tAI for all human codons were down-
loaded from Tuller et al. (2010); Supplemental Table S1. tAI profiles
for the first 30 amino acids were calculated for all transcripts. Codon
optimality profiles were summarized for the first 30 amino acids for
each transcript or by averaging tAI at each codon.
We carried out two control experiments to test whether the

association between 5IMP score and tAI could be explained by con-
founding variables. First, we permuted the nucleotides in the first 90
nt and observed no relationship between 5IMP score and mean tAI
when these permuted sequences were used (Supplemental Fig. S1).
Second, we selected random in-frame 99 nt from the third exon to
the end of the coding region and found no significant differences in
tAI (Supplemental Fig. S1). These results suggest that the relation-
ship between tAI and 5IMP score is confined to the first 30 amino
acids and is not explained by simple differences in nucleotide
composition.
Ribosome profiling and RNA expression data for human lympho-

blastoid cells (LCLs) were downloaded from NCBI GEO database
accession number GSE65912. Translation efficiency was calculated
as previously described (Cenik et al. 2015). Median translation effi-
ciency across the different cell types was used for each transcript.

Analysis of proximity-specific ribosome profiling data

We downloaded proximity-specific ribosome profiling data for
HEK 293 cells from Jan et al. (2014), Table S6. We converted
UCSC gene identifiers to HGNC symbols using g:Profiler
(Reimand et al. 2011). We retained all genes with an RPKM >5 in
either input or pulldown and required that at least 30 reads were
mapped in either of the two libraries. We used ER-targeting evi-
dence categories “secretome,” “phobius,” “TMHMM,” “SignalP,”
“signalSequence,” “signalAnchor” from Jan et al. (2014) to annotate
genes as having ER-targeting evidence. The genes that did not have
any ER-targeting evidence or “mitoCarta” /“mito.GO” annotations
were deemed as the set of genes with no ER-targeting or mitochon-
drial evidence. We calculated the log2 of the ratio between ER-prox-
imal ribosome pulldown RPKM and control RPKM as the measure
of enrichment for ER-proximal ribosome occupancy (as described
in Jan et al. 2014). A moving average of this ratio was calculated
for genes grouped by their 5IMP score. For this calculation, we
used bins of 30 mitochondrial genes or 100 genes with no evidence
of ER- or mitochondrial targeting.

Analysis of genome-wide binding sites of exon
junction complex

Dr. Gene Yeo and Gabriel Pratt (pers. comm.) generously shared
uniformly processed peak calls for experiments identifying human

RNA binding protein targets. We first filtered all data sets
(Supplemental Table S4) to retain experiments that contain at least
100 significant peaks. We then converted the target gene names
from Ensembl gene identifiers to RefSeq transcripts as before.
These data sets include various CLIP-seq data sets and their variants
such as iCLIP. A total of 24 factors were analyzed. These factors
were: hnRNPA1, hnRNPF, hnRNPM, hnRNPU, Ago2, hnRNPU,
HuR, IGF2BP1, IGF2BP2, IGF2BP3, FMR1, FXR1, FXR2,
eIF4AIII, PTB, IGF2BP1, Ago3, Ago4, MOV10, Fip1, CF Im68,
CF Im59, CF Im25, and hnRNPA2B1.We extracted the 5IMP scores
for all targets of each RBP. When a particular RBP was assayed in a
given cell type across multiple experiments and replicates, we
merged all targets such that we considered any gene that was iden-
tified in any experiment for the given RBP as a potential target. We
calculated the Wilcoxon rank sum test statistic comparing the 5IMP
score distribution of the targets of each RBP to all other transcripts
with 5IMP scores. None of the tested RBP target sets had a
Bonferroni adjusted P-value <0.05 and a median difference in
5IMP score >1 when compared to nontarget transcripts.
In addition, we used RNA:protein immunoprecipitation in tan-

dem (RIPiT) data to determine EJC binding sites (Singh et al.
2012, 2014). We analyzed the common peaks from the Y14-Magoh
immunoprecipitation configuration (Singh et al. 2012; Kucukural
et al. 2013). Canonical EJC binding sites were defined as peaks
whose weighted centers were 15–32 nucleotides upstream of an
exon–intron boundary. All remaining peaks were deemed as “non-
canonical” EJC binding sites. We extracted all noncanonical peaks
that overlapped the first 99 nt of the coding region and restricted
our analysis to transcripts that had an RPKM greater than one in
the matched RNA-seq data.

Analysis of m1A modified transcripts

We downloaded the list of RNAs observed to contain m1A from
Li et al. (2016) and Dominissini et al. (2016). RefSeq transcript iden-
tifiers were converted to HGNC symbols using g:Profiler (Reimand
et al. 2011). The overlap between the two data sets was determined
using HGNC symbols. m1Amodifications that overlap the first 99 nt
of the coding region were determined using BEDTools (Quinlan and
Hall 2010).
Li et al. (2016) identified 600 transcripts with m1A modification

in normal HEK293 cells. Of these, 368 transcripts were not found to
contain the m1A modification in HEK293 cells by Dominissini et al.
(2016). Yet, 81% of these were found to be m1A modified in other
cell types. Li et al. (2016) also analyzed m1A upon H2O2 treatment
and serum starvation in HEK293 cells and identified many
m1A modifications that are only found under these stress condi-
tions. However, 20% of 371 transcripts harboring stress-induced
m1A modifications were found in normal HEK293 cells by
Dominissini et al. (2016). Taken together, these analyses suggest
that transcriptome-wide m1A maps remain incomplete. Hence, we
analyzed the 5IMP scores of all mRNAs with m1A across cell types
and conditions. We reported results using the Dominissini et al.
(2016) data set but the same conclusions were supported by m1A
modifications from Li et al. (2016).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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