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A high-resolution structure of the eukaryotic ribosome has been determined

and has led to increased interest in studying protein biosynthesis and regu-

lation of biosynthesis in cells. The functional complexes of the ribosome

crystals obtained from bacteria and yeast have permitted researchers to

identify the precise residue positions in different states of ribosome function.

This knowledge, together with electron microscopy studies, enhances

our understanding of how basic ribosome processes, including mRNA

decoding, peptide bond formation, mRNA, and tRNA translocation and

cotranslational transport of the nascent peptide, are regulated. In this

review, we discuss the crystal structure of the entire 80S ribosome from

yeast, which reveals its eukaryotic-specific features, and application of

X-ray crystallography of the 80S ribosome for investigation of the binding

mode for distinct compounds known to inhibit or modulate the protein-

translation function of the ribosome. We also refer to a challenging

aspect of the structural study of ribosomes, from higher eukaryotes,

where the structures of major distinctive features of higher eukaryote

ribosome—the high-eukaryote–specific long ribosomal RNA segments

(about 1MDa)—remain unresolved. Presently, the structures of the major

part of these high-eukaryotic expansion ribosomal RNA segments still

remain unresolved.

This article is part of the themed issue ‘Perspectives on the ribosome’.
1. Introduction
The ribosome is a ribonucleoprotein assembly that is found in all living cells

and translates the genetic code into proteins. Recent progress in ribosomal

structural biology has included X-ray structure determinations and cryo-

electron microscopy (EM) studies, which are based on previous knowledge of

individual ribosomal components, such as ribosomal RNA, ribosomal proteins,

ribosomal subunits and ribosome complexes in solution [1,2]. The shape of the

bacterial ribosome and its non-symmetric ribosomal subunits was first reconsti-

tuted from negatively stained EM images in the laboratories of Vasiliev & Lake

[3,4]. Ribosomes from bacteria and archaea consist of a large (50S) and a small

(30S) subunit, which together constitute an approximately 2.5 megadalton

(MDa) 70S ribosome. The eukaryotic counterparts are the 60S and 40S subunits

and the 80S ribosome, which range in size from 3.5 MDa in lower eukaryotes to

4.0 MDa in higher eukaryotes. Many key components of the ribosome are con-

served across the three kingdoms of life (Bacteria, Archaea and Eukarya), which

highlights their importance in the fundamental process of protein biosynthesis

[5]. Protein synthesis has been intensely studied during the last five decades,

but for most of that time, the detailed three-dimensional structure of the ribo-

some remained unknown. Cryo-electron microscopy and single-particle

analysis produced the first direct visualizations of the bacterial ribosome in

different functional states [6–9]. However, it was not until the X-ray crystallo-

graphic structures of the entire 70S ribosome (as well as structures of the

individual 30S and 50S subunits) began to emerge that accurate atomic

models became available [10–16]. Efforts in ribosome crystallography started

early with the crystallization of 50S ribosomal subunits isolated from

Bacillus stearothermophilus and Haloarcula marismortui [17–19] and the 30S
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subunit as well as the full 70S ribosome isolated from

Thermus thermophilus [20,21]. The first crystal structures of

the 30S subunit from T. thermophilus and the 50S subunit

from H. marismortui have been determined and were used

to interpret X-ray electron density maps of the full ribosome

from T. thermophilus [14–16]. Later, a 3.5 Å resolution crystal

structure of the 70S ribosome from Escherichia coli was

reported [22]. X-ray crystallography of individual ribosomal

subunits and full ribosomes have been used for modelling

and the study of ribosome function through complexes

with functional ligands, ligand analogues and antibiotics,

which has been summarized in several review articles [23,24].

Over the last decade, remarkable advances have been

made in full-ribosome crystallography, to the extent that it

is now possible to obtain a medium- or high-resolution struc-

ture of not only vacant ribosomes but also ribosomal

complexes with key functional ligands, such as messenger

RNA (mRNA), transfer RNAs (tRNA) and various protein

translocation factors [16,25–31]. These structural studies can

help to explain the mechanism of tRNA binding in the pres-

ence of elongation factor Tu [32], the processes of mRNA

decoding [30,33–35] and the mechanism of GTP hydrolysis

[36] as well as translocation [31,37], termination [38–45]

and ribosomal recycling [46,47]. Crystallography of full

ribosome complexes can also be used for cotranslational modi-

fication studies [48] and studies of translational regulation

[49–51]. Until 2010, only studies concerning the X-ray crystal

structures of the bacterial ribosome were available, because

efforts to elucidate the structure of the eukaryotic ribosome

remained unsuccessful.

Crystal structures of the eukaryotic ribosome from

Saccharomyces cerevisiae were the first to be successfully

determined at 4.2 Å and later at 3.0 Å resolution, and signifi-

cantly increased our understanding of protein synthesis and

regulation of protein synthesis in cells [52,53].

Later, the 40S and 60S ribosomal subunits from a eukaryotic

organism (Tetrahymena thermophila) were successfully crystal-

lized with their protein factors, and the complex structures

were determined at 3.8 and 3.6 Å resolution, respectively [54,55].

Crystal structures of ribosome complexes also help

researchers interpret lower-resolution data from cryo-EM

image reconstructions and can provide a more thorough under-

standing of ribosomal complexes and their functions. For

example, this approach has been used in investigations of the

translocation mechanism [56–58] and protein transport [59,60].
2. Structure of the eukaryotic 80S ribosome
The 80S ribosome is an asymmetric assembly with 80 differ-

ent proteins and four RNA chains (figure 1). Each ribosomal

component has a single copy in the ribosome, except for

P-stalk proteins, which have four copies. Experiments also

demonstrated that the bacterial and eukaryotic ribosomes

share a common structural core comprising 34 conserved

proteins (15 in the small subunit and 19 in the large subunit)

and approximately 4400 RNA bases, which together form

the major functional centres of the ribosomes, including

the decoding site, peptidyl transferase centre (PTC), and the

tRNA-binding sites [61].

The 80S ribosome of yeast contains 46 eukaryote-specific

proteins (18 in the 40S subunit, 28 in the 60S subunit) and

extensions as well as insertions in most of the core proteins.
The rRNA also contains several extensions in its conserved

chains, with a total length of 900 bases or more [5]. Most of

these rRNA and protein moieties envelop the core from the

solvent side and are accessible for potential interactions

with molecular partners, such as translation factors and cha-

perone proteins. In eukaryotes, the size of the 80S ribosome

varies within the 0.5 MDa range, which is largely attributed

to insertions in the RNA expansion segments ES7 L, ES15 L,

ES27 L and ES39 L in 25S–28S rRNA (figure 2b). In a few

cases, ribosomes may contain either fewer or additional

ribosomal proteins [5].

The 40S ribosomal small subunit has structural land-

marks known as the ‘head’, ‘body’, ‘platform’ and ‘beak’

(figure 1). The names of the structural domains and infor-

mation about the ribosomal functional sites came from the

crystal structure analysis of bacterial ribosome functional

complexes [25,28]. The mRNA-binding sites and the three

tRNA-binding sites (A, P and E) are located on the subunit

interface. The structure showed that mRNA enters through

a tunnel located between the head and the shoulder and

wraps around the neck of the 40S subunit. The mRNA exit

site (50 end of the mRNA) is located between the head and

the platform. The decoding centre of the small subunit,

where the codon and anticodon are paired to ensure fidelity

in mRNA decoding, is located on the surface of the interface.

After comparing the overall structures, it was evident that

there are extensive differences between eukaryotes and bac-

teria on the solvent side of the small ribosomal subunit.

These differences are directly correlated with the consider-

ably more complex pathway of translation initiation that

exists in eukaryotic cells.

The large ribosomal subunit has an overall crown-like

shape, which includes the central protuberance, L1-stalk and

the P-stalk (figure 1). Located on the interface side of the

large ribosomal subunit are the three (A, P and E) tRNA-bind-

ing sites and the PTC where peptide bond formation is

catalysed. This PTC is adjacent to the entrance of a tunnel,

along which nascent proteins progress before they emerge

from the ribosome on the solvent side. The overall absence of

bacteria- and eukaryote-specific moieties in the central regions

of both the subunit’s solvent and interface sides is consistent

with the universally conserved functions of these areas. This

conservation is seen at the PTC on the intersubunit surface,

which is relatively devoid of bacteria- and eukaryote-specific

moieties, as well as around the peptide tunnel on the solvent

side, which is used for ribosomal association with membranes

during protein synthesis. There are, however, important struc-

tural differences between the large subunits in bacteria and

yeast, such as differences in the organization of the peptide

tunnel and the surrounding area, that can be understood in

terms of functional divergence.
3. New nomenclature for ribosomal proteins
To facilitate comparison between ribosomes from different

species, a nomenclature system based on the names of pro-

tein families has been adopted (figure 1) [62]. Because the

ribosomal proteins from Escherichia coli were the first to

be isolated and fully sequenced, their archaeal and eukaryo-

tic homologues were assigned E. coli names. Proteins found

in ribosomes from all three domains (bacteria, archaea

and eukaryotes) are given the prefix ‘u’ (for universal),
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Figure 1. Architecture of the ribosome subunits (40S subunit on the left site and 60S subunit on the right site) with new protein nomenclature. Ribosome proteins
from all three domains (bacteria, archaea and eukaryotes) have the prefix ‘u’ (universal). Bacteria-specific proteins have the prefix ‘b’ (bacterial). Eukaryote-specific
proteins have the prefix ‘e’ (eukaryote). (a) Interface view of the 60S and 40S subunits. Landmarks include the head, body (Bd) and platform (Pt) of 40S as well as
the central protuberance (CP), L1-stalk and P-stalk of 60S. (b) Solvent-side view of the 60S and 40S subunits.
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which is followed by their E. coli names. Bacterial proteins

without eukaryotic homologues are designated using

the prefix ‘b’ (for bacterial). Eukaryotic proteins without

bacterial homologues have the letter ‘e’ before the protein

name [62].
4. Expansion segments
The ribosomal RNA expansion elements are located predomi-

nantly on the periphery of the solvent-exposed sides of both

subunits of the eukaryotic ribosome. The interface between
ribosomal subunits as well as the area around the mRNA

entrance and the polypeptide exit tunnel is highly conserved

and contains very few expansion segments and eukaryote-

specific proteins. Structural information about expansion

segments were reported in the crystal structure of the yeast

80S ribosome and the cryo-EM structure of the Drosophila
and human 80S ribosomes [52,63]. All 30 expansion segments

were interpreted as well as nine expansion segments of the

40S subunit and 21 expansion segments of the 60S subunit.

The 28S RNA expansion segments are shown in figure 2b.

Although human and Drosophila contain a set of expansion

segments similar to yeast, their expansion segments are
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Figure 2. Dependence of the sedimentation coefficient of the ribosome particle on molecular weight (a). Graphic kindly provided by S. Agalarov. Secondary structure
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generally much longer. For example, ES3S, ES7 L, ES9 L,

ES15 L, ES27 L and ES39 L in yeast are approximately 110,

200, 70, 20, 160 and 140 nucleotides, respectively, and the

same segments in humans are longer by 50, 670, 40, 170,
550 and 100 nucleotides, respectively. Human ribosomal

RNA expansion segments ES3S, ES6S, ES7 L, ES15 L,

ES27 L, ES30 L and ES39 L could only be partially interpreted

in the cryo-EM reconstructions owing to their unstructured
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flexibility (i.e. the tentacle-like shape of ES shown in figure 2c).

Comparison of the sedimentation coefficients of the bacterial

ribosomal 50S and 30S subunits, the bacterial 70S ribosome,

the yeast 80S ribosome and the human ribosome showed

a partially unfolded structure of the human ribosome. The

experimental sedimentation coefficients of the human ribo-

some and the yeast ribosome were 78S and 80S, respectively

(figure 2a). However, the molecular weight of the human ribo-

some is approximately 500 000 Da more than the yeast

ribosome owing to the longer expansion segments of the 28S

RNA. A partially unfolded structure of the human ribosome

expansion segments made the crystallization of this ribo-

some difficult and made other structure functional studies

challenging to accomplish.

The importance of the folded compact ribosome structure

was shown in yeast ribosome expansion segments. ES6S is

approximately 200 nucleotide long in the small ribosomal sub-

unit [52]. Research showed that the expansion segment emerges

on the solvent side of the platform, where several eukaryote-

specific proteins, including a 60 amino acid–long alpha-helical

extension of the C-terminus of protein eL19, envelop it. ES6S

then extends one of its two long arms in the direction of

the shoulder, where it interacts with protein uS8. The second

long arm of this expansion segment runs down towards the

bottom of the small subunit. The tip of the second arm is located

approximately 120 Å away from the tip of the first arm. ES6S is

in contact with the ribosomal components that form part of

both the exit and entry sites of the mRNA. Therefore, it seems

possible that ES6S is involved in translation initiation as a dock-

ing surface for factors that participate in activities on both the

mRNA exit and entry sites [64].
5. Intersubunit bridges
The importance of intersubunit bridges is evident because they

maintain communication pathways between the small and

large subunits during protein synthesis. During translation,

the ribosome undergoes global conformational rearrange-

ments that are required for mRNA and tRNA translocation,

termination and other processes. These changes involve inter-

subunit rotation and swiveling of the head domain of the

small subunit. The interactions between the ribosomal subunits

change with each of these rearrangements and have a dynamic

composition. The 80S ribosome model derived from crystals

captured the ribosome in a rotated state.

Several eukaryote-specific bridges were visualized in low-

resolution cryo-EM studies of the yeast ribosome [65,66]. Our

model, at 3.0 Å, provided a more accurate and detailed view

of the molecular components involved in these contacts

between ribosomal subunits. There are seven bridges in the

ribosomal core as well as a few bacteria- and eukaryote-

specific bridges [16,22,26,52]. In virtually all of the additional

bridges, nearly all of the participating components on both

subunits are eukaryote-specific. In contrast to bacteria, pro-

teins play the dominant role in forming eukaryote-specific

bridges [16]. Eukaryote-specific bridges are located on the

periphery of the subunit interface and on the solvent sides

of both subunits. The appearance of these numerous

additional bridges on the outer edge of the eukaryotic sub-

unit interface, which significantly increases the interaction

surface between subunits, is potentially the reason for the

preferential rotated state of eukaryotic ribosomes [52,66,67].
There is only one eukaryote-specific bridge positioned at

the centre of the ribosome—bridge eB14. The bridge is

formed by the smallest protein in yeast cells (25 amino acids)

protein eL41 (figure 1), which consists of a single alpha-helix.

eL41 protrudes from the 60S subunit into the 40S subunit in

the proximity of the decoding centre and is nearly buried in

a binding pocket composed of helices h27, h45 and h44.

There are two remarkable aspects of this bridge. First, the bind-

ing pocket of eL41 in the small subunit is highly conserved in

eukaryotes and bacteria. The second aspect is that, in the con-

text of the full ribosome, eL41 is much more strongly associated

with the 40S subunit than with the 60S subunit. Interestingly,

although eL41 forms only minor contacts with the 60S subunit,

it remains a part of the large subunit upon dissociation. In bac-

teria, there is only one example of this type of unusual bridge

that is formed by a ribosomal protein of the large subunit

and binds to the small subunit through substantial parts of

their structures [29]. This unusual bridge is formed by protein

bL31, which is conserved among bacteria and connects the cen-

tral protuberance of the large subunit with the labile head

domain of the small subunit.

The distinguishing features of the eukaryotic large subunit

are two long protein helices extending from its left and right

sides that are markedly distinct from the bridges of the core.

These helices, which are eukaryote-specific additions to pro-

teins eL19 and eL24 (figure 1), create the bridges eB12 and

eB13, respectively, which are not buried within the inter-

subunit interface and are accessible from the solvent.

Bridge eB12 below the mRNA exit tunnel is mainly formed

through multiple interactions between several turns of the 60

residue–long a-helical extension at the C-terminus of eL19

and ES6S. Protein eL24 consists of an N-terminal domain that

resides in the 60S subunit followed by a long flexible linker

that protrudes deep into the side of the 40S body and a C-term-

inal domain that reaches the back of the 40S subunit. This

architecture of eL24 should be considered in light of the finding

that eL24 is a key player in re-initiation of the translation of

polycistronic mRNAs [68–70].
6. Inhibition of the eukaryotic ribosome
Decades of studies on antibacterial agents (antibiotics) have

shown a diversity of molecular mechanisms for inhibiting

protein synthesis [71]. The atomic structures of prokaryotic

ribosomes provide the basis for the development of novel

ribosome inhibitors that can serve as tools to study protein

synthesis in bacteria. Similarly, the eukaryotic ribosome is a

major target for eukaryote-specific inhibitors isolated from

natural sources. Despite a limited understanding of their

molecular mechanisms, eukaryote-specific inhibitors are

increasingly used in research and have the potential to func-

tion as new therapeutics against a wide range of infectious

diseases, cancers and genetic disorders [72–75]. Some eukar-

yote-specific inhibitors were investigated using crystals from

the 50S subunit of the archaea Haloarcula marismortui owing

to its similarity with some parts of the eukaryotic ribo-

some [76,77]. Recently, 16 eukaryote–specific inhibitors

were investigated in the S. cerevisiae ribosome using X-ray

analysis [78]. The broad-spectrum inhibitors target the PTC

on the large subunit (blasticidin S), the decoding centre

(geneticin G418) and the mRNA–tRNA-binding site on the

small subunit (pactamycin, edeine). Eukaryote-specific
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inhibitors cycloheximide, lactimidomycin and phyllanthoside

interact with the E tRNA-binding site, and T-2 toxin, deoxy-

nivalenol, verrucarin, narciclasine, lycorine, nagilactone C,

anisomycin, homoharringtonine and cryptopleurine interact

with the PTC (figure 3). The glutarimide inhibitors cyclohex-

imide and lactimidomycin were located in the tRNA E-site on

the large subunit in a pocket formed by the universally con-

served nucleotides of the 25S rRNA and a stretch of the

eukaryote-specific protein eL42. Lactimidomycin bears an
additional lactone ring that is positioned on top of eL42

and directed towards the subunit interface. Although chemi-

cally unrelated to glutarimides, phyllanthoside makes contact

with the same rRNA nucleotides and interacts with eL42 in a

manner resembling the tRNA CCA-end. The strict selectivity

of E-site inhibitors towards eukaryotes is explained by the

presence of two bacteria-specific rRNA residues that occlude

the binding pocket. Although cycloheximide and lactimido-

mycin bind to the same site and likely compete with the
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E-tRNA, they affect translation in a different way. Lactimido-

mycin preferentially arrests ribosomes at the first peptide

bond, whereas cycloheximide stalls ribosomes during

ongoing translation [79–81].

The PTC is exclusively composed of rRNA nucleotides

and is located on the large subunit. Peptide bond formation

requires the two substrates, peptidyl-tRNA and aminoacyl-

tRNA, to be properly aligned in the A- and P-sites, respectively.

In contrast to blasticidin S, which binds to the P-site of the large

subunit in the same way as in bacteria and archaea, numerous

eukaryote-specific inhibitors were found to be associated with

the A-site of the PTC (figure 3). Chemically different inhibitors

share a similar mode of binding within the pocket. Upon bind-

ing, all A-site inhibitors induce a similar pattern of structural

rearrangements in their direct vicinity that propagate up to

15 Å away from the PTC. It has been shown that nucleotides

U2873 (U2504 in E. coli) and C 2824 (C 2452 in E. coli) are

involved in interactions with inhibitors in yeast. Different

orientations of these nucleotides in bacteria prevent ribosome

binding to inhibitors.

The decoding centre of the ribosome forms a geometrically

restricted pocket that accurately selects aminoacyl-tRNA in

accordance with mRNA codons positioned in the A-site. In

bacteria, aminoglycoside antibiotics alter translation accuracy

and inhibit tRNA translocation by perturbing the confor-

mation of the decoding centre nucleotides. In addition to

their potent activity against Gram-negative bacteria, the ami-

noglycoside-induced suppression of premature termination

holds the potential to treat inherited disorders caused by

nonsense mutations [75,82]. The canonical aminoglycoside-

binding site is located within the internal loop of helix 44 of

the 18S rRNA, which is part of the decoding centre that

contains the essential and universally conserved nucleoti-

des A1755 (A1492 in E. coli) and A1756 (A1493 in E. coli).
In close vicinity, two nucleotides differ between bacteria and

eukaryotes but are identical in yeast and humans: G1645

(A1408 in E. coli) and A1754 (G1491 in E. coli) [83,84]. Geneticin

binds to the aminoglycoside pocket and induces the flipping of

A1755 and A1756. The structure highlights direct interactions

between geneticin ring I and the eukaryote-specific residues

G1645 and A1754.
Pactamycin, cryptopleurine and edeine are located exclu-

sively in the 40S E-site and share the same binding pocket.

These inhibitors are found in the mRNA channel in the E-site

and interact only with the 18S rRNA. Pactamycin and edeine

are broad-spectrum inhibitors. Pactamycin has a conserved

binding site in bacteria and eukaryotes. Edeine in the yeast

ribosome binds to the same region but adopts a different con-

formation from that in the bacterial small subunit. In contrast,

cryptopleurine was described as a eukaryote-specific inhibitor

[85]. The structure of cryptopleurine bound to the yeast ribo-

some does not provide the reason for its specificity. The

location of edeine, pactamycin and cryptopleurines suggest

that they act on translocation from the P- to the E-site and

may also affect initiation in eukaryotes.
7. Conclusion
The development of new technologies in X-ray crystallography

and cryo-EM has the possibility of facilitating better studies of

the structure of ribosomes by modelling different steps of

protein synthesis at atomic resolutions, where significant

parts of the electron density maps allow researchers to interpret

precise positions of chemical groups in the functional pockets

of complexes and to suggest mechanisms for ribosome func-

tions. However, a significant part of the ribosome, mainly

the solvent side of subunits, is more flexible and does not

allow interpreting of structure at high resolution. This pro-

blem becomes very significant in the case of the ribosomes

from higher eukaryotes, where the biggest part of the high-

eukaryote–specific long ribosomal RNA segments (approx.

1 MDa,) remain unresolved despite innovations in cryo-EM.

Determining how these ribosome elements can be stabilized

for structural studies remains an open area of research.
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