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Ecological and behavioural constraints play a major role in shaping the

visual system of different organisms. In the mesopelagic zone of the deep-

sea, between 200 and 1000 m, very low intensities of downwelling light

remain, creating one of the dimmest habitats in the world. This ambient

light is, however, enhanced by a multitude of bioluminescent signals emitted

by its inhabitants, but these are generally dim and intermittent. As a result,

the visual system of mesopelagic organisms has been pushed to its sensi-

tivity limits in order to function in this extreme environment. This review

covers the current body of knowledge on the visual system of one of the

most abundant and intensely studied groups of mesopelagic fishes: the lan-

ternfish (Myctophidae). We discuss how the plasticity, performance and

novelty of its visual adaptations, compared with other deep-sea fishes,

might have contributed to the diversity and abundance of this family.

This article is part of the themed issue ‘Vision in dim light’.
1. Introduction
The visual system of different organisms generally reflects each species’ ecology

and behaviour by becoming adapted to their lifestyle and ambient environ-

mental constraints. In the marine environment, visual conditions are

dependent on the light intensity, turbidity (amount of particulate or dissolved

organic matter), type of habitat (benthic, pelagic, deep-sea), prey and predator

relationships (size, colour), season, the organism’s size and developmental

stage and sexual communication [1].

Light in the ocean, and particularly in the deep-sea, has been extensively

reviewed elsewhere [2–4]. Briefly, the oceanic visual environment is driven

by two main sources of light: the downwelling light, produced by the sun

and stars, and reflected and scattered by the moon and sky; and biolumines-

cence, produced by the organisms themselves. While bioluminescence is

found at all depths, downwelling light is predominant in the surface layers

(upper 200 m in the epipelagic zone) and its intensity diminishes rapidly

with depth though absorption and scattering. Below 200 m, residual daylight

is present in sufficient levels to allow visual tasks but not photosynthesis.

Here the euphotic zone transitions into the mesopelagic or twilight zone.

From around 800 to 1000 m in the clearest ocean, light from the surface is insuf-

ficient to be detected by deep-sea organisms [2], creating a dark and featureless

background where bioluminescent emissions are the only sources of light. In

addition to changes in intensities, the spectral range and direction of light

also vary greatly with depth, at least to start with. While daylight can be

seen in all directions and covers the entire visibly useful light spectrum (300–

800 nm) in the shallows, residual light becomes vertically symmetrical, and

short and long wavelengths are rapidly absorbed with depth, only leaving

blue–green light (around 480 nm in clear ocean) in deeper waters. Deep-sea

organisms have adapted to these particular conditions by producing biolumin-

escent emissions mainly in the blue–green range of the spectrum, although

some species emit light of shorter or longer wavelengths [5]. Moreover, bio-

luminescent emissions may vary in intensity, duration, frequency, angular

distribution and have an effective visual range limited to about 100–150 m
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[2]. It is worth mentioning that a third type of light signal,

biofluorescence (which is not directly produced by the

animals but results from the absorption of light and its re-

emission at longer wavelengths), has recently been observed

in the two deep-sea cnidarians [6,7] and might be used by

deep-sea organisms for interaction with prey, predators

and congeners as also suggested for their shallow water

counterparts [8]. However, because its occurrence in other

deep-sea organisms and function is still unknown, we will

not mention it further in this review.

Deep-sea organisms rely on different sensory systems

(vision, olfaction, hearing, taste, electroreception, lateral

line) to survive in such an inhospitable environment.

Depending on the depth and type of habitat in which they

live, organisms mainly rely on one or more of these sensory

systems [9,10]. In this review, we are particularly interested

in the mesopelagic zone or twilight zone (200–1000 m), a

transitional zone of the deep-sea characterized by an increas-

ingly dimmer and unidirectional blue–green downwelling

light and where bioluminescence is prevalent [11]. In this

zone, the greatest variation in visual scenes within the

deep-sea is found, ranging from extended (downwelling

light) to point-like (bioluminescence) sources [3,12], and

vision appears to be one of the dominant senses used by its

inhabitants [9]. One of the most abundant and studied

groups of mesopelagic fishes, the lanternfish (Myctophidae),

provides us with a useful model to investigate how the visual

systems of deep-sea organisms have developed to such low

light-intensity conditions.
2. Lanternfish model
The lanternfish or Myctophidae is one of the most abundant

and diverse families of mesopelagic fishes in the world’s

ocean with at least 250 species (33 genera, two subfamilies)

[13]. They are distributed worldwide in all major oceans

and seas from the surface (night-time) to depths exceeding

1000 m (daytime), and all produce and emit bioluminescence

using a luciferin–luciferase reaction [14]. What makes this

family particularly interesting for visual adaptation studies

is their exceptionally high diversity in ecology and behaviour,

with different species inhabiting a wide range of depths

during day- and night-time, and presenting varied diel

vertical migration and bioluminescent patterns [13,15–17].

This diversity not only allows the study of a wide range of

visual adaptations to the deep-sea environment, but also

allows comparison between closely related species with

high ecological variability in order to better understand

how these visual adaptations occurred and the selective

pressures that may have driven such changes.

To elucidate how lanternfishes perceive objects in their sur-

roundings, we first need to define their visual environment,

and determine which visual tasks they need to perform. Myc-

tophids are carnivorous fishes living in the mesopelagic zone

during the day in order to avoid the numerous predators pres-

ent in the well-lit shallow waters [17]. However, at these

depths, food is quite sparse and as a result, most species and

individuals migrate at night to the upper 200 m to feed in the

biomass-rich surface layers while still being able to hide from

predators in a dark environment [18]. It is also at night that

lanternfishes find potential mates to reproduce [19]. Although

nightlight (moon and stars) is 1–100 millions times dimmer
than daylight (sun) [20], its intensity, in the best conditions

(clear sky, full moon), is sufficient to create an extended

visual scene in the first 400 m [2,12]. The visual scene in the

upper layers at night is then comparable to the one found at

deeper levels during the day (400 m at night comparable to

800 m in the middle of the day [2]) but with a higher

amount of bioluminescent signals owing to increased biomass

in the shallows. Shadows may be seen when looking upward,

and bioluminescent emissions may come from any direction,

at several intensities and frequencies. Moreover, depending

to some extent on the intensity of the downwelling light (in

turn dependent on depth), bioluminescent emissions will be

more or less visible against the background space light [12].

Lanternfishes may use bioluminescence in several ways:

for seeing prey and predators, for camouflaging themselves

and for inter- and intraspecific communication [20–25]. They

possess two kinds of photophores or bioluminescent organs

that light up independently. There are the ventral and ventro-

lateral photophores also called primary photophores arranged

in a species-specific pattern, and the luminous organs and

tissue patches of various sizes and shape, located on the

caudal peduncle, head and body. Because the pattern of the

primary photophores is species-specific, it has been hypoth-

esized that lanternfishes might use these for species

recognition [21,22]; however, this has not been tested taking

into consideration their visual capabilities, and it is currently

unknown if they can resolve single photoreceptors or respond

to their patterns differentially. Luminous organs (head and

caudal) appear to only produce brief light flashes [23] and

are often sexually dimorphic [24]. They are thought to play a

role in communication within and between species [24], to

avoid predators (caudal organs [25]) and/or to illuminate

potential prey (head luminous organs [26]).

Downwelling light from the surface might also be used by

myctophids for several purposes: to set their circadian

rhythms, to hold a particular depth station, to vertically

migrate, to camouflage themselves and to detect potential

prey and predators. In common with several other mesopela-

gic fishes, lanternfishes camouflage themselves by emitting

bioluminescence through their ventral photophores. This

light matches the colour and intensity of the downwelling

light to counter-shade their silhouette and appear inconspicu-

ous to predators situated below and looking up [27,28].

In order to achieve such camouflage a visual system

might compare the difference between the downwelling

light and the bioluminescent emissions produced [27,29].

The efficiency of camouflage mediated by counter-illumin-

ation is, of course, dependent not only on the visual

sensitivity of the producer, but also on the predator’s visual

acuity. In fact, predators with an acute eye (0.11 degrees

resolution) would be able to break myctophid camouflage

at distances up to 4 m [28]. Similarly, prey and/or predators

that do not counter-shade or do not counter-shade effectively

enough for the lanternfish visual system, will then cast a

shadow against the downwelling background when viewed

from below.
3. Lanternfishes’ visual adaptations
(a) Sensitivity
Because mesopelagic organisms live in a dim environment,

their eyes need to be more sensitive than acute to be able to
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detect levels of downwelling light and bioluminescent

flashes. To enhance sensitivity, lanternfishes possess several

visual adaptations that optimize light collection and extend

their visual field. At the ocular level, these include: large

eyes, aphakic gaps and reflective tapetum lucida. While

enlarged eyes are not always the norm in myctophids and a

great diversity in sizes is observed within the family [30],

aphakic gaps and/or tapetum lucida are very common. At

least one of these two adaptations was observed in 52 of 53

species investigated by de Busserolles et al. [31]. At the retinal

level, increased sensitivity is achieved through several mech-

anisms including a pure rod retina, a very high rod density

(highest recorded for vertebrates [32]) and correspondingly

very thin photoreceptors (smallest diameter recorded for

both vertebrates and invertebrates [32]), a high summation

ratio of rod photoreceptors to ganglion cells (200–600 : 1 for

Myctophum brachygnathum [32,33]), a lack of pigment granules

in the retinal pigment epithelium of adults fish [31] and reti-

nal pigments specifically tuned to the blue–green light

environment of the mesopelagic zone [34].

Sensitivity to extended light sources or point-like sources

can be increased by a variety of adaptations, and different

lanternfish species appear to be better specialized for the

detection of one signal or the other [32]. While sensitivity

to downwelling light is mainly set by the level of summation

of rods to ganglion cells (the diameter of the ganglion cell’s

dendritic field), sensitivity to bioluminescent signals is

more dependent on the size of the pupil and the amount of

background space light (downwelling light) [32].

The optical sensitivity S of an eye to an extended light

source is often estimated using the formulae of Land [35]

for monochromatic light [4,32,36]:

S ¼ p

4

� �2
A2 d

f

� �2

ð1� e�klÞ, ð3:1Þ

where A is the diameter of the pupil, f the focal length, d, l
and k the diameter, outer segment length and absorption

coefficient of the photoreceptors, respectively. However, for-

mula (3.1) only calculates sensitivity at the level of the

photoreceptor matrix (d, diameter of a single photoreceptor)

and does not take into account the ganglion cell matrix. Alter-

natively, individuals living in a dim environment usually

have a large summation of photoreceptors onto ganglion

cells and calculations using formula (3.1) will underestimate

the true sensitivity of their eyes, a parameter ultimately set

by the ganglion cell’s receptive field [37]. As an example, lan-

ternfish optical sensitivity at the level of the photoreceptor

matrix ranges from 0.26 to 2.39 mm2 sr [32] which is similar

to the sensitivity found for the human eye (0.93 mm2 sr [4]).

However, the human eye, notably in the fovea, has a ratio

of photoreceptor to ganglion cells of 1 : 2 [38], whereas myc-

tophid ratio in the peak density of ganglion cells is 200 : 1

[32,33]. If we now replace d by the diameter of one ganglion

cell dendritic field assuming it is circular

d ¼ 2

ffiffiffiffiffiffiffiffi
1

pN

r
,

where N is the density of ganglion cells in cell mm22, then

equation (3.1) becomes

S ¼ pA2

4Nf2
ð1� e�klÞ: ð3:2Þ
Using equation (3.2), lanternfishes then possess a much

higher optical sensitivity to extended light sources than the

human eye (10–100 times higher, table 1). Compared to

some deep-sea fishes, such as the bathypelagic Platytroctes
apus, myctophids are more sensitive to extended light

sources, but less sensitive than other mesopelagic representa-

tives (table 1). The reason for a lower sensitivity to

downwelling light in lanternfishes, compared to others

living in the same environment, might be explained by

their greater reliance on bioluminescence signals, especially

for communication. In fact, while myctophids possess several

luminous organs used for communication and interactions

with prey, predator and congeners, the other species investi-

gated in table 1 do not possess any bioluminescent organs

(the escolar Lepidocybium flavobrunneum) or only ventral and

lateral photophores used exclusively for counter-illumination

and possibly species recognition (lantersharks: Etmopterus
spp. and Squaliodus sp.). Consequently, if one wants to com-

pare the optical sensitivity (S) of several individuals from

different environments, especially vertebrates from dim-

light habitats, one might want to do so at the level of the

ganglion cell matrix (diameter of the ganglion cell’s dendritic

field) instead of the photoreceptor matrix (photoreceptor

diameter).

Finally, several of the lanternfish adaptations mentioned

above are actually combined to optimize their visual

system. In the popeye lanternfish Bolinichthys longipes, for

example, the location of the aphakic gap aligns with the

area of highest photoreceptor densities (the region of the

visual field subtended by the area of high density of photo-

receptors is increased by the aphakic gap; figure 1), a

characteristic observed in most myctophid species [32]. The

position of the aphakic gap also aligns with the position of

the tapetum lucidum, enhancing the number of photons

available in the dorsotemporal part of the retina where the

highest density of ganglion cells is found. It may also provide

better acuity in the frontal visual field, as well as ventrally

(figure 1). Because the optical sensitivity S is dependent on

the ganglion cell receptive field, S varies according to the

ganglion cell densities and across the retina accordingly

(figure 1). In B. longipes, the area of highest sensitivity is

found in the ventral part of the retina, the part that directly

receives downwelling light, assuming that the fish is

positioned horizontally in the water column (figure 1e).
(b) Acuity and specialization
As a necessary trade-off for their high sensitivity, myctophids

have very poor visual acuity with a spatial resolving power

ranging from 1.6 to 4.8 cycles per degree, making them one

of the less visually acute groups of deep-sea fishes [33,44].

Despite their poor acuity and contrary to previous findings

[44], ganglion cell densities do vary across the retina in

lanternfishes to form specific retinal specializations (areas of

high cell densities) that provide higher acuity in a specific

part of their visual field. Three main types of retinal special-

izations have been identified by analysing the ganglion cell

(and excluding displaced amacrine cell) distribution across

the retina in 21 species of lanternfishes [33,44]. These three

specializations are: elongated areae ventro-temporales, areae

temporales and large areae centrales. Each of these most

likely corresponds to different behavioural and predatory

strategies (figure 2 [33]).



Table 1. Optical sensitivity S, calculated at the level of the ganglion cell matrix, for a range of species. When possible a range of estimation per species is
given based on the lowest and highest ganglion cell density. Note that the highest ganglion cell density gives the lowest sensitivity S and vice versa. For all
species, we fixed the photoreceptor coefficient of absorption k at 0.035 mm21, the average for vertebrates [36]. For fish species, we used the diameter of the
lens for A and Matthiessen’s ratio to calculate f ( f ¼ 1.275A). l, Photoreceptor outer segment length; A, pupil or lens diameter; f, focal length; N, ganglion cell
density; d, diameter of a ganglion cell’s dendritic field; n.a., not available.

species l (mm) A (mm) f (mm) N (3103 cells mm22) d (mm) S (mm2 sr) refs

lanternfishes

Bolinichthys longipesd 117a 1.8 2.3 3.4 – 14.9 9 – 19 32 – 140 [32,33]

Electrona rissod 64a 3.4 4.3 1.4 – 8.0 13 – 30 54 – 308 [32,33]

Lampanyctus alatusd 52 1.3 1.7 3.2 – 19.6 8 – 20 21 – 126 [32,33]

Myctophum brachygnathumd 91a 3.3 4.2 1.1 – 10.6 11 – 34 44 – 421 [32,33]

Notoscopelus kroeyerid 37 2.7 3.4 1.1 – 6.0 15 – 34 58 – 317 [32,33]

Symbolophorus rufinusd 78a 2.8 3.6 2.0 – 11.2 11 – 25 40 – 226 [32,33]

other teleosts

Platytroctes apuse 150 5.1 6.5 n.a. – 26.2 7 – n.a. 18 – n.a. [39,40]

Lepidocybium flavobrunneumd 148a 16.0 20.4 0.1 – 0.6 46 – 113 801 – 4804 [37]

Makaira nigricansc,d 57 19.0 24.2 0.1 – 1.6 28 – 113 261 – 4174 [41]

sharks

Etmopterus luciferd 52 5.4 6.9 n.a. – 25.3 22 – n.a. 159 – n.a. [42]

Etmopterus spinaxd 51 7.1 9.1 n.a. – 10.7 35 – n.a. 377 – n.a. [42]

Etmopterus splendidusd 69 3.8 4.8 n.a. – 20.5 25 – n.a. 215 – n.a. [42]

Squaliolus aliaed 48 3.1 4.0 n.a. – 38.9 18 – n.a. 101 – n.a. [42]

Triaenodon obesusc,d 31 9.1 10.3 n.a. – 15.2 29 – n.a. 265 – n.a. [43]

Orectolobus ornatusc 23 5.7 7.3 n.a. – 16.2 28 – n.a. 165 – n.a. [43]

Hemiscyllium ocellatumc 35 4.5 5.7 n.a. – 23.7 23 – n.a. 114 – n.a. [43]

human

Homo sapiens 30 8b 16.7 n.a. – 38 6 – n.a. 3.1 – n.a. [35,38]
aOuter segment length doubled by the presence of a tapetum lucidum.
bPupil diameter at night-time.
cEpipelagic.
dMesopelagic.
eBathypelagic.
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An elongated area ventrotemporalis, assuming that the

fish is positioned horizontally in the water column, samples

the frontal and dorsal part of the visual field with higher

acuity, allowing the detection of silhouettes against the

lighter background situated above (figure 2a,d). An area tem-

poralis provides a higher acuity in the visual field situated

right in front of the fish and may allow binocular vision,

two common visual characteristics of predatory species

(figure 2b,e [45]). Some of the myctophids with this specializ-

ation also possess large luminous organs on the front of their

heads (Diaphus spp.) that may illuminate the area of high

acuity to increase the chances of prey capture [33]. Finally,

a large area centralis provides higher acuity in the centrolat-

eral or monocular field of view, potentially allowing the

animal to detect signals in a wide range of directions

(figure 2c,f ). This type of specialization is found in species

with less specialized visual systems, indicating that they

may be visual generalists using other sensory systems at

least as much.

Another peculiarity of the lanternfish visual system is the

very large population of ‘displaced’ amacrine cells (70–80%)

found in their ganglion cell layer [33,44]. These amacrine cells
are most likely of the type AII and may facilitate the detection

of small bioluminescent flashes against the mesopelagic back-

ground, in the periphery of their visual field, where they are

most abundant [33,46].
(c) A novel sexually dimorphic intraocular filter
A novel retinal specialization was found in 10 species of lan-

ternfishes out of 61 analysed, all from the Myctophinae

subfamily (figure 3 [47]). This specialization is a yellow

pigmentation present at the level of the outer nuclear layer

and segregated into ‘patches’ of various numbers, size,

shape and intensity, in specific parts of the retina

(figure 3a,b). This yellow pigmentation was also found to

be sexually dimorphic in two of the species analysed,

making it the first example of a sexually dimorphic visual

adaptation in any non-primate vertebrate. Further analyses

including spectrophotometry, microspectrophometry, mol-

ecular biology and modelling, reveal that this yellow

pigmentation acts as a filter, absorbing shorter wavelengths

between 356 and 443 nm (figure 3c). It is found in species

having two spectrally distinct rod photoreceptors resulting
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Figure 1. Visual adaptations in the popeye lanternfish Bolinichthys longipes: (a) aphakic gap, represented in white, (b) tapetum lucidum, (c) photoreceptor topog-
raphy, (d ) ganglion cell topography, (e) sensitivity S topography. N, Nasal, V, ventral. Scale bars, 1 mm. Densities in (c,d) � 103 cells mm22. Sensitivity S in (e) in
mm2 sr. (a – d ) Modified from [31 – 33] with the permission of S. Karger AG, Basel.
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from the duplication of the Rh1 opsin gene; the pigmentation

being specifically associated with the long-wavelength rods.

The effect of the yellow pigmentation on the spectral

sensitivity of the long-wavelength rods is to shift the overall

sensitivity peak slightly towards longer wavelengths. It also

narrows the spectral sensitivity function by absorbing short

wavelengths, tuning the photoreceptor to longer wavelength

signals only (figure 3d ). The authors concluded that this new

intraocular filter might, similar to yellow lenses in other

deep-sea fish [48], increase the contrast of bioluminescent

signals by differentially filtering the background irradiance

resulting from the downwelling illumination. The result

would be to improve the detection of bioluminescent signals

in a specific part of the visual field of the animal. The ecologi-

cal function of this pigment is still uncertain and might be

species specific: to potentially break the counter-illumination

camouflage of some predators, detect a specific signal from

a potential mate in the case of the sexually dimorphic

species, detect a specific bioluminescent prey or even help

to detect predators emitting signals of longer wavelengths

(red-light-emitting species such as stomiid fish [49,50]).
4. What drove the variability in lanternfish visual
systems?

Interspecific variability in the visual system of lanternfishes is

high at all levels (ocular, retinal and molecular [30–33,47]).

Representative examples of this variation are the genera Myc-
tophum and Lampanyctus. Species from the genus Myctophum
possess eyes with a large size, a localized aphakic gap, a tape-

tum lucidum covering the entire retina, the highest rod
density, the highest spatial resolving power and additional

specialization such as the sexually dimorphic retinal yellow

pigment and two rod opsins. Lampanyctus species, on the

other hand, possess a less specialized visual system with a

small eye size, low rod densities, a poorly specialized

retina, lower acuity, and a variable tapetum lucidum and

aphakic gap coverage.

In an attempt to explain this interspecific variability in

visual adaptations, possible relationships between morpho-

logical variables (eye and photoreceptor size) and ecological

variables (depth range, presence/absence of luminous

organs) were assessed using phylogenetic comparative ana-

lyses [30,32]. The results revealed that both ecological and

phylogenetic constraints drove the evolution of the visual

system in lanternfishes [30,32]. Some visual specializations

were strongly influenced by phylogeny (eye size [30],

yellow pigment [47], type of retinal specializations [33] and

visual pigments [34]), whereas others appeared to be driven

by ecological constraints (aphakic gap and tapetum

lucidum [31], rod diameter and length [32] and some types

of retinal specializations [33]). The main ecological factor

influencing photoreceptor design, and consequently sensi-

tivity in lanternfishes, was the depth range at night,

indicating that vision at night is of great importance in myc-

tophids [32]. This is not surprising when most lanternfish are

known to perform their main survival tasks (feeding and

reproducing) in the surface layers at night.

We previously mentioned that the type of visual adap-

tations depends on which signal is more important: an

extended source or a point-like source. Downwelling light,

characterized by the night depth range, drives, to some

extent, the evolution of the visual system in lanternfishes;
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Figure 2. The three types of retinal specializations (a – c) found in lanternfishes and their corresponding ecological significance (d – f ). (a – c) Topographic maps of
ganglion cell densities: (a) elongated area ventrotemporalis, (b) area temporalis, (c) large area centralis. The colour gradient on the maps is similar to the one in figure 1,
with red representing high cell densities and blue low cell densities. N, Nasal; V, ventral. Adapted from [33] with the permission of S. Karger AG, Basel. Panels (d – f )
illustrate the visual significance of each topography (a – c), respectively. The shaded grey areas represent the regions of the visual field subtended by the retinal special-
izations (high density of ganglion cells represented in red to light blue on the maps). In (e), the lanternfish possesses a large head luminous organ that may emit light in
front of the fish (in blue).
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however, because bioluminescence is used extensively by lan-

ternfishes for a variety of tasks [23], it presumably also

determined the evolution of their visual system. Several

lines of evidence support this hypothesis:
(1) the evolution of species-specific bioluminescent

structures allowed a higher and faster species diversi-

fication [22],

(2) visual pigments are spectrally tuned to maximize their

sensitivity to the bioluminescent emissions present in

their environment, rather than to the downwelling light

[34,47,51],

(3) eyes are less sensitive to downwelling light compared

with other mesopelagic species that do not bioluminescent

at all or not in a (presumed) communicative way (this

review),

(4) a high proportion of supposedly ‘AII amacrine cells’ is

present in the ganglion cell layer, and may have evolved

to potentially facilitate the detection of small biolumines-

cent flashes against the mesopelagic background [33],

(5) relationships between visual characteristics and sexual

dimorphism in luminous tissues also exist [32]: species

with a sexual dimorphism in luminous tissues possess

higher rod densities (an adaptation for higher sensitivity)

[32] and a species-specific sexually dimorphic intraocular

filter (yellow pigment [47]) enhancing contrast and

improving the detection of bioluminescent signals.

Indeed, the fact that species with sexually dimorphic

luminous tissues also possessed more sensitive eyes and
a sexually dimorphic visual system strengthens the

long-standing hypothesis that bioluminescence is used

for intraspecific communication in lanternfishes, which

has been proposed by a range of authors [23,24,52].

5. Visual arms race in the deep-sea
Lanternfishes possess a wide range of visual adaptations to their

environment, but how do their specializations compare against

different adaptations found in other groups of deep-sea fishes?

The family is not only one of the most abundant in the world’s

oceans, in terms of densities [53], but also in term of species

numbers having diversified at much quicker rates than other

fish families [22]. But why are they so successful? In this section,

we discuss how the diversity, performance and novelty of the

lanternfish visual adaptations, compared to other deep-sea

fishes, might have contributed to their success.

Several other visual adaptations that not are found in

myctophids exist in other deep-sea fishes. These include

tubular eyes, yellow lenses, multibank retinas, foveas and

sensitivity to red light. Each of these adaptations has been

reviewed in detail elsewhere [2,3,39,54], and so we will only

give a brief account of each of them and focus on the

comparison with the lanternfish system.

Tubular eyes are usually cylindrical and positioned dor-

sally to maximize pupil diameter and focal length in order

to increase sensitivity and resolution in the dorsal field of

view of the animal. In some cases, they have become special-

ized to look into a narrow field, taking in the narrow angle
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of light from the surface. Although visual capabilities to detect

shadows against the downwelling background are dramati-

cally improved, it is often at the expense of the rest of the

visual field. As a result, some tubular eyed species have

evolved additional specializations to re-extend signal detection

in other parts of the visual field (frontal eye rotation [55],

accessory retina [56], lens pad [39], retinal diverticulum [57]),

but in most cases, their visual system still remains restricted

to largely upward viewing. Lanternfishes, with their large

eyes and slender body shape possess a very large monocular

field of view in addition to possible binocular vision frontally,

dorsally and ventrally [31]. Similar to tubular eyes, their

elongated area ventro-temporalis at the level of the ganglion

cell layer allows the detection of silhouettes situated above

but without limiting visual detection in other directions.

Yellow lenses are present in few deep-sea fishes such

as the scopelarchids or some hatchetfish [58], and similar

to lanternfishes, yellow pigmentation might increase hue

discrimination of bioluminescent signals against the down-

welling background [48]. While yellow lenses will reduce

the photon capture of the entire visual system of the

animal, the lanternfish retinal yellow pigmentation, being

segregated in specific parts of the retina, only affects a

restricted part of the visual field of the animal, potentially

allowing a wider range of visual capabilities.
Several mesopelagic fishes have increased the sensitivity

of their eye by staking photoreceptors in several layers, also

called multibank retinae [59,60]. In addition to increased sen-

sitivity by enhancing photon capture, multibank retinae may

also allow colour vision in single pigment species or at least

increase hue discrimination in the blue to greenish-yellow

part of the spectrum [2,59]. Although lanternfishes only

have a single bank of photoreceptors, the following specializ-

ations: increase in rod length, tapetum lucida of different

reflectivities and colours, rod opsin duplication, and retinal

yellow pigmentation, associated together, as found in several

myctophid species, may be directed at similar endpoints as

the multibank strategy.

Three dragonfish genera (Malacosteus, Aristostomias,

Pachystomias) are able to emit and see far-red bioluminescence

[49,51,61], providing them with a private visual channel to

illuminate and see potential prey or communicate with con-

specifics without being seen. There is currently no evidence

that lanternfishes are able to emit any other types of biolu-

minescence than the frequently used blue–green range.

However, species possessing a second long-wavelength

sensitive rod, associated with retinal yellow pigmentation,

might be able to detect longer-wavelength light emitted by

some of their predators (e.g. Aristostomis [47,50]) [47]. More-

over, myctophids with these long-wavelength sensitivities



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160070

8
might construct their own discrete communication channel

between potential mates with the sexually dimorphic

luminous organs and retinal yellow pigmentation [47].

Over 30 species of deep-sea fishes have developed a fovea

or retinal pit, an indentation of a particular region of the

retina in which a high density of retinal receptors is present

[62]. In the deep-sea environment, foveas might increase

resolution and especially enhance the ability to detect

movement. They might also play a role in depth perception

and bioluminescent camouflage breaking by providing

a skewed image as an object passes across the visual field

[62,63]. Although lanternfishes do not possess any foveas,

the visual system of some species has also adapted to enhance

resolution (area temporalis coupled with head luminous

organs) and the potential to break counter-illumination

camouflage (yellow pigmentation).

The surprising variety of visual adaptations present in

deep-sea fishes, given their relatively simple visual world,

highlights the competitive evolutionary pressures or ‘visual

arms race’, to select the most efficient visual systems in this

extreme environment. Even though some deep-sea fishes

have evolved more complex visual systems for the detection

of a specific type of visual cue (e.g. the tubular eye of Rhynch-
ohyalus natalensis [57], multibank and fovea of Bajacalifornia
drakei [63], far-red bioluminescent light system in dragon-

fishes [61]), lanternfishes have developed a flexible visual

system with a wide range of adaptations to allow the detec-

tion of diverse signals in any direction. Because myctophids

are often targets for a variety of predators (fishes, squids,
marine birds and mammals) as well as themselves predating

on a wide range of trophic levels [64], the plasticity of their

visual system may well be a response to this as well as

the pressing need to find mates in the relatively sparse

ocean world. Whatever the case, this plasticity most likely

contributed to the great success of the family in the deep-sea.

Myctophids represent a valued fish family at several

levels. Ecologically, they play an essential role (central link)

in the marine ecosystem by providing energy to the deeper

levels of the ocean [17,53]. Economically, their status as one

of the most abundant fish on Earth [53] unfortunately

makes them an attractive and still underexploited target for

diverse human uses by fisheries [17,65]. Finally, their extre-

mely high abundance and diversity at all levels (species,

ecology and behaviour) make the family a prime model for

comparative studies, especially to shed light on evolution in

the deep-sea [65].
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