PROCEEDINGS A

rspa.royalsocietypublishing.org

Research @

CrossMark

click for updates
Cite this article: Neff P Madeo A, Barbagallo
G, d’Agostino MV, Abreu R, Ghiba I-D. 2017 Real
wave propagation in the isotropic-relaxed
micromorphic model. Proc. R. Soc. A 473:
20160790.
http://dx.doi.org/10.1098/rspa.2016.0790

Received: 21 October 2016
Accepted: 29 November 2016

Subject Areas:
mechanics, wave motion, mathematical
physics

Keywords:

ellipticity, positive definiteness, real wave
velocity, rank-one convexity, acoustic tensor,
relaxed micromorphic model

Author for correspondence:
Patrizio Neff
e-mail: patrizio.neff@uni-due.de

THE ROYAL SOCIETY

PUBLISHING

Real wave propagation in the
isotropic-relaxed
micromorphic model

Patrizio Neff', Angela Madeo?*, Gabriele
Barbagallo>®, Marco Valerio d’Agostino?, Rafael

Abreu® and lonel-Dumitrel Ghiba®”8

Nonlinear Analysis and Modelling, Fakultdt fiir Mathematik,
Universitdt Duishurg-Essen, Mathematik-Carrée,
Thea-Leymann-StralSe 9, 45127 Essen, Germany

2| GCIE SMS-ID and LaMCoS-CNRS, INSA-Lyon, Université de Lyon,
20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France

H1UF, Institut Universitaire de France, 1 rue Descartes, 75231 Paris
Cedex 05, France

3nstitut filr Geophysik, Westfalische Wilhelms-Universitét Miinster,
Corrensstrale 24, 48149 Miinster, Germany

6 ehrstuhl fiir Nichtlineare Analysis und Modellierung, Fakultit fiir
Mathematik, Universitat Duisburg-Essen, Thea-Leymann StralSe 9,
45127 Essen, Germany

"Department of Mathematics, Alexandru loan Cuza University of
lasi, Boulevard, Carol I, No. 11, 700506 lasi, Romania

80ctav Mayer Institute of Mathematics of the Romanian Academy,
lasi Branch, 700505 lasi, Romania

AM, 0000-0003-1940-9853

For the recently introduced isotropic-relaxed
micromorphic generalized continuum model, we
show that, under the assumption of positive-definite
energy, planar harmonic waves have real velocity.
We also obtain a necessary and sufficient condition
for real wave velocity which is weaker than the
positive definiteness of the energy. Connections to
isotropic linear elasticity and micropolar elasticity are
established. Notably, we show that strong ellipticity
does not imply real wave velocity in micropolar
elasticity, whereas it does in isotropic linear elasticity.

© 2017 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2016.0790&domain=pdf&date_stamp=2017-01-11
mailto:patrizio.neff@uni-due.de
http://orcid.org/0000-0003-1940-9853

1. Introduction

Investigations of real wave propagation and ellipticity, in principle, are not new. Indeed, it is
textbook knowledge for linear elasticity that positive definiteness of the elastic energy implies
real wave velocities (phase velocities) v = w/k, where o [rads™!] is the angular frequency and
k [radm~!] € R is the wavenumber of planar propagating waves. In classical elasticity, having
real wave velocities is equivalent to rank-one convexity (strong ellipticity or Legendre-Hadamard
ellipticity). Moreover, ellipticity is equivalent to the positive definiteness of the acoustic tensor.
For anisotropic linear elasticity, see [1], whereas for anisotropic nonlinear elasticity we refer the
reader to [2-5].

The same question of ellipticity and real wave velocities in generalized continuum mechanics
has been discussed for micropolar models, e.g. in [6] and for elastic materials with voids in [7].
For the isotropic micromorphic model, results can be found with respect to positive-definite
energy and/or real wave velocity in Nowacki [8], Smith [9], Mindlin [10,11] and Eringen [12,
pp. 277-280]. These latter results present conditions which are neither easily verifiable nor are
truly transparent. This is due to the very high number of material coefficients of the Eringen—
Mindlin theory that are strongly reduced in the relaxed micromorphic model [13]. Indeed, the
implication that positive definiteness of the energy always implies real wave velocities is not
directly established and demonstrated. In this paper, we investigate the relaxed micromorphic
model in terms of conditions for real wave velocities for planar waves and establish a necessary
and sufficient conditions for this to happen.

This paper is organized as follows. We shortly recall the basics of the relaxed micromorphic
model and discuss the wave propagation problem for propagating planar waves. Because we
deal with an isotropic model, we can, without loss of generality, assume wave propagation in one
specific direction only. The dispersion relations are then obtained, and real wave velocities, under
the assumption of uniform positiveness of the elastic energy, are established.

We next present a set of necessary and sufficient conditions for real wave velocities in the
relaxed micromorphic model which is weaker than the positivity of the energy, as is the strong
ellipticity condition with respect to positive definiteness of the energy in the case of linear
elasticity. Then, for didactic purposes, we repeat the analysis for isotropic linear elasticity in order
to see relations of our necessary and sufficient condition to the strong ellipticity condition in linear
elasticity. Similarly, we discuss micropolar elasticity and establish the necessary and sufficient
conditions for real wave propagation. We finally show that strong ellipticity in micropolar and
micromorphic models is not sufficient for having real wave velocities, when dealing with plane
waves.

2. The relaxed micromorphic model

The relaxed micromorphic model has been recently introduced into continuum mechanics in [14].
In subsequent works [15-18], the model has shown its wider applicability compared with the
classical Mindlin-Eringen micromorphic model in diverse areas [10-12,19].

The dynamic relaxed micromorphic model counts only eight constitutive parameters in
the (simplified) isotropic case, namely five elastic moduli pe, Ae, Umicros Amicro, Mc [Pa], one
characteristic length L. [m], the average macroscopic inertia p [kg] and the microinertia
n [kg m~']. The simplification consists of assuming one scalar microinertia parameter n and a
uniconstant curvature expression. The characteristic length, L., is intrinsically related to non-local
effects due to the fact that it weights a suitable combination of first-order space derivatives of the
microdistortion tensor in the strain energy density (2.1). For a general presentation of the features
of the relaxed micromorphic model in the anisotropic setting, we refer the reader to [20].

(a) Elastic energy density

The relaxed micromorphic model couples the macroscopic displacement u € R3, and an
affine substructure deformation attached at each macroscopic point is encoded by the
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microdistortion field P € R3*3. Our novel relaxed micromorphic model endows the Mindlin—
Eringen representation of linear micromorphic models with the second-order dislocation density
tensor « = —Curl P instead of the full gradient VP.! In the isotropic hyperelastic case, the elastic
energy density reads

A
W= ptellsym (Vu = P)I* + =2 (tr(Vu — P))? + pcl| skew(Vu — P)|2

+ Jmicro l sym PJI% + mm(trp)z pel CnC rl P|2

2 e +3 e
3

isotropic elastic energy

= ltel| devsym (Vu — P)|* + (tr(Vu —=P)*+  pcll skew(Vu — P)|>

rotational elastic coupling

2imicro + 3Ami
+ ol dev sym PP 4 2imiro £ 3hmicro iy ppp y el relicatrr e
microself energy simpliﬁed isotropic curvature

where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen
micromorphic model. The model is well posed in the statical and dynamic case even for zero
Cosserat couple modulus . =0; see [21,22]. In that case, it is non-redundant in the sense of [23].
Well-posedness results for the statical and dynamic cases have been provided in [14], making
decisive use of recently established new coercive inequalities, generalizing Korn’s inequality to
incompatible tensor fields [24-28].

Decisive for the relaxed micromorphic formulation is the definition of the elastic energy in
terms of suitable strain tensors. Because Vu is the macroscopic displacement gradient and P is
the microdistortion, it appears possible to use the non-symmetric relative (elastic) strain tensor
Vu — P as the basic building block in the energy. Using the Cartan-Lie orthogonal decomposition,
we may introduce

2ihe + 3e
3

The microstructure contribution based on P alone is restricted, by infinitesimal frame
indifference, to

tell devsym (Vi — P)|? + (tr(Vu — P))? + pcll skew(Vu — P)|%. (2.2)

2 pmicro + 3Amicro
3

Mec

[imicroll dev sym P||? + (tr P> + | Curl P2 (2.3)

Strict positive definiteness of the potential energy is equivalent to the following simple relations
for the introduced parameters [14]:

te>0, >0, 2pe+3re>0, HUmicro>0, 2imicro +3Amicro >0 and Lc>0. (24)

As for the kinetic energy density, we consider that it takes the following (simplified) form:

p n
J= el + JIP A2, (2.5)
——
simplified microinertia

where p > 0 is the value of the averaged macroscopic mass density of the considered material,
whereas 7 > 0 is its microinertia density.

For very large sample sizes, a scaling argument shows easily that the relative characteristic
length scale L. of the micromorphic model must vanish. Therefore, we have a way of comparing

a classical first-gradient formulation with the relaxed micromorphic model and to offer an
a priori relation between the microscopic parameters Ae, Amicro, Me, Mmicro, ON the one side, and

1The dislocation tensor is defined as a;j = —(Curl P);j = —Py, kejin, where € is the Levi-Civita tensor.
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the resulting macroscopic parameters Amacro, 4macro, ON the other side [20,29,30]. We have
(2ute + 3re)2tmicro + 3Amicro) and  fmacro = Me Kmicro ) (2.6)

(2ftmacro + Srmacro) =
macte macte (2pte + 3re) + (2ptmicro + 3Amicro) HMe + Kmicro

where macro, Amacro are the moduli obtained for L. — 0.
For future use, we define the elastic bulk modulus ., the microscopic bulk modulus kmjcro and
the macroscopic bulk modulus kmacro, respectively,

2pte + 3he 2ptmicro + 3Amicro 2ptmacro + 3Amacro
Ke=—"F—"—, Kmicro= ———7 and Kmacro= ——— - (2'7)
3 3 3
In terms of these moduli, strict positive definiteness of the energy is equivalent to
ue>0, >0, ke>0, tmicro>0, Kmicro>0, Lc>0. (2.8)

If strict positive definiteness (2.8) holds, we can write the macroscopic consistency conditions as

KeKmicro e ltmicro
Kmacro = ————— and fimacro = —"""—, 29)
Ke + Kmicro He + Hmicro
and, again under condition (2.8),
KmicroKmacro KeKmacro MmicroMmacro
Ke=—"—"—"—"—"—"—"—", Kmicro=——"_ e=-
Kmicro — Kmacro e — Kmacro Mmicro — Mmacro (2 10)
MeMmacro ’
and Mmicro =~ -
e — Mmacro
Here, strict positivity (2.8) implies that
Ke + Kmicro > 0, Me + Umicro >0,  Ke > Kmacro,  Kmicro > Kmacro 2.11)
and Me > Hmacro,  Mmicro = Mmacro-
Because it is useful in what follows, we explicitly remark that
4 2ue + 3A 4 4pe + 3k,
2Me+)\e:§lle+%:§ﬂe+/(e:%
4 43 (2.12)
. P
and 2Mmicro + Amicro = w-

With these relations, it is easy to show how e > 0 and ke > 0 imply 2jte + Ae > 0. Moreover, as
shown in appendix A (equations (A 2) and (A 3)), we note here that if only e + tmicro > 0 and
Ke + Kmicro > 0, then the macroscopic parameters are less than or equal to respective microscopic
parameters, namely

Ke = Kmacro,  Kmicro = Kmacro,  Me = Mmacro  and  fimicro = fmacro, (2.13)

and, moreover, the following inequalities are satisfied:

2jte + de > 2ftmacro + Amacro,  2Mmicro + Amicro = 24macro + Amacro

4/imacro + 3ke (2.14)

and 3 > 2/tmacro + Amacro-

Note that the Cosserat couple modulus 1. [31] does not appear in the introduced scale between
micro and macro.
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(b) Dynamic formulation

The dynamic formulation is obtained by defining a joint Hamiltonian and assuming stationary
action. The dynamic equilibrium equations are

pu gt =Div[2pe sym (Vu — P) + 2uc skew(Vu — P) + Ae tr (Vu — P)1]
and nP it = —pe LgCurl Curl P 4 2pe sym(Vu — P) + 2uc skew(Vu — P) (2.15)
+ e tr (Vu — P)1 — [2imicro sym P + Amicro tr (P)1].

We note here that the presence of the Curl P in the energy generates a non-local term Curl Curl P in
the equation of motion, whereas the possibility of band gaps is still present; see [15]. The presence
of the Curl P term is essential to simultaneously allow us to describe the non-localities and band
gap in an enriched continuum mechanics framework.

Sufficiently far from a source, dynamic wave solutions may be treated as planar waves.
Therefore, we now want to study harmonic solutions travelling in an infinite domain for the
differential system (2.15). To do so, we define

P°:=1tr(P),  Ppj:=(skewP); = (P — P;),
PP .= P11 — PS, P(ij) = (sym P)ij = %(Pi]‘ + P]',') (2.16)
and PV:=Py — P33

and we introduce the unknown vectors

v = (u1,PP,P%), v, = (ur,Pao), Pz, t=2,3 and wvq= (P(zs),P[za],PV)~ (217)
—_—
longitudinal transversal uncoupled

The definition of the unknown vectors was made considering the coupling of the variables in the
equations of motion; see [15-18,32-36]. More particularly, it has been shown in these previous
works that three sets of equations can be isolated: one involving only longitudinal quantities,
one involving only transverse quantities and one of three completely uncoupled equations. We
suppose that the space dependences of all introduced kinematic fields are limited to a direction
defined by a unit vector & € R3, which is the direction of propagation of the wave and which is
assumed given. Hence, we look for solutions of (2.15) in the form

vy = pleiklEmm—on o — greikExm—o) 123 and vy=pteEnm—e  (218)

where gl = (,311, ﬂ%, ﬂ;)T eC3, 7= (B{, B3, ,133’)T eC3and g*= (,8;1, ﬂé, ﬁé)T € C3 are the unknown
amplitudes of the considered waves, C3 is the space of complex constant three-dimensional
vectors,? k is the wavenumber and w is the wave frequency. Because our formulation is isotropic,
we can, without loss of generality, specify the propagation direction & = e;. Then, X = (e1, X)gs =
x1, and we obtain that the space dependences of all introduced kinematic fields are limited to the
component X, which is now the direction of propagation of the wave.? This means that we look
for solutions in the form

v] = ﬁl ei(kxfa)f)/ vy = T ei(kxfa)t)/ = 2[3 and vy = /34 ei(kX*(uf). (219)
Replacing these expressions in equations (2.15), it is possible to express the system (see [15,16]) as

A1-B'=0, A;-B"=0, t=2,3 and A4 B*=0, (2.20)

2Here, we understand that, having found the (in general, complex) solutions of (2.19), only the real or imaginary parts
separately constitute actual wave solutions which can be observed in reality.
3In an isotropic model, it is clear that there is no direction dependence. More specifically, let us consider an arbitrary direction

£ e R%. Now we consider an orthogonal spatial coordinate change Q - e; =£ with Q € SO(3). In the rotated variables, the
ensuing system of PDEs (2.15) is form invariant; see [37].
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with

PN ik2pte ik(2/te + 31e)
o P
m 1 2
Ai(w, k)= k3 ne —? + §k2c3n + @? —gkzcﬁ1 . (2.21)
1ikQ2pe + 3he) 1 2
_5% — k22, —a)2+§k2c2m+w}%
ik2
—w? + kzcg ke —ik— a)2
P
ikite ’ c%l 5 2 cfn )
Ar(w, k) =Az(w, k)= ——2 —o? + 71{ + @2 7k (2.22)
n
: 2 2
1 C C
Ew%k %kz —w? + kaz + w?
and
—a? + 2K+ ? 0 0
Ag(w, k)= 0 —? + 2K+ w? 0 ) (2.23)
0 0 —0? + 2k + o?

Here, we have defined

e L2 He + e _ 2pte + Ae
Cs = 7/ p=——,
p
2(#8 + Kmicro) (2p1e + 3he) + (2Mm1cro + 3Armcro) w0 = 2kc
_—y, = r— 7
= n
| 2Mmlcro + )\mlcro N—n’ucro

Let us next define the diagonal matrix

N 0
diag, = | 0 i@ o |. (2.24)
0 0 iJ3n

Considering y =diag; - # and the matrix A(w,k) = diag; - A1(w, k) - diag 1 it is possible to
formulate the problem (2.20) equivalently as*

_o? 4 K2 % kise ﬁ kQ2pe + 3xe)
P 3 o1 3 NI
- 2\/6 kﬂe 2 1 %) > \/i 20 7
Ar-y 3 o w? + 3k 2, + w3 3 K2c2, v|=0 (2.25)
V3
VB k(2pte + 3he) V2400 Co? 4+ 222 4 o2
3 N 3 3o mor

“Tt is possible to face the problem in two more equivalent ways. The first one is to consider from the start that the amplitudes

of the microdistortion field are multiplied by the imaginary unit i, i.e. 8 = (1,i82,if3)" € C3, as done in [10, p. 24, equation
N ]

8.6]. Doing so, we obtain a real matrix that can be symmetrized with diag, = < 0 @ 0 ) On the other hand, it is also
0 0 V3

possible to consider from the beginning g = (\/pp1,i(~/61/2)B2,i+/31 B3)' e C3, obtaining directly a real symmetric matrix.
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Figure 1. Dispersion relations «» = (k) [17] for the relaxed micromorphic model with non-vanishing Cosserat couple modulus
e > 0. Uncoupled waves (a), longitudinal waves (b) and transverse waves (c). TRO, transverse rotational optic; TSO,
transverse shear optic; TCVO, transverse constant-volume optic; LA, longitudinal acoustic; LO;—L0,, first and second longitudinal
optic; TA, transverse acoustic; T0,—T0,, first and second transverse optic. (a) detAs(w, k) =0; (b) det/ﬂ(w, k) =0;
(c) det A (e, k) = 0.

Analogously considering

Jo 0 0
diag,=| 0 ivZy 0 |, (2.26)
0 0 iV
it is possible to obtain A (w, k) = As(w, k) = diag, - A2(w, k) - diag, 1
—0? + K2 k2 k2
: N N
_ _ 2 2
Ax(w,K) = As(w, k) = Woe o %’”1@ +o? %"18 . 2.27)
N
k20 g2 —0? + o + w?
N 2 2 !

In order to have non-trivial solutions of the algebraic systems (2.20), one must impose that
detA;(w,k) =0, detAy(w,k)=detAz(w,k)=0 and detAs(w,k)=0, (2.28)

the solution of which allows us to determine the so-called dispersion relations w = w(k) for
the longitudinal and transverse waves in the relaxed micromorphic continuum (figure 1).> The
solutions of the eigenvalue problem obtained via the proposed decomposition are the same as the
ones obtained via the standard formulation shown in appendix Aa with the full 12 x 12 matrix;
for more details, see [34]. For estimates on the isotropic moduli, we refer the reader to [17,33] and,
for a comparison with other micromorphic models, to [32,36]. For solutions w = w(k) of (2.28), we
define

phase velocity: v = 2

dw(k)
k k-

and group velocity: (2.29)
Real wavenumbers k € R correspond to propagating waves, whereas complex values of k are

associated with waves whose amplitude either grows or decays along the coordinate X. In linear

SThe formal limit n — +oco shows no dispersion at all giving two pseudo-acoustic linear curves, longitudinal and transverse
with slopes ¢, = /(2ite + Ae)/p and ¢s = /(e + jtc)/ p, respectively.
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elasticity, phase velocity and group velocity coincide, because there is no dispersion, and both are
real; see section 3.

Because, in this paper, we are interested only in real k (outside the band-gap region), the wave
velocity (phase velocity) is real, if and only if w is real.

Because w? appears on the diagonal only, the problem (2.28) can be analogously expressed as
an eigenvalue problem

det(B1(k) — 0*1) =0, det(Ba(k) — 0> 1)=0

(2.30)
and det(B3(k) — 1) =0, det(Bs(k) — 0> 1) =0,
where
212 2V6 ke V3 k(e + 3he)
r 3 Jon 3 NI
26 kp 1 V2
Bi(k) = = pen §k2c$n + @? —?kchn , (2.31)
VBkue+3e) V255 2000 o
3 Jpn 3 " 3 P
K22 k\/iﬂe _ k“/ilic
° N N/
2 2
By (k) = B3 (k) = We G 2 g2 (2.32)
P 2 2
_ k\/i,bbc @kz ikZ + wz
NG 2 2 !
2k + o? 0 0
and By(k) = 0 22+ w? 0 . (2.33)
0 0 2k + w?

Note that By(k), Ba(k), B3(k) and By(k) are real symmetric matrices and, therefore, the resulting
eigenvalues ? are real. Obtaining real wave velocities is tantamount to having ®? >0 for all
solutions of (2.30).

() Necessary and sufficient conditions for real wave propagation

We show next that all the eigenvalues w? of By(k), Bo(k) and B3(k) are real and positive for every
k+#0 and non-negative for k=0, provided certain conditions on the material coefficients are
satisfied. Sylvester’s criterion states that a Hermitian matrix M is positive definite if and only
if the leading principal minors are positive [38]. For the matrix Bj, the three principal minors are

Qe + A
(B = %, (2.34)

k2
(Cof (B1))33 = %[6(2Me + Ae)lmicro + 6leke + (21te + Ae)ite L%kz]

k2
= %[2(4“111&@0 + 3ke) (e + Mmicro) + (2 e + Ae)ite L%kz] (2.35)
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and
k2
det(By) = % [6Kekmicro(tte + Mmicro) + 8itemicro(Ke + Kmicro)

+ (2pte + Ae)2imicro + Amicro) e Lgkz]
k2
= %[6(/% + Kmicro)(Me + Mmicro)(2/macro + Amacro)

+ (2pte + he)itmicro + Amicro)ite LEK]. (236)
The three principal minors of By are clearly positive for k # 0 if®

e >0,  micro >0, Ke+kmicro >0, 2imacro + Amacro >0

(2.37)
and 4itmacro +3ke >0, 2pe +Ae >0,  2umicro + Amicro > 0.
Similarly, for the matrix By, the three principal minors are
He + 1L
(Bo)i1 = ———, (2.38)
0
K 2:2
(Cof(B))33 = %[4(%/% + Kmicro(ie + te)) + (ke + trc) e Lk?] (2.39)
K> 2,2
and det(By) = %[‘Hlvmicrol/«cﬂe + (Me + ) Umicrotte Lck 1. (2.40)

For the matrix By (k) = B3(k), considering positive 7, p and separating terms in the brackets by
looking at large and small values of k, we can state the necessary and sufficient conditions for strict
positive definiteness of By (k) at arbitrary k # 0,

He>0, fmicro>0 and pc>0. (2.41)

Because By(k) is diagonal, it is easy to show that positive definiteness is tantamount to the set of
necessary and sufficient conditions for k # 0

te>0, ie+ Umicro >0, 1c>0. (2.42)

On the other hand, considering the case k = 0, we obtain that the matrices reduce to

0 0 0 0 0 0 o 0 0
Bi(0)=]0 w? 0|, Bx0)=B30)=|0 w? 0 and Bs0)=|0 &> 0
0 0 o 0 0 o? 0 0 o?

(2.43)
Because the matrices are diagonal for k=0, it is easy to show that positive semi-definiteness is
tantamount to the set of necessary and sufficient conditions
e >0, pe+ fmicro =0, nc>0 and ke + kmicro = 0. (2.44)
Hence, we can state a simple sufficient condition for real wave velocities for all real k

te >0, Mmicro >0, Ke+ Kmicro >0, 2/Amacro + Amacro >0 (2.45)
and 4itmacro +3ke >0, 2pe +Ae >0,  2umicro + Amicro > 0.
In order to see a set of global necessary conditions for positivity at arbitrary k # 0, we consider
first large and small values of k # 0 separately. For k — +00, we must have
2pe + e >0, (zﬂe + )xe)lte Lg >0, (Zl/«e + Ae)(ZMmicro + )\micro)ﬂe L% >0, (2-46)

or analogously
2ie +re >0, e L% >0 and 2umicro + Amicro >0, (2.47)

®We note here that 4itmacro 4 3ke >0 <= 2 fte + Ae > %(ue — Mmacro) <= 2Mmacro + Amacro > Kmacro — Ke. Furthermore, if
Me + Mmicro > 0 and ke + Kmicro > 0, we have 3(2ite + Ae) = 4itmacro + 3ke = 3(2itmacro + *macro); S€€ appeﬂdix A.
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while, for k — 0, we must have

(2.48)

2pe +re >0, (4itmacro + 3ke)(ie + Mmicro) > O}
and (ke + Kmicro)(Me + Mmicro)(2imacro + Amacro) > 0.

Because from (2.41) we have necessarily e > 0, tmicro > 0, and from (2.44) we get ke + Kmicro > 0,
and considering together the two limits for k, we obtain the necessary condition

24te +re >0,  2pmicro + Amicro > 0, 4imacro + 3ke >0, Ke + Kmicro > 0} (2.49)

and e >0, Mmicro > 0, e >0, 2pmacro + Amacro > 0.

Inspection shows that (2.49) is our proposed sufficient condition (2.37). From pe > 0 and ptmicro >
0, it follows that pmacro > 0. Therefore, condition (2.49) is necessary and sufficient. We have shown
our main proposition as follows.

Proposition (real wave velocities). The dynamic relaxed micromorphic model (equation (2.15)) admits
real planar waves if and only if

ue=0, ne>0, 2pe+2re>0,
Mmicro > 0, 2imicro + Amicro > 0,

(2.50)
(Mmacro > 0), 2tmacro + Amacro > 0

and Ke + Kmicro > 0,  4ftmacro + 3 ke > 0.

In (2.50), the requirement fimacro >0 is redundant, because it is already assumed that
Me, micro > 0. It is clear that positive definiteness of the elastic energy (2.4) implies (2.50). We
remark that, as shown in appendix Aa, the set of inequalities (2.50) is already implied by

e >0, fmicro >0, c>0, Ke+Kmicro>0 and 2umacro + Amacro > 0. (2.51)

Finally letting tmicro — +00 and &mijcro — +00 (O micro = +00 and Amicro > const.) generates the
limit condition for real wave velocities (e = tmacro)

Mmacro >0, uc>0 and 2umacro + Amacro >0, (2.52)

which coincides, up to jic, with the strong ellipticity condition in isotropic linear elasticity (see §3)
and it coincides fully with the condition for real wave velocities in micropolar elasticity; see §4.
A condition similar to (2.52) can be found in [10, equation 8.14 p. 26] where Mindlin requires that
Umacro > 0, 2ftmacro + Amacro > 0 (in our notation),” which are obtained from the requirement of
positive group velocity at k =0

dwacoustic, long(o) -0 and dwacoustic, trans(0) ~0.

ar ax (2.53)

Let us emphasize that our method is not easily generalized to two immediate extensions.
First, one could be interested in the isotropic-relaxed micromorphic model with weighted inertia
contributions and weighted curvatures [34]. Second, one could be interested in the anisotropic
setting [20]. In the second case, the block structure of the problem will be lost, and one has to deal
with the full 12 x 12 case; see equation (A 23) in appendix A. Nonetheless, we expect positive
definiteness to always imply real wave propagation.

7Mindlin explains that such parameters ‘are less than those that would be calculated from the strain-stiffnesses [of the unit
cell]. This phenomenon is due to the compliance of the unit cell and has been found in a theory of crystal lattices by Gazis &
Wallis [39].
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Figure 2. Dispersion relations «» = w(k) for the longitudinal acoustic wave LA, and the transverse acoustic TA in the relaxed
micromorphic model (a) and in a classical Cauchy medium (b).

In [34], we show that the tangents of the acoustic branches in k = 0 in the dispersion curves are

o= dwaCOUStiCr long(o) _ 2/tmacro + Amacro and o = dwacoustic, trans(0) _ Mmacro' (2.54)
dk P dk 0

The tangents coincide with the classical linear elastic response if the latter has Lamé constants
Mmacro and Amacro, as shown in figure 2.

3. A comparison: classical isotropic linear elasticity
For classical linear elasticity with isotropic energy density and kinetic energy density
A

W(Vit) = pmacroll sym Vau |+ =28 (te(Vu))?, ] = £ gl (3.1)

The positive definiteness of the energy is equivalent to
Hmacro > 0, 2ftmacro + 3Amacro > 0. (3.2)

It is easy to see that our homogenization formula (2.6) implies (3.2) under the condition of positive
definiteness of the relaxed micromorphic model.

The dynamic formulation is obtained by defining a joint Hamiltonian and assuming stationary
action. The dynamic equilibrium equations are

o it = Div[2pimacro sym (Vi) + Amacro tr( Vi )1]. (3.3)

As before, in our study of wave propagation in micromorphic media, we limit ourselves to the
case of plane waves travelling in an infinite domain. We suppose that the space dependence of all
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introduced kinematic fields is limited to a direction defined by a unit vector £ e R?, which is the
direction of propagation of the wave. Therefore, we look for solutions of (3.3) in the form

u(x, t) = irel®Exa—o o3 JEI2=1. (3.4)

Because our formulation is isotropic, we can, without loss of generality, specify the direction E=
e1. Then, X = (e1, x)gs = x1, and we obtain

u(x, t) =i el®X= and feC3. (3.5)

With this ansatz, it is possible to write (3.3) as

As(er, @,k) - =0 <= (Bler, k) — * 1) - 1 =0, (3.6)
where
2tmacro + Amacro 2 o? 0 0
o
As(e1, ,k) = 0 Kmacro a2 _ 2 0 (3.7)
p 125
0 0 macro .y _ 2
P
and
> [ 2macro + Amacro 0 0
Blei, k)= — 0 Mmacro 0 . (3.8)
o
0 0 Mmacro

Here, we observe that As(e1, o, k) is already diagonal and real. Requesting real wave velocities
means w? > 0. For k # 0, this leads to the classical so-called strong ellipticity condition

Mmacro >0, 2 macro + Amacro > 0, (3.9)

which is implied by positive definiteness of the energy (3.2).
In classical (linear or nonlinear) elasticity, the condition of real wave propagation (3.9) is
equivalent to strong ellipticity and rank-one convexity. Indeed, rank-one convexity amounts to set

(¢ =ké with [|£]2=1)

2
% W(Vu +ti®&)>0 & (C(1RE), 11 ®&)psxs >0, (3.10)
t=0

where C is the fourth-order elasticity tensor. Condition (3.10) then reads

0 < 2pmacroll sym (ﬁ ® 5)”2 + )\macro(tr(ﬂ ® S))Z = Nmacro”il”2 & ||2 + (Mmacro + )\macro)(ﬁ/ S)DZ@
(3.11)
We may express (3.11) given & € R3asa quadratic form in i € RR3, which results in

fmacro 1% 18 17 + (tmacro + Amacro) (i &)%s = (D()i, il)gs, (3.12)

where the components of the symmetric and real 3 x 3 matrix D(&) read

(2ptmacro + )»macro)glz + l/«macro(€22 + 532) (Amacro + Hmacro)&1&2
(Amacro + macro)§1€2 (2ftmacro + macro)§3 + Hmacro(€] + £3)
(Amacro + Mmacro)€153 (Amacro + fmacro)£152
(Amacro + Hmacro)£1&3
(Amacro + Hmacro)&283
(2macro + Amacro)E2 + macro(E2 + &2)

D)=

(3.13)
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The three principal invariants are independent of the direction £ owing to isotropy and are
given by
tr (D(§)) = 1I§ ||2(4Mmacr0 + Amacro) = k2(4ﬂmacro + Amacro),
tr (Cof D(§)) = II§ ||4Mmacr0(5ﬂmacro + 2Amacro) = k4llmacro(5llvmacro + 2Amacro) (3.14)

and det(D(§)) = II§ ||6/L12nacro(2r Mmacro + Amacro) = kéﬂrzlqacro(zﬂmacro + Amacro)-

Because D(£) is real and symmetric, its eigenvalues are real. The eigenvalues of the matrix D(§)
are k2(2tmacro + Amacro) and k2 ftmacro (Of multiplicity 2) such that positivity at k # 0 is satisfied, if
and only if8

Mmacro >0, 2 fmacro + Amacro > 0, (3.15)

which are the usual strong ellipticity conditions. We note here that the latter calculations also
show that B(ey) = (1/p)k*D(ey). Alternatively, one may directly form the so-called acoustic tensor
B(¢) e R33 by

BE)-ii:=[Ci®¢&)]-& VieR?; (3.16)
in indices we have (B(£));; = Cyjilit; # C(§ ® £). With (3.16), we obtain’

(i, B&) - )ps = ([CA @ E)&, s = (B &, M)ps = (B (6 ® ), L)gas = (B, (6 @ 1) o
\_A\,—/
=:BeR3*3

= (B, 01 ® &)pses = (C(0l ® &), il @ &)aes, (3.17)

and we see that strong ellipticity (C(ii ® &), il ® &)gsxs > 0 is equivalent to the positive definiteness
of the acoustic tensor B(&).

4. Afurther comparison: the linear Cosserat model

In the isotropic hyperelastic case, the elastic energy density and the kinetic energy density of the
Cosserat model read

A
W = tmacroll sym Vit | + puc|l skew(Vu — A)|% + “‘;“" (tr( Vi)

2
+ ““‘%“’Lcn(:urmn2 (41)

P 2, N 2
d == — A7,
an ] 2||”,t|| +2|| Al

Introducing the canonical identification of R3 with so(3), A can be expressed as a function of
aeR3as

0 —a3 ap
A=anti(a)=| a3 0 —a|. (4.2)
—ap a 0

Here, we assume for clarity a uniconstant curvature expression in terms of only |Curl A||2. Strict
positive definiteness of the potential energy is equivalent to the following simple relations for the

8The eigenvalues of D(¢) are independent of the propagation direction & € R?, which makes sense for the isotropic
formulation at hand.

The term [C(i ® £)] - (il ® &) that in index notation reads Cyilx& i, is different from C[(il ® €) - (il ® £)], i.e. Cijuiix&mlné).
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introduced parameters:

2macro + 3Amacro >0, fmacro >0, ic>0 and Lc>0. 4.3)

The dynamic formulation is obtained by defining a joint Hamiltonian and assuming stationary
action. The dynamic equilibrium equations are
pu it = Div[2pimacro sym (Vu — A) + 2uc skew(Vu — A)
+ Amacro tr(Vu — A)1] (44)

and nA = —/LmacroL% skew(Curl Curl A) + 2 e skew(Vu — A);
see also [40-43] for formulations in terms of axial vectors. Note that, for zero Cosserat couple
modulus pu. =0, the coupling of the two fields (1, A) is absent, in opposition to the relaxed

micromorphic model (equation (2.15)). Considering plane and stationary waves of amplitudes
il and 4, it is possible to express this system as

Aplw,0) - (11 81)T=0, Ap(wk)-(la —d3)' =0, As(w,k) (13 d)" =0, (4.5)

where
K2 (2itmacro + Amacro) 0
2
Ag(w, k) = p-w 4.6
6 ) 0 (zﬂmacrOL%k2 + 24c) 46)
n—aw?
and
k2 (Mmacro + Hc) o 2ikpic
2
- P
Ag(w,k) = P 4.7)
ikpe (kzﬂmacroL% +4p0) — w2
n (2n)

As done in the case of the relaxed micromorphic model, it is possible to express equivalently the
problem with Ag(w, k) and the following symmetric matrix:

kz(//«macro + 1) \/Ekﬂc
2
. . - p—w N/
Az (k) = diag, - A7(w, k) - diag, ' = , (4.8)
7 7 \/ikl/vc (kzl/vmacroL% +4pic)
N @2n) — w?
where
. [P 0
dlag7_< 0 iva) (4.9)

Because w? appears only on the diagonal, the problem can be analogously expressed as the
following eigenvalue problems:

det(Bs(k) — 0?*1)=0 and  det(By(k) — w?1)=0, (4.10)

where

kz(zﬂmacro + Amacro)

0

Be(k) = L 4.11
k) 0 (2MmacroL%k2 +2/tc) ( )
2

n
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and

i (Mmacro + f4c) ‘/Ek//vc
By (k) = P , P Z (4.12)
\fzkﬂc (k .UvmacroLc + 4/%)
NI (2n)
are the blocks of the acoustic tensor B

Bg 0 0
Bky=| 0 By 0]. (4.13)

0 0 By

The eigenvalues of the matrix Bg(k) are simply the elements of the diagonal; therefore, we have

/2 A 2 L2K2 +2
@acoustic, long(k) =k w and Woptic, long(k) :\/ Hmacro ; * MC, (4.14)

whereas for By(k) it is possible to find

Wacoustic, trans (k) = \/a(k) - a(k)? — b?k?  and Woptic, trans (k)= \/a(k) +v a(k)? — b2k?, (4.15)

where we have set

4pe + lfimacroL%k2 Mmacro + Hc kz and b2 —3 Mmacro(4ftc + kng(/‘-macro + 1e))

p on

a(k) = +2

(4.16)
The acoustic branches are those curves w =w(k) as solutions of (4.9) that satisfy w(0)=0. We
note here that the acoustic branches of the longitudinal and transverse dispersion curves have,
as tangent in k = 0,10

= dwacoustic, 10“8(0) _ 2 tmacro + Amacro and o = dwacoustic, trans(O) _ Mmacrol ( 4.17)
dk p dk 0

respectively. Moreover, the longitudinal acoustic branch is non-dispersive, i.e. a straight line with
slope (4.17)1. The matrix Bg(k) is positive definite for arbitrary k # 0 if

2/tmacro + Amacro >0,  Mmacro >0, e >0. (4.18)

Using the Sylvester criterion, By(k) is positive definite, if and only if the principal minors are
positive, namely

(By)11 = k2 (Mmacro + Hc) -0

2 (4.19)
and det(B7) = %(Zhimacroﬂc + kzﬂmacroL%(Mmacro + 1e)) >0,
from which we obtain the condition
Mmacro + ¢ >0,  fmacro >0 and e >0. (4.20)

10To obtain the slopes in 0, it is possible to search for a solution of the type w =ak and then evaluate the limit for 2 — 0; see
[34] for a thorough explanation in the relaxed micromorphic case.
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Considering these two sets of conditions, it is possible to state a necessary and sufficient condition
for the positive definiteness of B (k) and B7(k) and therefore of the acoustic tensor B(k)

2macro + Amacro >0, Mmacro >0 and >0, (4.21)

which are implied by the positive definiteness of the energy (4.3). Eringen [12, p. 150] also obtains
correctly (4.18) and (4.20) (in his notation jic = «/2, tmacro = HEringen + £ /2).

In [44,45], strong ellipticity for the Cosserat micropolar model is defined and investigated. In
this respect, we note that ellipticity is connected to acceleration waves, whereas our investigation
concerns real wave velocities for planar waves. Similarly to [46], it is established in [44,45] that
strong ellipticity for the micropolar model holds if and only if (the uniconstant curvature case in
our notation)

2tmacro + Amacro >0 and Mmacro + e > 0. (4.22)

We conclude that, for micropolar material models (and therefore also for micromorphic
materials), strong ellipticity (4.22) is too weak to ensure real planar waves because it is implied
by, but does not imply, (4.21). This fact seems to have been appreciated also in the study of the
Cosserat model [47-51].

5. Conclusion

In this paper, we derive the set of necessary and sufficient conditions that have to be imposed on
the constitutive parameters of the relaxed micromorphic model in order to guarantee

— positive definiteness;
— real wave velocity; and
— Legendre-Hadamard strong ellipticity condition.

We show that if, on the one hand, definite positiveness implies real wave propagation, on the
other hand, real wave propagation is not guaranteed by the strong ellipticity condition.

We conclude that in strong contrast to the case of classical isotropic linear elasticity, where
the three concepts are known to be equivalent, in the case of the relaxed micromorphic continua
only definite positiveness of the strain energy density can be considered to be a good criterion
to guarantee real wave speeds in the considered media. The proposed considerations can be
extended to all generalized continua where the equivalence between the three notions is far from
being straightforward.
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Appendix A

(a) Inequality relations between material parameters

The formulae in §2a are based on the harmonic mean of two numbers «. and kmjcro (Or e and
Mmicro)- If the two numbers are positive, it is easy to see that

Kmacro < MiNn(Ke, Kmicro)- (AT)

Here, we show that the same conclusion still holds if we merely assume that e + kmicro > 0. This
allows for either ke < 0 Or kmicro < 0. Therefore, considering that e + kmicro > 0, even if the energy
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is not strictly positive, it is possible to derive that

2 2 2
KmicroKe KmicroKe + K& — Kg Kmicro + Ke Kg
Kmacro = = =Ke -
Ke + Kmicro Ke + Kmicro Ke + Kmicro Ke + Kmicro
ke
=Ke — <Ke
Ke + Kmicro
<0
2 2 2 (A 2)
d _ Kmicroke _ KmicroKe * Kicro — Kmicro _ Kmicro + Ke K micro
an Kmacro = = = Kmicro -
Ke + Kmicro Ke + Kmicro Ke + Kmicro Ke + Kmicro
2 .
micro
= Kmicro ——— — = Kmicro-
Ke + Kmicro
<0
Considering similarly pte + ftmicro > 0, it is possible to obtain
. . + 2_ 2 . 4 2
_ MmicroMe  MmicroMe T Mg — Mg Mmicro T Me Mg
Mmacro = = = Me -
e + Kmicro e + Kmicro e + Kmicro e + Kmicro
2
He
=Me——— = e
Me + Mmicro
—_—
<0
) ) (A3)
d _ HMmicroMe _ Mmicrolte T Kmicro — Mmicro
an Mmacro = =
Me + Mmicro Me + Mmicro
2 2
_ Hmicro 1 He Hmicro _ Hmicro
= Mmicro - = Mmicro ————— —— = Mmicro-
Me + Umicro Me + Mmicro Me + Umicro
————
<0

Therefore, if jte + tmicro > 0and ke + Kmicro > 0, the macroscopic parameters are less than or equal
to the respective microscopic parameters, namely

Ke = Kmacro, Kmicro = Kmacro, Me = Mmacro,  Mmicro = Mmacro, (A4)

and it is possible to show that

2pe +he= %(4Me + 3ke) = %(4,Uvmacro + 3kmacro) = 2/4macro + Amacro > 0,

2pmicro + Amicro = %(4Mmicro + 3kmicro) = %(4Mmacro + 3kmacro) = 2/Amacro + Amacro > 0,
(2pe + Ae) + (2imicro + Amicro) = 2(2imacro + Amacro) > 0

and  4fmacro + 3ke > 4itmacro + 3kmacro = 3(2/4macro + Amacro) > 0.

Therefore, the set of inequalities (2.50) is implied from the smaller set

te >0, tmicro >0, 1c>0, Ke+ Kmicro>0 and 2tmacro + Amacro > 0.

(A6)
We note here that 3(2ute + Xe) > 4/4macro + 3ke = 3(2tmacro + Amacro), because

3(2ue + re) =4te + 3ke > 4itmacro + 3Kke > 4ftmacro + 3kmacro = 3(2imacro + Amacro)- (A7)

(b) The12 x 12 acoustic tensor for arbitrary direction

We suppose that the space dependence of all introduced kinematic fields is limited to a direction
defined by a unit vector &, which is the direction of propagation of the wave. Therefore, we look
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for solutions of
pu st =Div[2pe sym (Vu — P) + 2uc skew(Vu — P) + Ae tr(Vu — P)1]
and NPy =—pte L%Curl Curl P+ 2 pe sym(Vu — P) + 2uc skew(Vu — P) (A8)
+ de tr (Vi = P)L — [2tmicro Sym P + Amicro tr (P)1],

in the form
u(x, ty =i M= e g2 =1
——
s(x,t)eR/C scalar
o i (A9)
and P(x,t) =D elkEXm—ot) P33
——— 4

s(x,t)eR/C scalar

where i is the polarization vector and P is the polarization matrix. We start by remarking that,
considering A, B € R3*3 we have

Curl(A - B) = Lg(VA) + A - Curl(B), (A 10)

where Lp : R?7 — R3*3 is a linear operator with constant coefficients defined by the appropriate
product rule of differentiation. Therefore, we obtain

Curl(Ps(x, 1)) = Curl(P - 1s(x,t)) =P - Curl(1s(x, 1)), (A11)
where
0 d3s(x,t)  ds(x,t)
Curl(1s(x, t)) = | —d3s(x, ) 0 d1s(x, t) | €s0(3). (A12)

ds(x,t)  —01s(x, t) 0

The derivatives of s(x, t) can be evaluated by considering

d1s(x, t) _ ikéy _
Vis(x, £) = | dos(x, t) | = l®EDm =D | ke, | = l*Em—0Dike = ikes(x, 1). (A 13)
93s(x, 1) ik&s
It can be noted that
Curl(s(x, t) 1) = anti(Vs(x, £)) = e/®EXw ~Dik anti(g) = s(x, t)ik anti(&). (A 14)

Therefore, it is possible to evaluate the Curl Curl P as

Curl Curl(Ps(x, £)) = Curl(P - anti(€) iks(x, 1)) = ik Curl([P - anti(€)] - Ls(x, 1))
€s0(3)

= ikP - anti(¢) Curl( Ls(x, )
=ikikP - anti(€) - anti(€)s(x, ) = —k* P - anti(¢) - anti(§) e ®EXw =D (A 15)
On the other hand, the second derivative of P with respect to time is
Py = 02 (Pel®*EMm oty — _ 2P ke xma—ohy — _ 2Py, 1), (A 16)
Analogously for u, it is possible to evaluate the gradient and the derivatives with respect to time as
Ve =iks(x, )il ® £, wy = —w?iis(x, t). (A 17)
The sym, skew and tr of Vu — P can then be expressed as
sym (Vu — P) = sym (ikil ® &€ — P)s(x, ) = (ik sym (i ® &) — sym P)s(x, 1),
skew(Vu — P) = skew(ikii ® & — P)s(x, ) = (ik skew(il ® &) — skewP)s(x, ) (A18)
and tr(Vu — P) = tr(ikit ® & — P)s(x, t) = (ik(i1, & )gs — tr P)s(x, £).
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Therefore, we have

Div sym (Vu — P) = Div[(ik sym (it ® £) — sym P)s(x, #)]
= (ik sym (il ® §) — sym P) - Vis(x, 1)
= (ik sym (il @ §) — sym P) - (ik&s(x, ))
=—(K sym (il ® &) - & + ik symP - £)s(x, t),
Div skew( Vu — P) = Div[(ik skew(ii ® &) — skewP)s(x, )]
= (ik skew(ii ® &) — skewDP) - Vys(x, )
) (A19)
= (ik skew(it ® &) — skewD) - (ik&s(x, t))
= —(k* skew(it ® £) - & + ik skewP - £)s(x, )
and Div(tr (Vu — P) 1) = Div[((ik{, &)gs — tr P) 1)s(x, )]
= (ik(il, &)gs — trP) 1 - Vas(x, 1)
= (ik(fL, &)po — trP) 1 - (ikés(x, )

= —(k?(i1, & )gs + ik tr P)Es(x, £).
Here, we have considered that, given a generic B € R3*3 and a scalar s(x,t), we have

Div[B s(x, t)] = Div[B]s(x,t) + B - Vys(x, f). (A 20)
——
=0

With all the formulae obtained, it is possible to write (A 8) simplifying s(x, t) everywhere as

—potil = —[2e (R sym (it @ £) - & +ik sym P - &)
+ 21c(kK* skew (il @ £) - & + ik skewP - £)
+ Ae(K? (i1, &) g + ik tr P)]

R R R (A21)
and — nw*P = pe LSkZP anti(§) - anti(§) + 2pe(ik sym (it ® §) — symP)
+ 2 (ik skew(il ® £) — skewP)
+ he(ik(il, &)ps — tr 13)]1 — [214micro Symj) + Amicro tr (f))ﬂ]/
or analogously
— p?il + Qe sym (il ® £) - & + 2p1c skew(il ® &) - & + Ae(fl, &)po§)
+ ik(2ue symf) &+ 2 skewP - E+ Ae tr15.§) =0
and — nw?P — pe L2KP anti() - anti(§) (A22)

+ 2(te + Umicro) Syl'nfJ + 2 SkveJ + (Ae + Amicro) tr (13)11

— 2pteik sym (it ® &) — 2uucik skew(il ® &) — Aeik(il, £)gsll = 0.
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At given § € RR3, this is a linear system in (i, 13) € C12 which can be written in 12 x 12 matrix

format as

A(é/ @, k) 7 = O/

B(g,k) — 0?1

ity
il
i3
I:)n
P
P13
{’21
P
P
P
Ps)
P33

(==l elNolo oo oo oo o)

Here, B(&, k) is the 12 x 12 acoustic tensor. The columns of A are

p? — K (he + 2pe)67 — K2 (e + pe) €5 +83)
_kz()\e — He + [e)é162
_kz()\e — e + pe)érés
ik(he + 2pte)é1
ik(pe + pe)é2
ik(pe + pe)és
—ik(pe — pe)é2

ik}“esl
0
—ik(pte — te)és
0

ik}\eézl

_kz(}he — e + pe)érés
_kz()“e — e + pe)Eaés
Pw? — K (he + 2pte)E3 — k(e + pe) (67 + 3)
ikre&s3
0
—ik(pe — te)&1
0
ikhe&s
—ik(pe — pe)é2
ik(pe + pe)ér
ik(pac + pe)é2

ik(re +2pte)é3

—ik(pe + pe)b2
ik(pe — pe)ér
0
kzﬂe nglEZ
77502 = (Ke + e + Kmicro) — kzl‘ve L%(Sf + 532)
K pe L2618,

[=ReloNe o)

_kz()‘e — Ue + He)6162
pe? — K2 (he + 21e)83 — k(e + pe) (67 +£3)
_kz()‘e — e + pe)éads
ikAe&n
—ik(pe — 1e)é1
0
ik(pee + pe)ér
ik(re + 2ue)é2
ik(pe + pe)ts
0
—ik(pe — 11e)é3
ikAe&n
—ik(he + 2ue)é1
—ikie&n
—ikie&s
nwz — (2(tte + Mmicro) + Ae + Amicro)
—Kpe L2(83 + £3)
kzﬂe L%Sl &
e L2E18
0
_()\e + )\micro)
0

0
0

_()‘e + }‘-micro)
—ik(pc + pe)és
0

ik(ie — pe)ér
ke L2616
ke L262E3
77602 — (e + e + micro) — kZMe LE(SIZ + %_22)
0

0
0

Mo — He —
0

Mmicro

0

(A 23)
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ik(pe — pe)é2 —ikke£1

—ik(pe + pe)é1 —ik(2fte + Le)E2
0 *ik}heSS
0 —Xe — Amicro
Mec — Me — Mmicro 0
, 0 5 0
Air = n0* — (e + e + Mmicro) — k2 fle L%(Szz + 532) , Aig= e L%flfz
2 2
kZMe L;fl‘& nw2 — (e + e + Mmicro) — kz/le LE(E% + 532)
K pe Lz6183 I pe L2E2%3
0 0
0 0
0

Ae = Amicro

. 0 ik(pe — pe)és
—ik(pe + pe)és 0
k(e + pe)é2 —ik(pe + pe)é1
0 0
0 0
B 0 - e = Me — Mmi
A = Puelai6 o A= . ‘
K jie L26285 8
nw? — (ie + e + Hmicro) — K2jte L2(E2 + £2) 16? — (1t + e + Pmicro) — Kpte L2(E2 + £2)
0 2 2
ke L
Me — Me — Mmicro ZMe ;5152
0 ke LE1E3
0 _ik)‘egl
ik(pe — pe)és —ikAe&r
—ik(pe + pe)é2 —ik(re + 2/te)E3
0 e — Ami
O e micro
0
- ~ 0
A= 0 , A= 0
0 e — Ami
Mec — e — Mmicro N fiere
K pe L2616 ke L2£1£3
lez — (e + He + Mmicro) — kzﬂe Lg(slz + 532) kzl’“e L§E2§3
kzﬂe LEEZ& 770)2 — (fe + te + Mmicro) — kz/le Lg(élz + 522)

It is clear that, even with the aid of up-to-date computer algebra systems, it is practically
impossible to determine the positive definiteness of the 12 x 12 acoustic tensor B as dependent
on the given material parameters. In the main body of our paper, we succeed by choosing
immediately the propagation direction & = e1 and by considering a set of new variables (2.16). This
allows us to obtain a certain pre-factorization of B(ey, k) in 3 x 3 blocks. Because the formulation
is isotropic, choosing & = e; is no restriction, as argued before.
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