Open Access Full Text Article

ORIGINAL RESEARCH

Azacitidine and decitabine have different mechanisms of action in non-small cell lung cancer cell lines

Aaron N Nguyen¹ Paul W Hollenbach¹ Normand Richard² Antonio Luna-Moran¹ Helen Brady² Carla Heise¹ Kyle J MacBeth¹

¹Celgene Corporation, San Francisco, CA, USA; ²Celgene Corporation, San Diego, CA, USA

Correspondence: Aaron N Nguyen Celgene Corporation, 1500 Owens Street, Suite 600, San Francisco, CA 94158, USA Tel +1 415 839 7028 Fax +1 415 839 7011 Email anguyen@celgene.com **Abstract:** Azacitidine (AZA) and decitabine (DAC) are cytidine azanucleoside analogs with clinical activity in myelodysplastic syndromes (MDS) and potential activity in solid tumors. To better understand the mechanism of action of these drugs, we examined the effects of AZA and DAC in a panel of non-small cell lung cancer (NSCLC) cell lines. Of 5 NSCLC lines tested in a cell viability assay, all were sensitive to AZA (EC_{50} of 1.8–10.5 µM), while only H1299 cells were equally sensitive to DAC (EC_{50} of 5.1 µM). In the relatively DAC-insensitive cell line A549, both AZA and DAC caused DNA methyltransferase I depletion and DNA hypomethylation; however, only AZA significantly induced markers of DNA damage and apoptosis, suggesting that mechanisms in addition to, or other than, DNA hypomethylation are important for AZA-induced cell death. Cell cycle analysis indicated that AZA induced an accumulation of cells in sub-G1 phase, whereas DAC mainly caused an increase of cells in G2/M. Gene expression analysis of AZA- and DAC-treated cells revealed strikingly different profiles, with many genes distinctly regulated by each drug. In summary, while both AZA and DAC caused DNA hypomethylation, distinct effects were demonstrated on regulation of gene expression, cell cycle, DNA damage, and apoptosis.

Keywords: apoptosis, azacitidine, decitabine, gene expression, non-small cell lung cancer

Introduction

Azacitidine (AZA) (5-azacytidine, Vidaza[®]; Celgene Corporation, Summit, NJ) and decitabine (DAC) (2'-deoxy-5-azacytidine, Dacogen[®]; Eisai Inc., Woodcliff Lake, NJ) are used clinically for the treatment of myelodysplastic syndromes (MDS), a heterogeneous group of bone marrow stem cell disorders.^{1,2} Both AZA and DAC are cytidine nucleoside analogs that become incorporated into newly synthesized DNA, where they bind DNA methyltransferases (DNMTs) in an irreversible, covalent manner.^{3,4} The sequestration of DNMTs prevents maintenance of the methylation state of DNA, leading to DNA hypomethylation.^{5,6} As a consequence, genes previously silenced by DNA hypermethylation can be re-expressed upon treating cancer cell lines with these DNMT inhibitors.^{7,8} Re-expression of aberrantly methylated genes involved in normal cell cycle control, differentiation, and apoptotic pathways is believed to contribute to the anticancer effects of these drugs.⁹

Clinical activities of AZA and DAC are best established in the hematological malignancies MDS and acute myeloid leukemia (AML), cancers with a high frequency of aberrantly methylated genes.¹⁰ Aberrant DNA methylation of genes involved in DNA repair, cell adhesion, cell cycle, and cell death has also been reported in multiple types of solid cancers, including colon, stomach, breast, ovary, kidney, and lung.¹¹

© 2010 Nguyen et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

For example, in non-small cell lung cancer (NSCLC), hypermethylation of tumor suppressor genes RAS association domain family 1A (*RASSF1A*), adenomatous polyposis coli (*APC*), fragile histidine triad (*FHIT*), and *p16*^{INK4A} has been associated with poor survival.^{12–15} Clinical trials investigating the use of AZA and DAC in solid tumors have been reported, although response rates were poor. In a Phase I study of DAC in patients with cancers involving the lungs, esophagus, and pleura, no objective responses were observed.¹⁶ Similar outcomes were obtained with DAC in patients with other forms of solid tumors.¹⁷ In a Phase II trial of AZA in patients with solid tumors, the responses were minimal and transient.¹⁸ The clinical response rate was also low for the combination of AZA and phenylbutyrate in patients with refractory solid tumors.¹⁹

A better understanding of the mechanistic activities of AZA and DAC will provide insights into rational use of these agents as therapies for solid tumor patients, including potential uses as combination therapies, adjuvant therapies, and maintenance therapies. Here, we directly compared the *in vitro* effects of AZA and DAC on cell viability, DNMT1 protein levels, DNA methylation, DNA damage, apoptosis, cell cycle, and gene expression in NSCLC cell lines. Although AZA and DAC caused similar effects on DNA-mediated markers such as DNMT1 depletion and DNA methylation, the drugs showed very different effects on cell viability, DNA damage, apoptosis, cell cycle, and gene expression.

Results

AZA and DAC have differential effects on NSCLC cell viability

AZA and DAC were compared in a panel of 5 NSCLC cell lines (A549, H1975, H460, H23, and H1299) for their effects on cell viability (Figure 1 and Supporting Information Figure 1). AZA reduced cell viability by at least 75% at high concentrations, with EC_{50} values of 1.8–10.5 μ M (Table 1). In contrast, DAC did not reduce cell viability more than 55%, and EC_{50} values were not reached in 4 (A549, H1975, H460, and H23) of the 5 NSCLC cell lines tested. In H1299

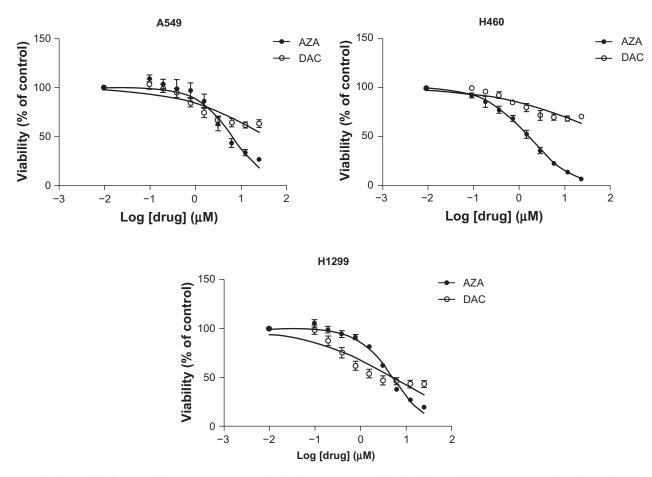


Figure I AZA and DAC differentially affect cell viability in a panel of NSCLC cell lines. Viability of A549, H460, and H1299 cells was assessed after 72 hours of treatment with AZA or DAC (0–25 μM). Error bars represent the standard error of mean of 3 independent experiments, with triplicate wells per experiment. **Abbreviations:** AZA, azacitidine; DAC, decitabine; NSCLC, non-small cell lung cancer.

Table I EC ₅₀ V	values for AZA a	and DAC on NSCL	C cell viability
----------------------------	------------------	-----------------	------------------

	AZA EC ₅₀ ± SEM (μ M)	DAC EC ₅₀ \pm SEM (μ M)
A549	6.3 ± 1.1	>25
H1975	$\textbf{8.6} \pm \textbf{2.9}$	>25
H460	$\textbf{1.8}\pm\textbf{0.3}$	>25
H23	10.5 ± 1.8	>25
H1299	5.1 ± 0.2	$\textbf{5.9} \pm \textbf{2.1}$

Note: EC_{s_0} values were calculated from 3 independent experiments using Graphpad Prism software.

Abbreviations: AZA, azacitidine; DAC, decitabine; NSCLC, non-small cell lung cancer.

cells, DAC EC₅₀ values were calculated; however, the 95% confidence intervals for the EC₅₀ values were poor (data not shown). The EC₅₀ values for AZA and DAC are similar to those reported for drugs commonly used in NSCLC, including gemcitabine, cisplatin, and carboplatin.^{20–22} The distinct dose-response curves and EC₅₀ values indicate differential sensitivities of these NSCLC cell lines to AZA and DAC.

AZA and DAC cause DNMT1 depletion and DNA hypomethylation

To determine whether the differential sensitivities of NSCLC cell lines to AZA versus DAC in cell viability assays reflected differences in the incorporation of each drug into DNA, DNMT1 protein depletion and DNA hypomethylation were evaluated as indirect measures of drug incorporation into DNA. When A549 and H1299 cells were treated with AZA or DAC for 20 hours, DNMT1 protein levels were reduced (Figure 2). Dose-dependent decreases in DNMT1 protein were observed

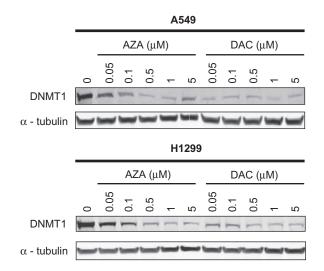
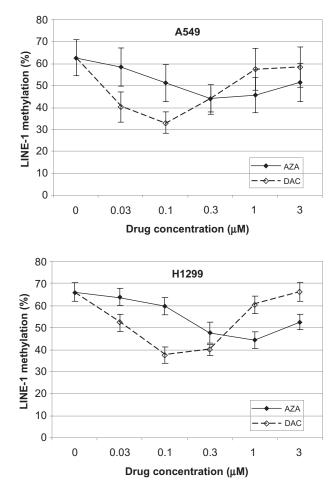



Figure 2 AZA and DAC cause DNMTI depletion in NSCLC cell lines. A549 and H1299 cells were treated with AZA or DAC (0–5 μM) for 20 hours and DNMTI protein was detected by Western blotting of cell extracts. Alpha-tubulin was used as a loading control.

Abbreviations: AZA, azacitidine; DAC, decitabine; DNMTI, DNA methyltransferase I; NSCLC, non-small cell lung cancer. with AZA, while near-maximal reduction of DNMT1 protein was observed at the lowest concentration (0.05 μ M) of DAC. In A549 cells, DNMT1 depletion caused by 5 μ M AZA was not as much as that caused by 0.5 or 1 μ M AZA, possibly as a consequence of cell growth inhibition at the higher AZA concentration.²³ Reduced DNMT1 levels were detected as early as 4 hours after drug treatment (Supporting Information Figure 2). Similar results were obtained in the H460 and H23 cell lines (data not shown).

We next determined whether AZA and DAC caused DNA hypomethylation by examining the methylation status of LINE-1 elements in A549 and H1299 cells treated for 48 hours (Figure 3) or 72 hours (Supporting Information Figure 3). Both AZA and DAC decreased LINE-1 methylation; however, DAC was 3- to 10-fold more potent. Peak hypomethylation was observed at $0.3-1.0 \mu$ M AZA and 0.1μ M DAC. LINE-1 methylation was unaffected at the highest DAC

Figure 3 AZA and DAC reduce DNA methylation in A549 and H1299 cells. LINE-1 DNA methylation was assessed in A549 and H1299 cells after 48 hours of treatment with AZA or DAC (0–3 μ M). Percentage LINE-1 methylation represents the average percentage methylation of 4 CpG sites in duplicate samples, with error bars representing the standard deviation.

Abbreviations: AZA, azacitidine; DAC, decitabine.

concentration tested, possibly as a consequence of cell growth inhibition.²³ DAC modulated the DNA-mediated markers (DNMT1 depletion and DNA hypomethylation) in both cell lines, suggesting that the relative insensitivity to DAC in cell viability assays cannot be attributed to a lack of drug uptake, phosphorylation, and DNA incorporation. These findings rule out dysfunctional deoxycytidine kinase, the rate-limiting kinase in the phosphorylation of DAC, as a possible mechanism of relative DAC-insensitivity,²⁴ and suggest that mechanisms in addition to DNA incorporation are responsible for the greater sensitivity of NSCLC cell viability to AZA.

AZA, but not DAC, robustly induces markers of DNA damage and apoptosis

Phase contrast images of A549 cell cultures after 3 days of drug treatment showed reduced cell numbers and increased debris in AZA-treated cell cultures, but healthy-looking cells in DAC-treated cultures (Figure 4). These findings confirmed results of the cell viability assays (Figure 1). To examine the mechanism(s) of drug-induced cell death, A549 and H1299 NSCLC cell lines were treated with AZA or DAC for 24 or 48 hours, and markers of double-strand DNA (dsDNA) damage (histone-H2AX(ser139) phosphorylation) and apoptosis (PARP cleavage) were evaluated by Western blot (Figure 5 and data not shown). AZA dose-dependently induced histone-H2AX(ser139) phosphorylation and PARP cleavage in A549 cells. Similar results were observed in the H460 cell line (data not shown). There was relatively high basal phosphorylation of histone-H2AX(ser139) in H1299 cells, which was further increased by 10 µM AZA.

High concentrations of AZA also induced PARP cleavage in H1299 cells. In A549 and H1299 cells, DNMT1 protein was completely depleted by DAC treatment; however, neither histone-H2AX(ser139) phosphorylation nor PARP cleavage were induced.

As AZA induced PARP cleavage, we further examined early-apoptotic (AnnexinV-FITC⁺ and 7-AAD⁻) and lateapoptotic (AnnexinV-FITC⁺ and 7-AAD⁺) cell populations by flow cytometry in A549 and H1299 cells treated with AZA (3 μ M) or DAC (3 μ M) for 72 hours (Figure 6). AZA (3 μ M) treatment of A549 and H1299 cells caused a significant increase in the early- and late-apoptotic populations (Figures 6B and 6C). DAC did not significantly cause an increase in these populations. These results demonstrated that AZA, but not DAC, induced dsDNA damage and apoptosis in NSCLC cell lines.

DAC-treated H1299 cells show delayed DNA damage response

AZA and DAC appear to be incorporated into DNA of NSCLC cell lines, as both drugs induced DNMT1 depletion (Figure 2) and DNA hypomethylation (Figure 3). It was therefore surprising that 48-hour treatment with DAC did not induce dsDNA damage (histone-H2AX(ser139) phosphorylation) in A549 and H1299 cells (Figure 5). To better define the DNA damage response of NSCLC cell lines treated with AZA and DAC, we treated NSCLC cell lines with the drugs for an extended period of time. A549 and H1299 cells were treated with AZA or DAC for 6 days and lysates were collected on days 3 and 6 (Figure 7). At the 3-day time point in both cell lines, the results were

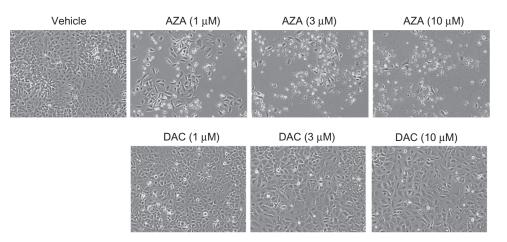


Figure 4 AZA-treated A549 cultures show reduced cell numbers. A549 cells, seeded in 6-well plates, were treated with vehicle or 1, 3, and 10 μ M AZA or DAC for 72 hours. The CoolSNAP ES2 CCD camera (Photometrics) was used to take phase-contrast images of cells under the Plan Fluor 10X objective (Nikon) on the Eclipse Ti-S microscope (Nikon).

Abbreviations: AZA, azacitidine; DAC, decitabine.

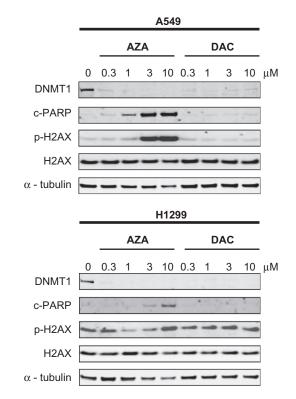
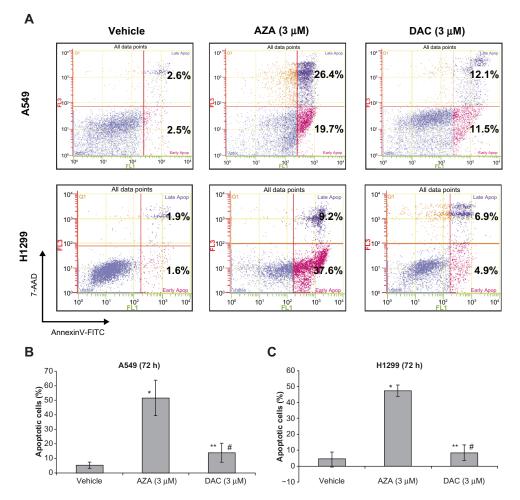


Figure 5 AZA, but not DAC, induces markers of DNA damage and apoptosis in NSCLC cell lines. A549 and H1299 cells were treated with AZA or DAC (0–10 μ M) for 48 hours and Western blotting of cell extracts was used to detect DNMTI, cleaved-PARP, phospho-histone-H2AX(ser139), and total histone-H2AX. alpha-tubulin was used as a loading control.

Abbreviations: AZA, azacitidine; DAC, decitabine; DNMTI, DNA methyltransferase I; NSCLC, non-small cell lung cancer.

similar to those at the 24- and 48-hour time points; AZA, but not DAC, induced histone-H2AX(ser139) phosphorylation and PARP cleavage. In A549 cells, even after 6 days of daily treatment with DAC, there was no induction of histone-H2AX(ser139) phosphorylation and PARP cleavage (Figure 7). The EC_{50} values for AZA and DAC were $4.4 \,\mu\text{M}$ and $2.5 \,\mu\text{M}$, respectively, for A549 cells after 6 days of treatment (Supporting Information Table 1). Although the calculated EC_{50} value for DAC was lower than that of AZA, DAC did not reduce cell viability more than 75%, while AZA almost completely inhibited cell viability (Supporting Information Figure 4). In H1299 cells, substantial histone-H2AX(ser139) phosphorylation, without much effect on PARP cleavage, was observed after 6 days of DAC treatment (Figure 7). Consistent with these results, phase contrast images of H1299 cells treated with DAC for a prolonged period did not show many cells undergoing apoptosis. Rather, prolonged treatment of H1299 cells resulted in fewer cells that are enlarged (data not shown). These results suggest that DAC may have a delayed effect on inducing DNA damage in NSCLC cell lines.


AZA and DAC differentially affect the cell cycle

The effects of AZA and DAC on cell cycle distribution were evaluated in A549 and H1299 cells treated for 72 hours (Figure 8). AZA dose-dependently increased the sub-G1 population in A549 cells, consistent with the induction of apoptosis (Figures 4–6). AZA also caused a minor increase in the sub-G1 population in H1299 cells (Figure 8), consistent with the induction of early-, rather than late-, apoptotic cell population at this time point (Figure 6). DAC also caused a minor increase in the sub-G1 population in these cell lines; however, the more prominent effect of DAC was an increase in the G2/M population.

AZA and DAC modulate expression of different sets of genes

Although both AZA and DAC caused DNMT1 depletion and DNA hypomethylation in NSCLC cell lines, the drugs had very different effects on cell viability, DNA damage, apoptosis, and cell cycle. To better understand the molecular pathways regulated by each drug, A549 and H1299 cells were treated with a dose range (0.3–3.0 μ M) of AZA or DAC for 48 hours, and effects on gene expression were assessed by microarray analysis. The total number of genes regulated by AZA or DAC, and the overlap of regulated genes, are presented in Table 2. At the lower drug concentration (0.3 μ M), AZA and DAC modulated few genes, with DAC modulating 4- to 20-fold more genes than AZA. At the higher drug concentrations (1 and 3 μ M), many more genes were modulated, with AZA typically modulating 2- to 5-fold more genes than DAC. Interestingly, the number of genes modulated in common between the 2 drugs was low (6%-22%). For example, in A549 cells, AZA (3 µM) and DAC (3 μ M) commonly upregulated 66 genes, while AZA uniquely upregulated 636 genes and DAC uniquely upregulated 413 genes (Table 2).

Functional groupings of the modulated genes were determined using Gene Ontology classifications in NextBio. Different biogroups were regulated by each drug. The top 200 biogroups most significantly regulated by each drug (at 3 μ M) are shown in Supporting Information Tables 2–5. In H1299 cells, AZA treatment caused a general downregulation of genes within the "cell cycle", "metabolic process", and "biosynthetic process" biogroups. DAC treatment of H1299 cells caused a general upregulation of genes within the "cell differentiation" biogroup. In A549 cells, AZA treatment

Figure 6 AZA, but not DAC, strongly induces apoptosis in NSCLC cell lines. A549 and H1299 cells were treated with AZA or DAC (3 μ M) for 72 hours, and staining for AnnexinV-FITC (x-axis) and 7-AAD (y-axis) was detected by flow cytometry. **A**) The percentages of early apoptotic cells and late apoptotic cells are represented in the lower right and upper right quadrants, respectively. Representative data of 4 independent experiments are shown. **B**) Percentage (mean ± SD; n = 4) of apoptotic (early and late) cells with AZA or DAC treatment of A549 cells. *P < 0.001 versus "vehicle". *P = 0.328 versus "vehicle". *P < 0.001 versus "AZA (3 μ M)". **C**) Percentage (mean ± SD; n = 4) of apoptotic (early and late) cells with AZA or DAC treatment of H1299 cells. *P < 0.001 versus "vehicle". *P = 0.442 versus "vehicle". *P < 0.001 versus "AZA (3 μ M)".

Abbreviations: AZA, azacitidine; DAC, decitabine; NSCLC, non-small cell lung cancer.

caused downregulation of genes involved in extracellular matrix, while DAC treatment caused downregulation of genes involved in cell cycle. Aside from the regulation of genes related to extracellular matrix, these results are similar to the gene expression data from AML cell lines treated with AZA and DAC.25 Interestingly, AZA treatment of A549 and H1299 cells caused a general upregulation of genes within the "response to DNA damage stimulus" and "DNA repair" biogroups (Figure 9, Supporting Information Tables 2 and 4). These results are consistent with the induction of the dsDNA damage marker (histone-H2AX(ser139) phosphorylation) by AZA in these cells (Figure 5). On the contrary, DAC treatment caused a general downregulation of genes within these biogroups in A549 cells (Figure 9, Supporting Information Table 3), and DAC did not significantly modulate these biogroups in H1299 cells (Supporting Information Table 5). Collectively,

these results indicate that AZA and DAC regulate different cellular pathways.

Discussion

In this study, we revealed differential effects of AZA and DAC on cell viability in a panel of NSCLC cell lines, with AZA inducing greater cellular toxicity and markers of apoptosis (PARP cleavage and AnnexinV staining) in comparison to DAC. Furthermore, AZA induced phosphorylation of histone-H2AX(ser139), a marker of dsDNA damage, while DAC had no, or delayed, effect on this endpoint. The striking differences in the response of NSCLC cell lines to these structurally similar cytidine nucleoside analogs further support emerging evidence that the common perception of these agents as mechanistically interchangeable DNA hypomethylating agents should be reconsidered.^{25,26}

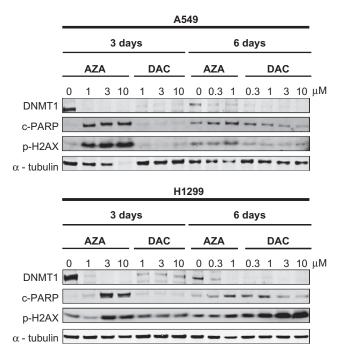


Figure 7 DAC-treated H1299 cells show delayed DNA damage response. A549 and H1299 cells were treated with AZA or DAC (0–10 μ M) for 3 and 6 days, and Western blotting of cell extracts was used to detect DNMT1, cleaved-PARP, and phospho-histone-H2AX(ser139). Alpha-tubulin was used as a loading control. **Abbreviations:** AZA, azacitidine; DAC, decitabine; DNMT1, DNA methyl-transferase I.

Other recent publications also provide data which differentiate AZA from DAC. For example, an *in vitro* study evaluating the response of a panel of human cancer cell lines to AZA and DAC showed no correlation in the EC₅₀ values of the drugs.²⁴ Another study comparing AZA and DAC activity in the Kasumi-1 AML cell line showed that these drugs had distinct and largely non-overlapping effects on gene expression profiles.²⁶ We have recently demonstrated that AZA and DAC have different effects on cell viability, protein synthesis, cell cycle, and gene expression in AML cell lines.²⁵ Similar to the findings in AML cell lines,^{25,26} we now demonstrate notable differences between AZA and DAC effects on NSCLC cell lines.

Despite the differences in the activities of AZA and DAC on cytotoxicity and induction of dsDNA damage, both AZA and DAC were active in modulating the DNA-mediated markers of DNMT1 protein depletion and LINE-1 hypomethylation. While DNA methylation undeniably contributes to cancer development and progression,²⁷ it is not clear that the anticancer effects of cytidine azanucleoside analogs are solely driven by their DNA hypomethylating activity. Findings from several clinical studies suggest that DNA hypomethylation may not correlate with clinical response. For example, a study found that DNMT depletion

caused by DAC treatment did not necessarily result in clinical response.²⁸ Another clinical trial demonstrated that DAC-induced LINE-1 hypomethylation tended to be greater in patients who did not respond to therapy than in patients who did respond.²⁹ Stresemann et al showed that a subset of patients who responded to AZA treatment did not display detectable DNA hypomethylation.³⁰ These results suggest that mechanisms in addition to, or other than, DNA hypomethylation may be critical for the anticancer effects of these drugs.

DAC's potent activity on DNA-mediated markers (DNMT1 depletion and DNA hypomethylation) demonstrates that the lack of cytotoxic activity with DAC was not due to a lack of cellular uptake, drug phosphorylation, and DNA incorporation. It is unclear why DAC does not induce dsDNA damage, despite depleting DNMT1 protein and hypomethylating DNA in the NSCLC cell lines tested. The lack of DAC effects on dsDNA damage and on cytotoxicity is consistent with mounting evidence suggesting that DNA damage may be important for the antitumor effects observed with nucleoside analogs.³¹⁻³⁴ Published data surrounding DAC-induced DNA damage are mixed. In HeLa and HCT116 cells, DAC induced histone-H2AX(ser139) phosphorylation in a DNMT1-dependent and ataxiatelangiectasia-mutated (ATM)-dependent manner;³⁴ however, other researchers found that DAC induced DNA single-strand breaks, but not DNA double-strand breaks (DSBs).^{35–37} Our results suggest that AZA induces DSBs in NSCLC cell lines, coincident with its induction of apoptosis (Figure 5). DAC did not induce as much DSBs and cell death as AZA in A549 cells. Thus, DSBs may correlate with tumor cell death. Dose and schedule will influence mechanism of action, so the potential for cumulative effects of each drug given at low doses or extended schedules should be tested. Furthermore, potential activities of AZA and DAC on cancer stem cell viability and/or differentiation were not tested here.

In summary, we found that AZA and DAC differentially affected the viability of NSCLC cell lines. While AZA and DAC similarly caused DNMT1 depletion and DNA hypomethylation, the drugs differed in their effects on DNA damage, apoptosis, cell cycle, and gene expression. Perhaps a key difference is that AZA can be incorporated into both RNA and DNA, while DAC is only incorporated into DNA.^{25,38–41} The functional consequences of AZA incorporation into RNA can include (1) alterations in the synthesis and processing of various species of RNA, (2) inhibition of transcription, and (3) disruption of protein

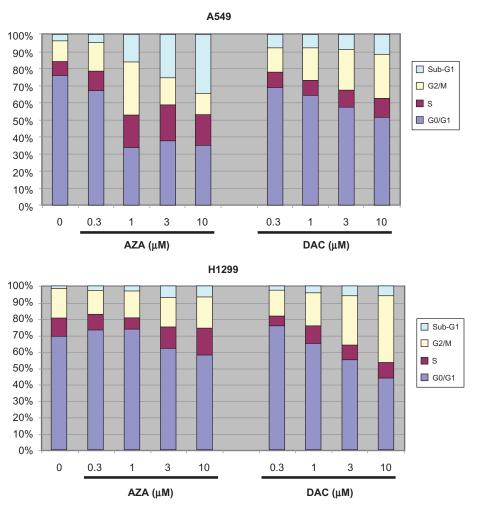


Figure 8 AZA increases the sub-G1 population of cells, while DAC increases the G2/M population. A549 and H1299 cells were stained with NIM-DAPI after 72 hours of treatment with AZA or DAC at 0, 0.3, 1, 3, and 10 μ M. The percentage of cells in sub-G1, G2/M, S, and G0/G1 was quantified by flow cytometry. Representative data of 3 independent experiments are shown. Abbreviations: AZA, azacitidine; DAC, decitabine.

synthesis.^{25,38,42–45} The *in vitro* anticancer activity of AZA in NSCLC models warrants its evaluation in the clinic. It will be important to consider the multiple mechanisms of AZA activity when selecting therapies for use in combination.

Materials and methods Cell culture and drug treatments

NSCLC cell lines (H460, H1299, A549, and H1975) were purchased from American Type Culture Collection (ATCC, Manassas, VA). The H23 NSCLC cell line

Cell line [Drug]		Upregulated genes			Downregulated genes		
	(μ M)	AZA-specific	Genes	DAC-specific	AZA-specific	Genes	DAC-specific
		genes	in common	genes	genes	in common	genes
A549	0.3	16	17	139	14	11	55
	1.0	279	45	261	273	30	111
	3.0	636	66	413	560	55	239
HI299	0.3	10	55	214	33	45	121
	1.0	435	135	238	393	107	170
	3.0	1368	173	303	991	153	257

Notes: A549 and H1299 cells were treated with AZA or DAC (0–3.0 μ M) for 48 hours, and RNA was isolated for evaluation of gene expression using Affymetrix human U133A 2.0 gene chipset. The table shows the number of genes regulated by AZA and DAC at different drug concentrations. Duplicate samples of each were averaged and compared with untreated samples. A fold change of \geq 1.7 in gene expression was considered as regulated. **Abbreviations:** AZA, azacitidine; DAC, decitabine.

I 26 submit your manuscript | www.dovepress.com
Dovepress

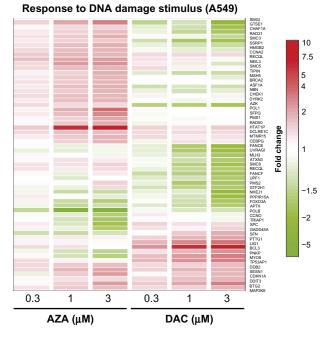


Figure 9 AZA upregulates, while DAC downregulates, genes important in the response to DNA damage stimulus. Gene expression profiling was performed in A549 cells after 48 hours of treatment with AZA or DAC at 0, 0.3, 1, and 3 μ M. NextBio (http://www.nextbio.com/) was used to identify regulated Gene Ontology biogroups from lists of regulated genes. The genes displayed represent all genes within the "response to DNA damage stimulus" biogroup that were modulated 1.7-fold or greater by AZA or DAC.

Abbreviations: AZA, azacitidine; DAC, decitabine.

was obtained from the National Cancer Institute (NCI) (Bethesda, MD). Cell lines were cultured in their respective media, as recommended by ATCC and NCI. AZA was manufactured at Aptuit (Greenwich, CT) for Celgene Corporation, while DAC was purchased from Sigma-Aldrich (St Louis, MO). In all experiments, cells were seeded 24 hours before drug treatment and incubated at 37°C and 5% CO₂. For cell viability assays, H460, H1299, A549, H23, and H1975 cells were seeded in triplicate at 1×10^3 , 1×10^3 , 1×10^3 , 4×10^3 , and 4×10^3 cells per well, respectively, in 96-well plates using 200 µL of medium per well. As the half-lives of AZA and DAC in cell culture are short (~8-12 hours) (data not shown), fresh drug was added every 24 hours by replacing medium with drug-containing medium. For all other assays, cells were seeded at $0.6-1.2 \times 10^5$ cells per well, in 6-well plates, using 4 mL of medium per well, with fresh drug added directly to the medium every 24 hours. At this seeding density, cells are 30%-40% confluent at the start of drug treatments. The concentrations of AZA and DAC used in these experiments are similar to the maximum concentrations (Cmax) achieved in human plasma at clinically used dosages and schedules of administration (3-11 µM AZA and 0.3-1.6 µM DAC).28,46,47

Cell viability

Cell viability was assessed 72 hours after the initial drug treatment, using the CyQUANT assay (Life Technologies Corporation, Carlsbad, CA). Fluorescence was measured with a spectrophotometer (Molecular Devices, Sunnyvale, CA), and EC_{50} values were calculated from three independent experiments using Prism version 5.01 (GraphPad Software, Inc., La Jolla, CA).

Western analysis

For Western analyses of protein levels, cells were washed with phosphate-buffered saline (PBS) and lysed with radio immuno precipitation assay (RIPA) buffer (Cell Signaling Technology, Inc., Danvers, MA) supplemented with 350 mM NaCl and 0.1% sodium dodecyl sulfate (SDS). Cell lysates were sonicated with two 5-second bursts under low amplitude (20%) using the Digital Sonic Dismembrator (ThermoFisher Scientific, Inc., Waltham, MA). Proteins were separated on 4%-12% Bis-Tris NuPAGE gels (Life Technologies Corporation) and transferred to nitrocellulose membranes. DNMT1, phospho-histone-H2AX(ser139), total histone-H2AX, cleaved-PARP, and alpha-tubulin were detected using the Li-Cor Odyssey imaging system (Li-Cor Biotechnology, Lincoln, NE), following incubation with the appropriate primary and secondary antibodies. The phospho-histone-H2AX(ser139) and cleaved-PARP antibodies were obtained from Cell Signaling Technology, Inc. The total histone-H2AX (C-20) antibody was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). The alpha-tubulin and DNMT1 antibodies were purchased from EMD Chemicals, Inc. (Gibbstown, NJ) and Abcam, Inc. (Cambridge, MA), respectively. The goat anti-Rabbit IRDye 680, goat anti-Mouse IRDye 800CW, and donkey anti-Goat IRDye 800CW secondary antibodies were obtained from Li-Cor Biotechnology.

DNA methylation analysis

Genomic DNA was purified from cells using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA), according to the manufacturer's instructions. DNA yield was quantitated with a NanoDrop 8000 spectrophotometer (ThermoFisher Scientific, Inc.). Genomic DNA (1 μ g/sample) was submitted to EpigenDx (Worcester, MA) for bisulfite conversion and pyrosequencing of LINE-1 elements. Briefly, 1 μ g of DNA was bisulfite treated using the Zymo DNA Methylation Kit (Zymo Research, Orange, CA) and eluted in 10 μ L volume. DNA eluate (1 μ L) was used for polymerase chain reaction (PCR) with biotinylated primers to the LINE-1 locus, converting the PCR product to single-stranded DNA templates. PCR products (each $10 \ \mu L$) were sequenced by the Pyrosequencing PSQ96 HS System (Biotage AB), following the manufacturer's instructions (Biotage, Kungsgatan, Sweden). The methylation status of each locus was analyzed individually as a T/C SNP using QCpG software (Biotage). Percentage LINE-1 methylation represents the average percentage methylation of 4 CpG sites in duplicate samples. EpigenDx provided 3 controls for the LINE-1 methylation assay: (1) low methylated DNA control, which is human genomic DNA that has been chemically and enzymatically treated to remove the methyl groups; (2) high methylated DNA control, which is human genomic DNA that has been methylated in vitro; and (3) 50/50 mix control, which is an equal mixture of the low methylated DNA and high methylated DNA controls. The percentages of LINE-1 methylation for the low methylated DNA control, the 50/50 mix control, and the high methylated DNA control were 25.8 ± 8.1 , 56.2 ± 4.6 , and 86.3 ± 6.5 , respectively (data not shown).

Flow cytometry

For cell cycle distribution, cells were stained with the NIM-DAPI reagent (Beckman Coulter, Inc., Fullerton, CA). For measurement of early- and late-apoptotic cell populations, cells were stained with AnnexinV-FITC and 7-AAD reagents (Beckman Coulter, Inc.). Samples were processed according to manufacturer's instructions and analyzed on a Cell Lab Quanta MPL flow cytometer (Beckman Coulter, Inc.). The effects of treatment were compared using one-way ANOVA, followed by single step method for adjusting *P*-values in multiple testing with the bioconductor package multcomp.⁴⁸

Gene expression analysis

Cells were lysed using the TRIzol reagent (Life Technologies Corporation), and total RNA was isolated using the miRNeasy kit (Qiagen). Double-stranded cDNA and biotinlabeled cRNA were synthesized using 100 ng of total RNA with Ambion's MessageAmp Premier RNA Amplification Kit (ABI, Foster City, CA). Biotin-labeled cRNA (10 μ g) was fragmented and hybridized to each human U133A 2.0 genechip (Affymetrix, Santa Clara, CA). The GC-RMA algorithm was used for normalization, and all analyses were done using GeneSpring 7.3 (Agilent, Santa Clara, CA). Averaged signals from biological duplicate samples were used to determine fold change (treated versus untreated), with an absolute fold change of \geq 1.7 defining regulated genes. NextBio (http://www.nextbio.com/) was used to identify regulated gene ontology biogroups from lists of regulated genes. The top 200 biogroups are those with the lowest *P*-values calculated within NextBio.

Acknowledgments

We would like to acknowledge Sharon Aukerman, Victoria Sung, and Sharianne Louie for critical review of the manuscript. We thank Gina Fusaro and Marianna Shafarenko for their assistance with manuscript editing. We also thank Xiaoyue Zhao for statistical analyses. Vidaza is a marketed product with azacitidine as the active pharmaceutical ingredient. Dacogen is a marketed product with decitabine as the active pharmaceutical ingredient.

Disclosure

ANN, PWH, NR, AL-M, HB, CH, and KJM are employees of Celgene and as such own stock in the company.

References

- Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. *J Clin Oncol.* 2002;20(10):2429–2440.
- Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. *Cancer*. 2006;106(8):1794–1803.
- Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. *Proc Natl Acad Sci U S A*. 1984;81(22):6993–6997.
- Weisenberger DJ, Velicescu M, Cheng JC, Gonzales FA, Liang G, Jones PA. Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation. *Mol Cancer Res.* 2004;2(1):62–72.
- Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. *Cell*. 1980;20(1):85–93.
- HaafT. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. *Pharmacol Ther*. 1995;65(1):19–46.
- Chuang JC, Yoo CB, Kwan JM, et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5aza-2'-deoxycytidine. *Mol Cancer Ther.* 2005;4(10):1515–1520.
- Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. *Cancer Res.* 2006;66(5):2794–2800.
- 9. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. *Nat Rev Drug Discov*. 2006;5(2):37–50.
- Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. *Clin Immunol.* 2003; 109(1):80–88.
- Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. *Oncogene*. 2002;21(35): 5427–5440.
- Burbee DG, Forgacs E, Zöchbauer-Müller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001;93(9):691–699.
- 13. Brabender J, Usadel H, Danenberg KD, et al. Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. *Oncogene*, 2001;20(27):3528–3532.
- Kim DH, Nelson HH, Wiencke JK, et al. p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. *Cancer Res.* 2001;61(8): 3419–3424.

- Maruyama R, Sugio K, Yoshino I, Maehara Y, Gazdar AF. Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. *Cancer*. 2004;100(7):1472–1477.
- Schrump DS, Fischette MR, Nguyen DM, et al. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. *Clin Cancer Res.* 2006;12(19): 5777–5785.
- Samlowski WE, Leachman SA, Wade M, et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoterspecific and global genomic DNA methylation. *J Clin Oncol.* 2005; 23(17):3897–3905.
- Weiss AJ, Metter GE, Nealon TF, et al. Phase II study of 5-azacytidine in solid tumors. *Cancer Treat Rep.* 1977;61(1):55–58.
- Lin J, Gilbert J, Rudek MA, et al. A phase I dose-finding study of 5azacytidine in combination with sodium phenylbutyrate in patients with refractory solid tumors. *Clin Cancer Res.* 2009;15(19):6241–6249.
- Bepler G, Kusmartseva I, Sharma S, et al. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small cell lung cancer. *J Clin Oncol.* 2006;24(29):4731–4737.
- Oguri T, Achiwa H, Sato S, et al. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. *Mol Cancer Ther*. 2006; 5(7):1800–1806.
- Voortman J, Checinska A, Giaccone G, Rodriguez JA, Kruyt FA. Bortezomib, but not cisplatin, induces mitochondria-dependent apoptosis accompanied by up-regulation of noxa in the non-small cell lung cancer cell line NCI-H460. *Mol Cancer Ther.* 2007;6(3):1046–1053.
- Qin T, Youssef EM, Jelinek J, et al. Effect of cytarabine and decitabine in combination in human leukemic cell lines. *Clin Cancer Res.* 2007;13(14):4225–4232.
- Qin T, Jelinek J, Si J, Shu J, Issa JP. Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. *Blood*. 2009; 113(3):659–667.
- Hollenbach PW, Nguyen AN, Brady H, et al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. *PLoS One.* 2010;5(2):e9001.
- Flotho C, Claus R, Batz C, et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. *Leukemia*. 2009;23(6):1019–1028.
- Sadikovic B, Al-Romaih K, Squire JA, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. *Curr Genomics*. 2008;9(6):394–408.
- Blum W, Klisovic RB, Hackanson B, et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. *J Clin Oncol.* 2007;25(25):3884–3891.
- Oki Y, Kantarjian HM, Gharibyan V, et al. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. *Cancer.* 2007;109(5):899–906.
- Stresemann C, Bokelmann I, Mahlknecht U, Lyko F. Azacytidine causes complex DNA methylation responses in myeloid leukemia. *Mol Cancer Ther*. 2008;7(9):2998–3005.
- Karpf AR, Moore BC, Ririe TO, Jones DA. Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2'-deoxycytidine. *Mol Pharmacol.* 2001;59(4):751–757.

- 32. Kiziltepe T, Hideshima T, Catley L, et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. *Mol Cancer Ther.* 2007;6(6):1718–1727.
- Jiemjit A, Fandy TE, Carraway H, et al. p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. *Oncogene*. 2008;27(25):3615–3623.
- 34. Palii SS, van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA methylation inhibitor 5-Aza-2'-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. *Mol Cell Biol.* 2008;28(2):752–771.
- D'Incalci M, Covey JM, Zaharko DS, Kohn KW. DNA alkali-labile sites induced by incorporation of 5-aza-2'-deoxycytidine into DNA of mouse leukemia L1210 cells. *Cancer Res.* 1985;45(7):3197–3202.
- Covey JM, D'Incalci M, Tilchen EJ, Zaharko DS, Kohn KW. Differences in DNA damage produced by incorporation of 5-aza-2'-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells. *Cancer Res.* 1986;46(11):5511–5517.
- 37. Chai G, Li L, Zhou W, et al. HDAC inhibitors act with 5-aza-2'-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. *PLoS One.* 2008; 3(6):e2445.
- Li LH, Olin EJ, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. *Cancer Res.* 1970; 30(11):2760–2769.
- Veselý J, Cihák A. Incorporation of a potent antileukemic agent, 5aza-2'-deoxycytidine, into DNA of cells from leukemic mice. *Cancer Res.* 1977;37(10):3684–3689.
- Bouchard J, Momparler RL. Incorporation of 5-Aza-2'-deoxycytidine-5'triphosphate into DNA. Interactions with mammalian DNA polymerase alpha and DNA methylase. *Mol Pharmacol.* 1983;24(1):109–114.
- Glazer RI, Knode MC. 1-beta-D-arabinosyl-5-azacytosine. Cytocidal activity and effects on the synthesis and methylation of DNA in human colon carcinoma cells. *Mol Pharmacol.* 1984;26(2):381–387.
- Cihák A. Biological effects of 5-azacytidine in eukaryotes. *Oncology*. 1974;30(5):405–422.
- Lu LJ, Randerath K. Effects of 5-azacytidine on transfer RNA methyltransferases. *Cancer Res.* 1979;39(3):940–949.
- Cohen MB, Glazer RI. Cytotoxicity and the inhibition of ribosomal RNA processing in human colon carcinoma cells. *Mol Pharmacol*. 1985;27(2):308–313.
- 45. Glover AB, Leyland-Jones B. Biochemistry of azacitidine: a review. *Cancer Treat Rep.* 1987;71(10):959–964.
- Marcucci G, Silverman L, Eller M, Lintz L, Beach CL. Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. *J Clin Pharmacol.* 2005;45(5):597–602.
- 47. Cashen AF, Shah AK, Todt L, Fisher N, DiPersio J. Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). *Cancer Chemother Pharmacol.* 2008;61(5):759–766.
- Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. *Biom J.* 2008;50(3):346–363.

Supporting information figures and tables

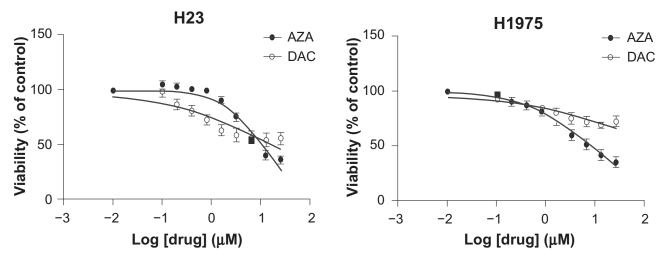
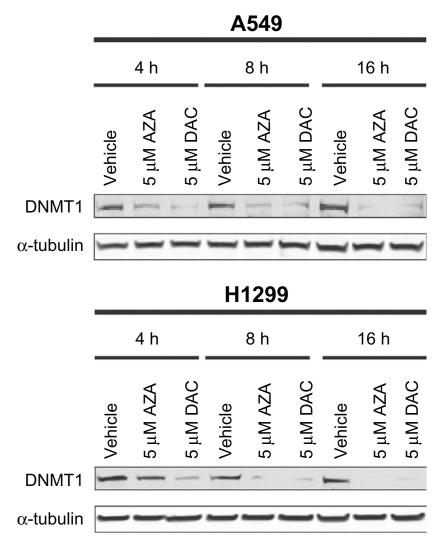
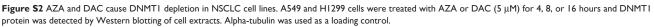




Figure S1 Viability of H23 and H1975 cells was assessed after 72 hours of treatment with AZA or DAC (0–25 μ M). Error bars represent the standard error of mean of three independent experiments, with triplicate wells per experiment.

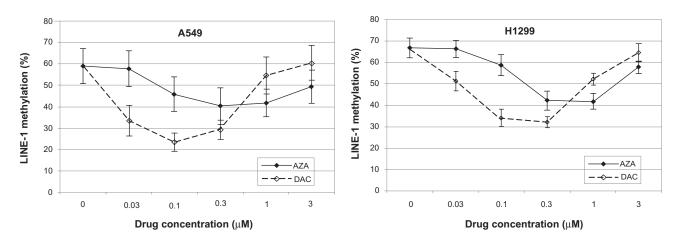


Figure S3 AZA and DAC reduce DNA methylation in A549 and H1299 cells. LINE-1 DNA methylation was assessed in A549 and H1299 cells after 72 hours of treatment with AZA or DAC (0–3 μ M). Percentage LINE-1 methylation represents the average percentage methylation of 4 CpG sites in duplicate samples, with error bars representing the standard deviation.

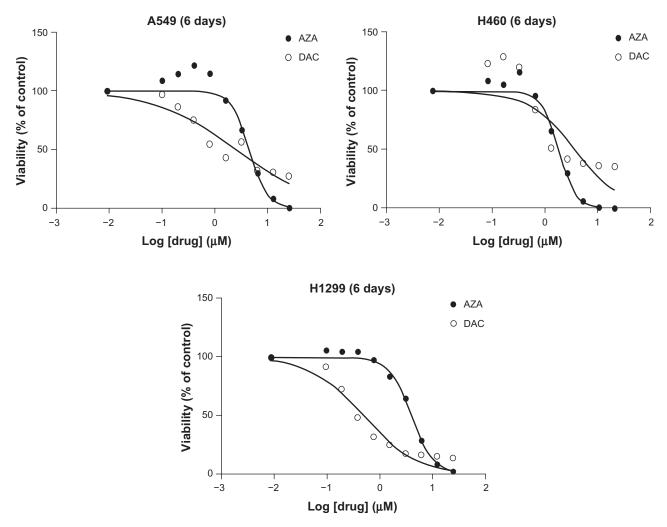


Figure S4 Viability of A549, H460, and H1299 cells was assessed after 6 days of treatment with AZA or DAC (0-25 μM).

 Table SI EC₅₀ values for AZA and DAC on NSCLC cell viability
 Table S2 (Continued)
 (6 days)

AZA EC ₅₀ (μM)		DAC EC ₅₀ (μ M)		
A549	4.4	2.5		
H460	2.2	4.4		
H1299	4.1	0.5		

Abbreviations: AZA, azacitidine; DAC, decitabine; NSCLC, non-small cell lung cancer.

Table S2 Top	200 biogroups	modulated by	azacitidine (AZA)
in A549 cells			

A549 cells treated with 3 μ M AZA (48 ho	Jursj		A
Biogroup name	Direction	P value	Anion transport Extracellular structure organization
Proteinaceous extracellular matrix	down	3.40E-18	biogenesis
Extracellular matrix	down	4.70E-18	Transaminase activity
Transcription	up	2.50E-16	Complement activation
Extracellular matrix structural constituent	down	4.90E-16	Extracellular matrix organization
Glycosaminoglycan binding	down	7.30E-15	and biogenesis
Polysaccharide binding	down	9.60E-15	Calmodulin binding
Pattern binding	down	2.80E-14	Circulation
Lipid biosynthetic process	down	3.60E-14	Female pregnancy
Fibrillar collagen	down	1.60E-13	Cellular homeostasis
Calcium ion binding	down	2.20E-13	Morphogenesis of an epithelium
Fibrinogen complex	down	7.20E-13	Cell proliferation
Humoral immune response	down	8.90E-12	Alkene metabolic process
Protein binding, bridging	down	9.00E-12	Ribosome biogenesis and assembly
Collagen	down	1.70E-11	Complement activation, classical p
Response to wounding	down	6.00E-11	Ribonucleoprotein complex bioger
Response to external stimulus	down	1.50E-10	and assembly
Platelet activation	down	2.20E-10	Sodium:potassium-exchanging
Ligase activity, forming aminoacyl-tRNA	up	3.30E-10	ATPase complex
and related compounds	чр	5.502 10	Transferase activity, transferring n
Ligase activity, forming carbon-oxygen bonds	up	3.30E-10	, ,
Response to nutrient	up	3.70E-10	groups Cell activation
Carbohydrate binding	down	3.80E-10	Endoplasmic reticulum lumen
Basement membrane	down	1.00E-09	Fatty acid metabolic process
Lipid metabolic process	down	2.20E-09	Vesicular fraction
Response to nutrient levels	up	2.30E-09	Cellular ion homeostasis
Steroid biosynthetic process	down	2.30E-09	Cellular chemical homeostasis
Collagen binding	down	2.30E-07 2.40E-09	
Response to extracellular stimulus		3.70E-09	Positive regulation of immune
Inflammatory response	up down	7.80E-09	system process
Nucleoplasm		8.70E-09	Positive regulation of immune resp
	up down		Phosphoinositide binding
Acute inflammatory response		1.30E-08	Activation of immune response
Response to stress Blood pressure regulation	down down	1.50E-08	Positive regulation of multicellular
		1.50E-08	organismal process
RNA binding	up	1.60E-08	Cofactor transporter activity Soluble fraction
Cell motility	down down	3.40E-08	
Localization of cell		3.40E-08	Enzyme inhibitor activity
Epithelial cell differentiation	down	4.70E-08	Development of primary sexual
tRNA binding	up	4.80E-08 7.20E-08	characteristics
Steroid metabolic process	down		NAD binding
Endoplasmic reticulum	down	8.00E-08	Amine biosynthetic process
Translation	up	1.30E-07	Cytoskeleton
Fatty acid biosynthetic process	down	1.90E-07	Lymphocyte mediated immunity
Parturition	down	2.50E-07	Receptor binding
Sterol metabolic process	down	2.50E-07	Transcription corepressor activity

A549 cells treated with 3 µM AZA (48 hours)					
Biogroup name	Direction	P value			
Blood coagulation	down	2.90E-0			
Coagulation	down	3.10E-0			
Humoral immune response mediated by	down	3.60E-0			
circulating immunoglobulin					
Hemostasis	down	3.60E-0			
Organic acid biosynthetic process	down	4.40E-0			
Regulation of body fluids	down	6.70E-0			
Wound healing	down	6.90E-0			
ER-Golgi intermediate compartment	down	8.00E-0			
Actin binding	down	9.70E-0			
Anion transport	down	1.10E-0			
Extracellular structure organization and	down	1.10E-0			
biogenesis					
Transaminase activity	up	1.10E-0			
Complement activation	down	I.20E-0			
Extracellular matrix organization	down	I.20E-0			
and biogenesis					
Calmodulin binding	down	1.90E-0			
Circulation	down	1.90E-0			
Female pregnancy	down	2.50E-0			
Cellular homeostasis	down	2.60E-0			
Morphogenesis of an epithelium	down	2.70E-0			
Cell proliferation	down	3.10E-0			
Alkene metabolic process	down	3.10E-0			
Ribosome biogenesis and assembly	up	3.20E-0			
Complement activation, classical pathway	down	3.50E-0			
Ribonucleoprotein complex biogenesis	up	4.90E-0			
and assembly					
Sodium:potassium-exchanging	down	5.20E-0			
ATPase complex					
Transferase activity, transferring nitrogenous	up	5.80E-0			
groups					
Cell activation	down	6.10E-0			
Endoplasmic reticulum lumen	down	6.60E-0			
Fatty acid metabolic process	down	6.90E-0			
Vesicular fraction	down	8.20E-0			
Cellular ion homeostasis	down	1.10E-0			
Cellular chemical homeostasis	down	1.10E-0			
Positive regulation of immune	down	1.10E-0			
system process					
Positive regulation of immune response	down	1.10E-0			
Phosphoinositide binding	down	1.40E-0			
Activation of immune response	down	1.50E-0			
Positive regulation of multicellular	down	1.60E-0			
organismal process	down	1.002-0			
		I.60E-0			
Cofactor transporter activity Soluble fraction	up	1.60E-0			
	up down				
Enzyme inhibitor activity	down	1.70E-0			
Development of primary sexual	ир	I.80E-0			
characteristics		1.005			
	down	1.90E-0			
Amine biosynthetic process	up	1.90E-0			
Cytoskeleton	down	2.20E-0			
Lymphocyte mediated immunity	down	2.40E-0			
Receptor binding	down	2.50E-0			
Transcription corepressor activity	up	2.50E-0			

(Continued)

Table S2 (Continued)

-

Table S2 (Continued)

A549 cells treated with 3 μM AZA (48 hours)		A549 cells treated with 3 μM AZA (48 hours)			
Biogroup name	Direction	P value	Biogroup name	Direction	P value
Response to DNA damage stimulus	up	2.60E-05	Laminin-I complex	down	0.0002
Cartilage development	down	2.70E-05	Transcription cofactor activity	up	0.0002
SNARE complex	up	2.80E-05	Female sex differentiation	up	0.0002
Gastrulation	up	3.20E-05	Development of primary female sexual	up	0.0002
mRNA transport	up	3.50E-05	characteristics		
Epidermis development	down	3.80E-05	Oxidoreductase activity, acting on the CH-CH	down	0.0002
Cell migration	down	4.20E-05	group of donors, NAD or NADP as acceptor		
Immune effector process	down	4.20E-05	Nitrogen compound biosynthetic process	up	0.0002
Response to hypoxia	down	4.30E-05	Cell structure disassembly during apoptosis	up	0.0003
Leukocyte mediated immunity	down	4.50E-05	Amino acid transport	up	0.0003
Adaptive immune response	down	4.90E-05	Acyl-CoA binding	down	0.0003
Adaptive immune response based on somatic	down	4.90E-05	Response to dsRNA	up	0.0003
recombination of immune receptors built			Neuron development	down	0.0003
from immunoglobulin superfamily domains			Integrator complex	up	0.0003
Endopeptidase inhibitor activity	down	5.00E-05	Immune response	down	0.0003
Protease inhibitor activity	down	5.00E-05	Protein dimerization activity	up	0.0004
Oxidoreductase activity, acting on	down	5.30E-05	Laminin complex	down	0.0004
heme group of donors			Cofactor binding	down	0.0004
Oxidoreductase activity, acting on	down	5.30E-05	Germ-line sex determination	down	0.0004
heme group of donors, oxygen as acceptor			Intramolecular oxidoreductase activity	down	0.0004
Cytochrome-c oxidase activity	down	5.30E-05	DNA repair	up	0.0004
Heme-copper terminal oxidase activity	down	5.30E-05	Cell soma	down	0.0004
Germ cell migration	up	6.00E-05	Cellular morphogenesis during differentiation	down	0.0004
Coenzyme binding	down	6.20E-05	RNA polymerase II transcription		0.0004
Regulation of translation	up	6.90E-05		up	0.0003
Cytokine biosynthetic process	up	7.30E-05	factor activity		0.0005
Neurotransmitter:sodium symporter activity	up	7.40E-05	Regulation of epithelial cell proliferation	down	0.0005
Ectoderm development	down	7.50E-05	Regulation of biosynthetic process	up	0.0005
Establishment of RNA localization	up	8.00E-05	UDP-glycosyltransferase activity	up	0.0005
RNA transport	up	8.00E-05	Pyridoxal phosphate binding	up	0.0005
Nucleic acid transport	up	8.00E-05	Lipid binding	down	0.0005
Transcription factor binding	up	8.30E-05	Positive regulation of programmed cell death	up	0.0005
Regulation of immune response	down	8.50E-05	Helicase activity	up	0.0006
Regulation of immune system process	down	8.50E-05	Cell redox homeostasis	down	0.0006
Ligase activity	up	8.60E-05	Cell death	up	0.0006
RNA localization	up	9.10E-05	Death	up	0.0006
Neurotransmitter transporter activity	up	9.30E-05	Epithelial cell proliferation	down	0.0006
RNA export from nucleus	up	9.80E-05	Mesenchymal cell development	down	0.0006
Phospholipid binding	down	9.90E-05	Ovulation	up	0.0006
Cell cycle	up	0.0001	Positive regulation of locomotion	down	0.0006
Cytosol	down	0.0001	Positive regulation of cell motility	down	0.0006
Cytoskeletal protein binding	down	0.0001	DNA catabolic process	up	0.0006
Response to endogenous stimulus	up	0.0001	Cell differentiation	down	0.0006
Gonad development	up	0.0001	Basal lamina	down	0.0007
Nucleobase, nucleoside, nucleotide and	up	0.0001	Insulin-like growth factor binding	down	0.0007
nucleic acid transport			mesenchymal cell differentiation	down	0.0007
Nucleolus	up	0.0001	Sequestering of metal ion	down	0.0007
Regulation of cytokine biosynthetic process	up	0.0001	Neurotransmitter transport	up	0.0007
Rhythmic process	up	0.0001	Specific RNA polymerase II transcription	up	0.0007
Reproductive structure development	up	0.0002	factor activity		
Nitochondrion organization and biogenesis	up	0.0002	Intramolecular oxidoreductase activity,	down	0.0007
Structural constituent of cytoskeleton	down	0.0002	transposing C=C bonds		
Sex differentiation	up	0.0002	Cellular component disassembly	up	0.0008
Transcription repressor activity	up	0.0002	Heme binding	down	0.0008
Peroxidase activity	down	0.0002	Tetrapyrrole binding	down	0.0008
Oxidoreductase activity, acting on peroxide	down	0.0002	Presynaptic active zone	up	0.0008
as acceptor			Amine transport	up	0.0009
•			1 1		

133

Table S2 (Continued)

A549 cells treated with 3 µM AZA (48 hours)

Biogroup name	Direction	P value
Sequestering of calcium ion	down	0.0009
Cell recognition	down	0.0009
Endoplasmic reticulum part	down	0.0009
Oxidoreductase activity, acting on the CH-OH	down	0.001
group of donors, NAD or NADP as acceptor		
Myosin binding	down	0.001
Lyase activity	up	0.001
Transferase activity, transferring	down	0.001
hexosyl groups		
Neuron differentiation	down	0.001

Notes: Functional groupings of the modulated genes were determined using Gene Ontology classifications in NextBio. The top 200 biogroups most significantly regulated by AZA (at 3 $\mu M)$ are shown.

Table S3 Top 196 biogroups modulated by decitabine (DAC) in A549 cells

A549 cells treated with 3 µM DAC (48 hours)

Biogroup name	Direction	P value
Mitosis	down	2.00E-09
Cell cycle	down	2.90E-09
Cell division	down	5.70E-08
Transferase activity, transferring sulfur-	up	5.80E-08
containing groups		
Meiosis	down	I.50E-07
Meiotic cell cycle	down	I.70E-07
Response to DNA damage stimulus	down	1.80E-07
Male gamete generation	up	6.10E-07
Response to endogenous stimulus	down	7.60E-07
Chromosome segregation	down	2.10E-06
Aromatic compound metabolic process	up	2.70E-06
Phenol metabolic process	up	2.70E-06
Structural constituent of cytoskeleton	up	5.10E-06
Sister chromatid cohesion	down	5.90E-06
Cellular lipid catabolic process	up	6.70E-06
DNA repair	down	7.20E-06
Alkali metal ion binding	up	9.00E-06
Regulation of neurotransmitter levels	up	1.10E-05
DNA damage response, signal transduction	down	1.30E-05
Cofactor transporter activity	up	1.60E-05
Sulfotransferase activity	up	1.70E-05
Intermediate filament	up	3.20E-05
Neurotransmitter:sodium symporter activity	up	3.40E-05
Chromatin assembly	down	3.90E-05
Neurotransmitter transporter activity	up	4.60E-05
Cytokinesis	down	5.10E-05
Chromosome	down	5.30E-05
Mitotic spindle organization and biogenesis	down	5.30E-05
Negative regulation of enzyme activity	up	5.60E-05
Establishment of mitotic spindle localization	down	6.50E-05
Establishment of spindle localization	down	6.50E-05
Spindle localization	down	6.50E-05
Retinol binding	up	6.50E-05
Microtubule organizing center part	down	7.60E-05
Mitotic sister chromatid segregation	down	8.30E-05
Alcohol metabolic process	up	8.60E-05
		(Continued

Table S3 (Continued)

A549 cells treated with 3 μM DAC (48 ho Biogroup name	Direction	P value
Sister chromatid segregation Catabolic process	down up	9.30E-0 0.0001
Soluble fraction	•	0.0001
Retinal binding	up up	0.0001
Positive regulation of programmed cell death	up	0.0001
Steroid biosynthetic process	up	0.0002
Response to stress	down	0.0002
Gamma-tubulin complex	down	0.0002
Mitotic chromosome condensation	down	0.0002
Transporter activity	up	0.0002
Phosphopyruvate hydratase complex	up	0.0002
Amino acid derivative metabolic process	up	0.0003
Vitamin binding	up	0.0003
Lipid catabolic process	up	0.0003
Nuclear chromosome	down	0.0003
Retinoid binding	up	0.0003
Isoprenoid binding	up	0.0003
Homologous chromosome segregation	down	0.0003
Meiotic chromosome segregation	down	0.0003
Meiotic spindle organization and biogenesis	down	0.0003
Cell differentiation	up	0.0003
NADP binding	down	0.0004
Steroid metabolic process	up	0.0004
Lipid raft	up	0.0004
Cohesin complex	down	0.0004
Meiosis I	down	0.0004
Sodium:potassium-exchanging ATPase complex	up	0.0004
Negative regulation of cell proliferation	up	0.0004
Actin binding	down	0.0005
Nuclear matrix	down	0.0005
Cytoskeletal protein binding	down	0.0005
Protein kinase inhibitor activity	up	0.0005
Cell proliferation	up	0.0006
Cytoskeleton	down	0.0006
Cytoskeleton organization and biogenesis	down	0.0006
Fat cell differentiation	down	0.0006
Hormone metabolic process	up	0.0006
Positive regulation of progression through	down	0.0006
cell cycle	down	0.0000
Kinase inhibitor activity	up	0.0006
Oxidoreductase activity, acting on the CH-CH	down	0.0007
group of donors, NAD or NADP as acceptor	down	0.0007
Neurotransmitter transport	up	0.0007
Membrane invagination	down	0.0007
Endocytosis	down	0.0008
Amide metabolic process		0.0008
Spindle	up down	0.0008
		0.0009
lon transport Blastocyst growth	up down	0.0009
Blastocyst growth		
Interleukin binding	down	0.0009
RNA export from nucleus Tubulin binding	down down	0.0009
6		0.0009
Epidermis development	up	0.0009
Neurotransmitter metabolic process	up	0.0011
Translation activator activity	up down	0.0011
Spindle pole	down	0.0011
Sumantia tuanamia-i		0.0012
Synaptic transmission Intracellular cyclic nucleotide activated cation	up up	0.0012

(Continued)

(Continued)

Table S3 (Continued)

Α

Table S3 (Continued)

A549 cells treated with 3 µM DAC (48 hours)			A549 cells treated with 3 μ M DAC (48 hours)			
Biogroup name	Direction	P value	Biogroup name	Direction	P value	
Biogenic amine metabolic process	up	0.0012	Structure-specific DNA binding	down	0.0051	
Cell fate determination	up	0.0013	Oxidoreductase activity, acting on the	down	0.005 I	
Oxidoreductase activity, acting on iron-sulfur	up	0.0013	CH–CH group of donors			
proteins as donors			Peroxidase activity	up	0.0051	
Ion channel activity	up	0.0013	Oxidoreductase activity, acting on peroxide	up	0.005 I	
Lipoprotein binding	down	0.0014	as acceptor			
Positive regulation of neurogenesis	down	0.0014	Microfibril	up	0.0052	
Cytosol	up	0.0018	Protein–DNA complex assembly	down	0.0052	
Microtubule organizing center	down	0.002	Vasculature development	up	0.0054	
Microtubule	down	0.002	Excretion	up	0.0055	
Glutathione peroxidase activity	up	0.0021	mRNA transport	down	0.0056	
Odontogenesis	down	0.0022	Identical protein binding	up	0.0056	
Passive transmembrane transporter activity	up	0.0022	Vitamin transporter activity	down	0.0057	
Transmission of nerve impulse	up	0.0023	Response to organic cyclic substance	up	0.0059	
Oxidoreductase activity, acting on the CH-NH	down	0.0024	Response to alkaloid	up	0.0059	
group of donors, NAD or NADP as acceptor		0.000.4	Kinase regulator activity	up	0.006	
Dynein binding	down	0.0024	Chromatin	down	0.006	
Humoral immune response	down	0.0024	Electron carrier activity	up	0.0061	
Ectoderm development	up	0.0025 0.0025	Vitamin biosynthetic process	down	0.0062	
Arginine metabolic process	up down	0.0025	RNA transport	down	0.0067	
Myosin binding		0.0025	Nucleic acid transport	down	0.0067	
Lipid biosynthetic process Muscle contraction	up up	0.0028	Establishment of RNA localization	down	0.0067	
Mitochondrion organization and biogenesis	up	0.0027	Protein domain specific binding	up	0.0068	
Fat-soluble vitamin metabolic process	up	0.0027	Homophilic cell adhesion	down	0.0068	
Female gamete generation	down	0.0028	RNA localization	down	0.0069	
Urea cycle intermediate metabolic process	up	0.0029	Hormone biosynthetic process	up	0.007	
Inclusion body	down	0.0029	Protein dimerization activity	down	0.0071	
Folic acid transporter activity	down	0.0029	RNA binding	down	0.0073	
Protein heterodimerization activity	down	0.003	Blastocyst development	down	0.0074	
Angiogenesis	up	0.003	Cyclin binding	up	0.0075	
Replication fork	down	0.0031	Nucleobase, nucleoside, nucleotide and	down	0.0077	
Nucleoside metabolic process	down	0.0031	nucleic acid transport			
Regulation of axonogenesis	down	0.0032	Cartilage development	down	0.0077	
Anatomical structure formation	up	0.0033	Folic acid binding	down	0.0079	
Protein kinase regulator activity	up	0.0034	Positive regulation of developmental process	down	0.0081	
Lipid metabolic process	up	0.0037	Chordate embryonic development	down	0.0082	
Glycoprotein binding	up	0.0037	NAD binding	up	0.0082	
Pyridoxal phosphate binding	up	0.0037	Cofactor binding	up	0.0082	
Blood vessel morphogenesis	up	0.004	Vesicle docking during exocytosis	up	0.0084	
Carbohydrate metabolic process	up	0.0041	Developmental maturation	up	0.0085	
Tissue regeneration	up	0.0041	Hydrolase activity, acting on carbon–nitrogen	up	0.0086	
Regeneration	up	0.0041	(but not peptide) bonds, in cyclic amidines	•		
Germ cell development	up	0.0042	Lysosome	up	0.0086	
Growth factor binding	down	0.0042	Embryonic digit morphogenesis	down	0.0086	
Peptide transporter activity	up	0.0043	DNA helicase activity	down	0.0089	
Nitrogen compound biosynthetic process	up	0.0044	Axon guidance	down	0.0091	
Cytokine binding	down	0.0044	Membrane docking	up	0.0093	
Nitric oxide metabolic process	up	0.0047 0.0047	Vesicle docking	up	0.0093	
Nitric oxide biosynthetic process Centrosome	up down	0.0047 0.0047	Voltage-gated sodium channel complex	down	0.0093	
Embryonic morphogenesis	down	0.0047	mRNA binding	up	0.0094	
Regulation of neurogenesis	down	0.0048	Establishment of organelle localization	down	0.0096	
Oxidoreductase activity, acting on the	up	0.0048	Vitamin metabolic process	up	0.0096	
aldehyde or oxo group of donors	٩P	0.0010	Oxidoreductase activity, acting on paired	down	0.0099	
Cytokinesis during cell cycle	down	0.0049	donors, with incorporation or reduction of			
Cell–cell signaling	up	0.0049	molecular oxygen			
				were determine	d using Gene	
Calmodulin binding	ир	0.005 0.005	Notes: Functional groupings of the modulated genes Ontology classifications in NextBio. The top 196 regulated by DAC (at 3 µM) are shown			

(Continued)

ing Gene nificantly regulated by DAC (at 3 μ M) are shown.

Amine catabolic process

Cofactor binding

Table S4 Top 200 biogroup H1299 cells

HI299 cells treated with 3 µ

Table S4 Top 200 biogroups modulated by azacitidine (AZA) in H1299 cells			Table S4 (Continued) H1299 cells treated with 3 μM AZA (48 hours)			
Biogroup name	Direction	P value	Coenzyme binding	down	2.70E-06	
Transcription	up	1.90E-25	Transcription corepressor activity	up	3.00E-06	
Cell cycle	down	7.60E-25	Cell differentiation	up	3.20E-06	
Mitosis	down	8.00E-24	mRNA binding	down	3.30E-06	
Cell division	down	1.00E-22	Meiotic chromosome segregation	down	3.60E-06	
Cytoskeleton	down	5.60E-14	Homologous chromosome segregation	down	3.60E-06	
Microtubule	down	1.30E-13	Nuclear envelope-endoplasmic reticulum	down	3.90E-06	
Spindle	down	1.80E-13	network			
Mitochondrion	down	1.80E-12	Oxidoreductase activity, acting on the CH–CH	down	5.00E-06	
Sterol metabolic process	down	1.40E-11	group of donors, NAD or NADP as acceptor			
Chromosome	down	1.20E-10	Intramolecular oxidoreductase activity,	down	5.30E-06	
Alcohol metabolic process	down	2.20E-10	transposing C=C bonds			
Ligase activity	up	2.40E-10	Mitotic chromosome condensation	down	5.50E-06	
Lipid biosynthetic process	down	2.70E-10	Endoplasmic reticulum part	down	5.50E-06	
Steroid biosynthetic process	down	3.00E-10	Transcription factor binding	up	5.60E-06	
Mitotic sister chromatid segregation	down	1.90E-09	Organic acid transport	up	5.70E-06	
Steroid metabolic process	down	2.50E-09	Carboxylic acid transport	up	5.70E-06	
	down	2.30E-09 2.90E-09	Acyl-CoA binding	down	5.70E-06	
Sister chromatid segregation			DNA-directed RNA polymerase II,		5.80E-06	
Endoplasmic reticulum	down	3.60E-09		up	3.00E-00	
Envelope	down	4.70E-09	holoenzyme	dayun		
Lipid metabolic process	down	2.60E-08	Interphase of mitotic cell cycle	down	6.00E-06	
Response to nutrient	down	7.00E-08	Primary sex determination	down	6.00E-06	
Collagen binding	down	1.60E-07	Cell-matrix adhesion	down	6.20E-06	
Centrosome	down	1.70E-07	Hormone activity	down	6.30E-06	
Wound healing	down	1.90E-07	Organic acid transmembrane transporter	up	6.30E-06	
Response to nutrient levels	down	2.00E-07	activity			
Intramolecular oxidoreductase activity	down	2.50E-07	Mitochondrial inner membrane	down	7.30E-06	
Response to extracellular stimulus	down	2.70E-07	Cell-substrate adhesion	down	7.60E-06	
Mitochondrial membrane	down	2.80E-07	Transcription activator activity	up	7.70E-06	
Microtubule organizing center	down	2.80E-07	Mitotic spindle organization and biogenesis	down	7.90E-06	
Acid–amino acid ligase activity	up	3.10E-07	Lyase activity	down	8.10E-06	
Cell proliferation	down	3.60E-07	Sterol transport	down	8.70E-06	
Blood coagulation	down	3.70E-07	Arginine metabolic process	down	8.70E-06	
Establishment of chromosome localization	down	4.40E-07	Chromatin assembly	down	I.00E-05	
Coagulation	down	4.90E-07	Nitrogen compound biosynthetic process	down	1.10E-05	
Chromosome segregation	down	5.00E-07	RNA polymerase II transcription factor	up	1.10E-05	
Nitrogen compound catabolic process	down	5.20E-07	activity			
Kinase binding	up	5.30E-07	Transaminase activity	up	I.20E-05	
Beta-catenin binding	down	5.50E-07	Meiotic spindle organization and biogenesis	down	I.30E-05	
Nucleoplasm	up	6.10E-07	Organelle localization	down	I.40E-05	
Enzyme inhibitor activity	down	8.80E-07	Isomerase activity	down	I.40E-05	
Alcohol catabolic process	down	9.80E-07	Interphase	down	I.40E-05	
Hemostasis	down	1.10E-06	Urea cycle intermediate metabolic process	down	1.50E-05	
Transcription cofactor activity	up	1.10E-06	Fatty acid biosynthetic process	down	I.70E-05	
Transcription repressor activity	up	1.20E-06	Receptor binding	down	1.70E-05	
Midbody	down	1.30E-06	Regulation of body fluids	down	1.80E-05	
Ligase activity, forming carbon-nitrogen bonds	up	1.70E-06	Condensin complex	down	1.80E-05	
Establishment of organelle localization	down	2.00E-06	Regulation of coagulation	down	1.90E-05	
Germ-line sex determination	down	2.00E-06	Nuclear envelope	down	2.20E-05	
Oligosaccharyl transferase complex		2.10E-06	Caveola	down	2.30E-05	
	down			down	2.30E-03	
Response to external stimulus	down	2.20E-06	Organic acid biosynthetic process			
Oxidoreductase activity, acting on the CH-NH	down	2.20E-06	Meiotic cell cycle	down	2.30E-05	
group of donors, NAD or NADP as acceptor	down	2 20E 04	Amino acid transport	up down	2.50E-05	

2.30E-06 (Continued)

2.20E-06

2.20E-06

NADP binding

Spindle pole

Protein dimerization activity

down

down

down

(Continued)

2.80E-05

2.90E-05

3.40E-05

Cytoskeleton organization and biogenesis

down

down

up

Table S4 (Continued)

Table S4 (Continued)

HI299 cells treated with 3 μM AZA (48 h	ours)		HI299 cells treated with 3 μM AZA (48 hours)			
Biogroup name	Direction	P value	Biogroup name	Direction	P value	
Ubiquitin–protein ligase activity	up	3.50E-05	Carbon–carbon lyase activity	down	0.0001	
Transferase activity, transferring nitrogenous	up	3.60E-05	Lipid digestion	down	0.0001	
groups			Nitric oxide metabolic process	down	0.0001	
Nucleoside metabolic process	down	3.80E-05	Nitric oxide biosynthetic process	down	0.0001	
Structural constituent of cytoskeleton	down	3.90E-05	Cellular homeostasis	down	0.0001	
Carbohydrate catabolic process	down	4.10E-05	Positive regulation of locomotion	down	0.0001	
Endoplasmic reticulum membrane	down	4.30E-05	Positive regulation of cell motility	down	0.0001	
Nucleosome	down	4.40E-05	Sulfur compound biosynthetic process	up	0.0001	
Nucleotide catabolic process	down	4.60E-05	Proton-transporting ATP synthase complex,	down	0.0001	
Cellular chemical homeostasis	down	4.70E-05	catalytic core F(1)	down	0.0001	
Cellular ion homeostasis	down	4.70E-05	Mitochondrial proton-transporting ATP	down	0.0002	
	down	4.90E-05	synthase complex	0000	0.0002	
1uscle cell differentiation		5.00E-05	Muscle development		0.0002	
Ayeloid cell differentiation	up	5.20E-05	-	up	0.0002	
	up		Integrator complex	up		
Catabolic process	down	5.20E-05	Caspase inhibitor activity	down	0.0002	
Dxygen and reactive oxygen species	down	5.20E-05	Fatty acid binding	down	0.0002	
netabolic process	4		Isoprenoid metabolic process	down	0.0002	
Chromatin	down	5.30E-05	Blood vessel morphogenesis	up	0.0002	
pidermis development	down	5.40E-05	Vasculogenesis	up	0.0002	
Dxidoreductase activity, acting on the	down	5.60E-05	Kinetochore	down	0.0002	
CH–NH group of donors			Low-density lipoprotein binding	down	0.0002	
NARE complex	up	5.60E-05	Cell structure disassembly during	up	0.0002	
igase activity, forming carbon–oxygen bonds	up	5.70E-05	apoptosis			
igase activity, forming aminoacyl–tRNA and	up	5.70E-05	Endoplasmic reticulum lumen	down	0.0002	
elated compounds			Negative regulation of multicellular	down	0.0002	
oluble fraction	up	5.80E-05	organismal process			
ndopeptidase inhibitor activity	down	5.90E-05	Intestinal absorption	down	0.0002	
rotease inhibitor activity	down	5.90E-05	Organelle outer membrane	down	0.0002	
mall protein conjugating enzyme activity	up	6.00E-05	Proton-transporting two-sector ATPase	down	0.0002	
P-type membrane coat adaptor complex	down	6.40E-05	complex, catalytic domain			
Cell–cell signaling	down	6.70E-05	Regulation of transforming growth factor	down	0.0002	
Amine transport	up	6.80E-05	beta receptor signaling pathway			
Response to DNA damage stimulus	up	7.20E-05	Clathrin adaptor complex	down	0.0002	
1ale sex determination	down	7.20E-05	Fatty acid metabolic process	down	0.0003	
Cell–cell adhesion	down	8.00E-05	Replication fork	down	0.0003	
rotein heterodimerization activity	down	8.00E-05	Lipoprotein binding	down	0.0003	
nzyme binding	up	8.40E-05	Insemination	up	0.0003	
Dxidoreductase activity, acting on paired	down	9.10E-05	Behavior	down	0.0003	
lonors, with incorporation or reduction			Leukocyte differentiation	up	0.0003	
of molecular oxygen			Single-stranded RNA binding	down	0.0003	
ctoderm development	down	9.40E-05	Histone acetyltransferase complex	up	0.0003	
Positive regulation of progression through	down	0.0001	Oxidoreductase activity, acting on single	-	0.0003	
	down	0.0001	donors with incorporation of	up	0.0005	
ell cycle Dne-carbon compound metabolic process	down	0.0001	1			
	down	0.0001	molecular oxygen		0.0002	
leterogeneous nuclear ribonucleoprotein	down	0.0001	Hemopoiesis Outer kinetechere of condensed	up down	0.0003	
omplex		0.0001	Outer kinetochore of condensed	down	0.0003	
esponse to stress	down	0.0001	chromosome		0 0 0 0 -	
esponse to endogenous stimulus	up	0.0001	Response to virus	up	0.0003	
Cell death	up	0.0001	Vasculature development	up	0.0003	
Death	up	0.0001	DNA-directed RNA polymerase complex	up	0.0003	
1eiosis	down	0.0001	Perinuclear region of cytoplasm	down	0.0003	
Dioxygenase activity	up	0.0001	Sterol binding	down	0.0003	
Oxidoreductase activity, acting on single	up	0.0001	Generation of precursor metabolites and	down	0.0003	
onors with incorporation of molecular			energy			
oxygen, incorporation of two atoms of oxygen			Copulation	up	0.0004	
soprenoid biosynthetic process	down	0.0001	Spindle localization	down	0.0004	

Table S4 (Continued)

H1299 cells treated with 3 µM AZA (48 hours)

Biogroup name	Direction	P value
Establishment of mitotic spindle localization	down	0.0004
Establishment of spindle localization	down	0.0004
Neural crest cell development	down	0.0004
GTPase inhibitor activity	down	0.0004

Notes: Functional groupings of the modulated genes were determined using Gene Ontology classifications in NextBio. The top 200 biogroups most significantly regulated by AZA (at 3 $\mu M)$ are shown.

Table S5 Top 200 biogroups modulated by decitabine (DAC) in HI299 cells

			Muscle development
H1299 cells treated with 3 μ M DAC (48 h	ours)		Nitrogen compound bio Protease inhibitor activit
Biogroup name	Direction	P value	Endopeptidase inhibitor
Cofactor binding	down	4.70E-12	Phosphatase activator ac
Lipid metabolic process	down	5.10E-12	Phenol metabolic proces
Cell differentiation	up	2.50E-08	Epidermis development
Coenzyme binding	down	3.70E-08	Regulation of neurotrans
Transcription	up	1.00E-07	Pattern binding
Inner ear development	up	2.20E-07	Cofactor catabolic proce
Cell fate determination	up	2.50E-07	Positive regulation of de
Fatty acid metabolic process	down	2.90E-07	Vitamin binding
Collagen binding	up	4.90E-07	Oxidoreductase activity,
Oxidoreductase activity, acting on the CH–OH	down	1.20E-06	CH–CH group of donor
group of donors, NAD or NADP as acceptor			Amino acid derivative m
Enzyme inhibitor activity	up	1.30E-06	Chromatin assembly
Nucleosome	up	1.30E-06	Protein–DNA complex a
Aldehyde metabolic process	down	1.40E-06	Amino acid derivative bi
Sensory organ development	up	2.30E-06	Positive regulation of ce
Oxidoreductase activity, acting on CH–OH	down	2.50E-06	Acute inflammatory resp
group of donors			Dopamine metabolic pro
Response to external stimulus	up	2.80E-06	Growth factor binding
Hormone biosynthetic process	up	3.00E-06	Endothelial cell developr
CoA–ligase activity	down	4.00E-06	Transcription corepress
Insulin-like growth factor binding	up	4.20E-06	Keratinocyte differentiat
Response to stress	up	4.40E-06	Ectoderm development
Mitochondrion	down	5.20E-06	Cellular respiration
Acid–thiol ligase activity	down	6.30E-06	RNA polymerase II trans
Proteinaceous extracellular matrix	up	7.40E-06	factor activity
Transcription repressor activity	up	7.90E-06	Angiogenesis
Extracellular matrix	up	8.60E-06	Calcium-dependent pho:
Muscle cell differentiation	up	9.40E-06	Suckling behavior
Response to wounding	up	9.50E-06	Oxidoreductase activity,
Alcohol metabolic process	down	9.90E-06	aldehyde or oxo group o
Enzyme regulator activity	up	9.90E-06	or NADP as acceptor
Neurotransmitter metabolic process	up	1.00E-05	Germ-line sex determina
Muscle fiber development	up	1.10E-05	RNA polymerase II trans
Skeletal muscle fiber development	up	1.10E-05	Protein kinase inhibitor
Peroxisome	down	1.10E-05	Translation activator act
Microbody	down	1.10E-05	Regulation of Notch sign
Ligase activity, forming carbon-sulfur bonds	down	1.40E-05	Fatty acid biosynthetic p
Regulation of epidermis development	up	2.00E-05	Kinase inhibitor activity
Cell fate commitment	up	2.20E-05	Regulation of cell differe
Hormone metabolic process	up	2.20E-05	ER-Golgi intermediate o
Sterol metabolic process	down	2.30E-05	UDP-glycosyltransferase
Inflammatory response	up	2.30E-05	Cell maturation
	(Continued)	
	(

Table S5 (Continued)

Biogroup name	Direction	P value
	down	2.60E-0
Oxidoreductase activity, acting on the CH–CH group of donors, NAD or NADP as acceptor	dowii	2.00E-0
Death	up	3.20E-0
Cell death	up	3.20E-0
Steroid metabolic process	down	3.50E-0
Lipid biosynthetic process	down	3.80E-0
Lyase activity	down	4.10E-0
Glycosaminoglycan binding	up	4.50E-0
Polysaccharide binding	up	5.30E-0
Pyridoxal phosphate binding	down	5.50E-0
Muscle development	up	6.70E-0
Nitrogen compound biosynthetic process	down	6.90E-0
Protease inhibitor activity	up	7.60E-0
Endopeptidase inhibitor activity	up	7.60E-0
Phosphatase activator activity	up	8.00E-0
Phenol metabolic process	up	8.40E-0
Epidermis development	-	8.50E-0
Regulation of neurotransmitter levels	up	9.20E-0
-	up	
Pattern binding	up	9.60E-0
Cofactor catabolic process	down	9.80E-0
Positive regulation of developmental process	up	1.00E-0
Vitamin binding	down	0.0001
Oxidoreductase activity, acting on the	down	0.0001
CH–CH group of donors		
Amino acid derivative metabolic process	up	0.0001
Chromatin assembly	up	0.0001
Protein–DNA complex assembly	up	0.0001
Amino acid derivative biosynthetic process	up	0.0001
Positive regulation of cell differentiation	up	0.0001
Acute inflammatory response	up	0.0001
Dopamine metabolic process	up	0.0001
Growth factor binding	up	0.0002
Endothelial cell development	down	0.0002
Transcription corepressor activity	up	0.0002
Keratinocyte differentiation	up	0.0002
Ectoderm development	•	0.0002
	up	0.0002
Cellular respiration	down	
RNA polymerase II transcription elongation	up	0.0002
factor activity		
Angiogenesis	up	0.0003
Calcium-dependent phospholipid binding	down	0.0003
Suckling behavior	down	0.0003
Oxidoreductase activity, acting on the	down	0.0003
aldehyde or oxo group of donors, NAD		
or NADP as acceptor		
Germ-line sex determination	down	0.0003
RNA polymerase II transcription factor activity	up	0.0003
Protein kinase inhibitor activity	up	0.0004
Translation activator activity	up	0.0004
Regulation of Notch signaling pathway	up	0.0004
Fatty acid biosynthetic process	down	0.0004
Kinase inhibitor activity		0.0004
	up	
Regulation of cell differentiation	up	0.0004
ER-Golgi intermediate compartment	up	0.0005
UDP-glycosyltransferase activity Cell maturation	down	0.0005
	up	0.0005

(Continued)

Table S5 (Continued)

P value 0.0018 0.0018

0.0018 0.0019 0.0019 0.0019 0.0019 0.002 0.0021 0.0021 0.0021 0.0022 0.0022 0.0023 0.0023 0.0023

0.0025 0.0026 0.0027 0.0028 0.0029 0.0029 0.003 0.0032 0.0033 0.0035 0.0036

0.0036 0.0036 0.0036 0.0038 0.0038

0.0038 0.0038 0.0038 0.0039 0.0043 0.0043 0.0043

0.0044 0.0045 0.0048 0.0048 0.0049 0.005 0.0051 0.0051 0.0052 (Continued)

Table S5 (Continued)

H1299 cells treated with 3 µM DAC (48 hours)			H1299 cells treated with 3 μ M DAC (48 hours)		
Biogroup name	Direction	P value	Biogroup name	Directio	
Cell surface	down	0.0005	Respiratory tube development	up	
nner ear receptor cell fate commitment	up	0.0005	Oxidoreductase activity, acting on single	down	
Drganic acid biosynthetic process	down	0.0005	donors with incorporation of molecular		
Negative regulation of signal transduction	up	0.0006	oxygen, incorporation of two atoms of oxygen		
Hydro–Lyase activity	down	0.0006	Dioxygenase activity	down	
pidermal cell differentiation	up	0.0007			
nner ear morphogenesis	up	0.0007	Negative regulation of enzyme activity	up	
Regulation of cell growth	up	0.0007	Odontogenesis Positive regulation of locomotion	up down	
Response to bacterium	up	0.0007	•		
Blood vessel morphogenesis	up	0.0007	Positive regulation of cell motility	down	
Carbohydrate metabolic process	down	0.0007	Cell cycle	up	
	down	0.0007	Anatomical structure formation	up	
Lipoprotein binding			Cell growth	up	
Multicellular organismal movement	down	0.0008	Regulation of cell size	up	
Aromatic compound metabolic process	up	0.0008	NAD binding	down	
Amine biosynthetic process	down	0.0008	Steroid biosynthetic process	down	
RNA binding	down	0.0008	Response to extracellular stimulus	down	
Cell migration	up	0.0008	Endocytosis	down	
Franscription elongation factor complex	up	0.0009	Membrane invagination	down	
Glutathione peroxidase activity	up	0.0009	Oxidoreductase activity, acting on single	down	
Oxidoreductase activity, acting on the CH–NH	down	0.0009	donors with incorporation of molecular oxygen		
group of donors, NAD or NADP as acceptor			Musculoskeletal movement	down	
Primary sex determination	down	0.0009	Brain development	up	
Negative regulation of cell differentiation	up	0.001	Immune system development	up	
Defense response to bacterium	up	0.001	Negative regulation of cell growth	down	
Nuclear envelope	down	0.001	Negative regulation of cell size	down	
ar morphogenesis	up	0.0011	Envelope	down	
igase activity, forming carbon–oxygen bonds	down	0.0011	Negative regulation of developmental process	up	
igase activity, forming aminoacyl–tRNA and	down	0.0011	Chromatin	up	
related compounds			mRNA binding	up	
Generation of precursor metabolites and	down	0.0011	Antioxidant activity	up	
energy			Selenium binding		
Developmental maturation	up	0.0011		up down	
Peripheral nervous system development	down	0.0011	Receptor signaling protein serine/threonine	down	
Extracellular matrix structural constituent		0.0011	kinase activity		
	up		Outer membrane-bounded periplasmic space	down	
Dxidoreductase activity, acting on the	down	0.0012	Cell envelope	down	
aldehyde or oxo group of donors		0.0010	Axon	up	
Biogenic amine metabolic process	up	0.0012	Transferase activity, transferring hexosyl groups	down	
pidermis morphogenesis	up	0.0013	Energy derivation by oxidation of organic	down	
Endothelial cell differentiation	down	0.0013	compounds		
Endoplasmic reticulum	down	0.0013	Response to reactive oxygen species	up	
Carbon–oxygen lyase activity	down	0.0013	Meiosis	up	
Germ cell development	up	0.0014	Meiotic cell cycle	up	
Cell proliferation	down	0.0015	Enzyme activator activity	up	
Peroxidase activity	up	0.0015	Hemopoiesis	up	
Oxidoreductase activity, acting on peroxide	up	0.0015	Positive regulation of biosynthetic process	up	
as acceptor			Regulation of transforming growth factor	down	
Specific RNA polymerase II transcription	up	0.0015	beta receptor signaling pathway		
actor activity			FAD binding	down	
Positive regulation of programmed cell death	up	0.0016	Negative regulation of growth	down	
Response to nutrient levels	down	0.0016	Defense response to Gram-positive bacterium	up	
Ayeloid cell differentiation	up	0.0016	Sensory perception of light stimulus	down	
Lung development	up	0.0017	Catabolic process	down	
Dxidoreductase activity, acting on paired	down	0.0017	Hemopoietic or lymphoid organ development		
donors, with incorporation or reduction	30001	0.0017		up	
-			Positive regulation of protein metabolic process	up	
of molecular oxygen		0.0017	Intermediate filament	up	
/asculature development	up	0.0017	Ras GTPase activator activity	down	

Table S5 (Continued)

HI299 cells treated with 3 μM DAC (48 hours)

Biogroup name	Direction	P value			
Response to nutrient	down	0.0053			
Protein kinase regulator activity	up	0.0053			
Carbohydrate binding	up	0.0054			
Calcium ion binding	down	0.0055			
Oxidoreductase activity, acting on sulfur	down	0.0056			
group of donors					
Response to hypoxia	down	0.0057			
Transferase activity, transferring aldehyde or	up	0.0058			
ketonic groups					
Positive regulation of multicellular organismal	up	0.0059			
process					
Xenobiotic transporter activity	up	0.0063			
Xenobiotic-transporting ATPase activity	up	0.0063			
Phospholipase inhibitor activity	up	0.0064			

Notes: Functional groupings of the modulated genes were determined using Gene Ontology classifications in NextBio. The top 200 biogroups most significantly regulated by DAC (at 3 μ M) are shown.

Lung Cancer: Targets and Therapy

Publish your work in this journal

Lung Cancer: Targets and Therapy is an international, peer-reviewed, open access journal focusing on lung cancer research, identification of therapeutic targets and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival and quality of life for the cancer patient. Specific topics covered in the journal include:

Submit your manuscript here: http://www.dovepress.com/lung-cancer-targets--therapy-journal

Dovepress

Epidemiology, detection and screening; Cellular research and biomarkers; Identification of biotargets and agents with novel mechanisms of action; Optimal clinical use of existing anticancer agents, including combination therapies; Radiation and surgery; Palliative care; Patient adherence, quality of life, satisfaction; Health economic evaluations.