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Abstract

We investigated the effect of combination antiretroviral therapy (cART) on immune recovery, particularly on
the percentages of PD-1-positive cells within the major leukocyte subsets. Cryopreserved peripheral blood
mononuclear cells and plasma samples collected longitudinally from a subset of 13 children and adolescents
(between 9.7 and 18.2 years old) who were enrolled in the International Maternal Pediatric Adolescent AIDS
Clinical Trials (IMPAACT) P1066 were used for this study. Immunophenotyping by flow cytometry was
performed to determine the effect of raltegravir-containing cART regimen on the distribution of leukocyte
populations, on the expression of PD-1 on T cell subpopulations, and on the expression of well-established
markers of T cell activation (CD38 and HLA-DR) on CD8 T cells. C reactive protein (CRP), lipopolysaccharide
(LPS), IL-6, and soluble CD163 were assayed in plasma samples by an enzyme-linked immunosorbent assay.
Plasma viral loads were decreased in all subjects (by an average of 2.9 log units). The cART regimen, including
raltegravir, induced changes in CD8 T cell subsets, consistent with an effective antiretroviral outcome and
improved immunologic status, including increased percentages of CD8 stem cell memory T cells (Tscm). The
percentages of CD8 PD-1-positive cells decreased significantly as compared with baseline levels. Among the
proinflammatory markers measured in plasma, sCD163 showed a decline that was associated with cART. cART
therapy, including raltegravir, over 48 weeks in children is associated with immune restoration, consistent with
effective antiretroviral therapy, namely decreased percentages of PD-1+ CD8+ T cells, an increase in CD8 Tscm
cells, and decreased levels of sCD163.
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Introduction

The development of novel, potent, and well-tolerated
antiretroviral (ARV) medications in optimized formu-

lations is a high priority for pediatric patients of all ages who
are infected with HIV. Raltegravir is the first integrase in-
hibitor approved by the Food and Drug Administration and
the European Medicines Agency for the treatment of HIV-1
infection based on several clinical studies.1–6 Addition of
raltegravir to optimized background therapy is well tolerated,

with superior and durable antiretroviral and immunologic
efficacy compared with optimized background therapy alone.

The International Maternal Pediatric Adolescent AIDS
Clinical Trials (IMPAACT) P1066 study was performed to
determine the safety and pharmacokinetics of raltegravir in
HIV-infected children aged 4 weeks to <19 years by using
three different formulations. P1066 enrolled participants in 5
age cohorts that received different formulations of ralte-
gravir.7 Entry criteria included plasma HIV RNA >1,000
copies/mL, previous exposure to ARV but naı̈ve to integrase
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inhibitors, laboratory values below grade 3 toxicity criteria,
and absence of opportunistic infections or current cancer.1 In
addition to providing information on proper dose selection,
the P1066 study evaluated the safety, efficacy, and pharma-
cokinetics properties of raltegravir in children.1

The programmed-death 1 (PD-1) protein is inductively
expressed on CD4+, CD8+, NK T cell subsets, B cells, and
monocytes on activation. PD-1 expression is induced in T
cells by antigen receptor ligation.8 PD-1 is transiently ex-
pressed in viral-specific CD8 T cells after infection but once
the infection is resolved and T-cell receptor (TCR) signaling
diminishes, PD-1 expression decreases.8 Conversely, PD-1
expression is maintained during chronic infections, primarily
due to continuous TCR ligation.9

Upregulation of PD-1 on HIV-specific CD8+ T cells leads
to reversible immune dysfunction, preventing the renewal of
the functionally competent HIV-specific CD8+ T cell reper-
toire.10 During chronic HIV infection, virus-specific CD8+ T
cells undergo functional exhaustion, lose effector functions,
and fail to control viral infection. HIV-specific CD8+ T cells
express high levels of co-inhibitory molecule PD-1 during
chronic infection and are characterized by decreased prolif-
eration, cytokine production, and cytotoxic abilities.11 PD-1
is likewise upregulated on HIV-specific CD4+ T cells, and its
expression level correlates with viremia and inversely with
CD4+ T cell counts.11

Conflicting findings have been reported on the changes in
PD-1 levels after combination antiretroviral therapy (cART):
Some studies concluded that PD-1 levels on CD4 and CD8 T
cells remain high after administering cART to HIV-infected
individuals,12 whereas others showed evidence that PD-1
expression declines after cART13 or is not significantly dif-
ferent in the HIV-1-infected cART-treated group when
compared with uninfected controls.14

We used cryopreserved peripheral blood mononuclear
cells (PBMC) purified from blood samples collected longi-
tudinally (at entry, 8, 24, and 48 weeks) from a subset of
participants in the P1066 study. Cryopreservation results in
non-linear loss of PD-1 expression that is measured as
number of molecules/cell,15,16 which complicates the inter-
pretation of findings obtained from retrospective studies. To
mitigate this shortcoming, we analyzed the percentage of PD-
1-positive cells rather than antigen density on target cells.

Our aims were to determine the effects of the raltegravir-
containing cART regimen on the percentages of PD-1-
positive cells within T cell subpopulations (naı̈ve, central
memory, effector memory, terminally differentiated, and
stem cell-like memory) and on well-established markers of T
cell activation: CD38 and HLA-DR.17–19 We also studied the
effect of cART on monocyte subsets as defined by the ex-
pression of CD14 and CD1620,21 and on plasma markers of
inflammation.

Materials and Methods

Subjects

We used cryopreserved blood and plasma samples from a
subset of participants in the IMPAACT P1066 study ‘‘Safety
and Pharmacokinetics of Raltegravir in HIV (Human Im-
munodeficiency Virus)-Infected Children and Adolescents’’
(www.clinicaltrials.gov NCT00485264). Subjects were on
failing unchanged therapeutic regimen for at least the pre-

vious 12 weeks, or treatment experienced (not including
therapy to interrupt maternal–infant transmission) but on no
treatment for ‡4 weeks before entry. Raltegravir was ad-
ministered in the background of these failing regimens for up
to 14 days and then, the background was optimized for the
rest of the study, the details of which have been previously
published.1

The cells used in this immunophenotyping study were
obtained from blood samples collected both before and after
treatment with raltegravir at four time points: entry, 8, 24, and
48 weeks. Plasma HIV RNA (RNA) concentrations were
determined by using the HIV-1 MONITOR Test, version 1.5
(Roche Molecular Diagnostics) or RealTime HIV-1 (Abbott
Molecular).1 PBMCs were isolated and cryopreserved, and
plasma was frozen and stored at -80�C until it was subse-
quently analyzed.

We used cryopreserved PBMCs from 12 children aged
12.1–18.2 years who were enrolled in cohort I and one child
aged 9.7 years who was enrolled in cohort 2A of the P1066
study. Blood for immunology storage was collected at entry,
8, 24, and 48 weeks. We selected only subjects for whom a
sufficient number of PBMC were cryopreserved at all four
time points. The availability of sufficient cryopreserved
PBMC with cell viability rates >75% was the limiting factor
that prevented us from extending the study to a larger number
of participants. All blood samples used in the present study
were collected between May 2008 and November 2010.

Immunophenotyping by multicolor flow cytometry was
performed to measure the percentages of PD-1-positive cells
within the main subpopulations of T lymphocytes: naı̈ve
(Tn), central memory (Tcm), effector memory (Tem), ef-
fector (Te), and stem cell-like memory (Tscm), as previously
described.22–24

CD38 and HLA-DR were used as markers of CD8+ T cell
activation, and percentages of cells expressing either CD38
or both CD38 and HLA-DR were determined. Percentages of
B cells, natural killer cells, and classic (CD14-high CD16
low) and non-conventional (CD14 low, CD16 high) mono-
cytes were also determined.

Flow cytometry

Multicolor flow cytometry assays were performed by using
two panels of antibodies on cryopreserved PBMCs, thawed,
and washed in RPMI containing 10% fetal bovine serum and
then in phosphate-buffered saline. Since cells can be dam-
aged by cryopreservation, we used a fixable viability dye to
exclude dead cells from analysis. Thawed cells were first
stained with the Live/Dead blue viability dye (Life Tech-
nologies, Grand Island, NY) to exclude non-viable cells.

For identifying T cell subpopulations and PD-1 expression,
PBMCs were then incubated for 30 min at room temperature
in the dark with the following antibodies: CD3-BUV395
(clone UCHT1), CD4-BV650 (OKT4), CD8-BV711 (RPA-
T8), CD45RO-BV421 (UCHL1), CD197-FITC (G043H7),
CD95-APC (DV2), PD-1-PE (EH12.2H7), CD27-PECy7
(O323), HLA-DR-APC-Cy7 (L243), and CD38-PerCP-
Cy5.5 (HB-7). This combination of antibodies was used to
measure the percentages of T cell subsets, mainly based on
the expression of CCR7 (CD197), CD45RA, and CD27. The
expression of PD-1 on each subset, and the percentages of
activated CD8+ T cells (CD38+ or HLA-DR+ and CD38+)
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were also determined. Gating of naı̈ve (Tn), central memory
(Tcm), effector memory (Tem), and terminally differentiated
effector (Te) T cells was performed as shown in Figure 1 on
each of the CD4+ and CD8+ T cell population, following a
strategy previously described.24

Other lymphocyte subtypes and monocytes were studied
on cells stained with CD3-BUV395 (clone UCHT1), CD56-
BV421 (HCD56), CD19-BV650 (H1B19), CD14-BV711
(M5E2), CD312-FITC (2A1), CD163-PE (MAC2-158),
CD16-PE-Cy7 (3G8), CD97-APC (VIM3b), HLA-DR-APC-
Cy7 (L243), and CD38-PerCP-Cy5.5 (HB-7). The identifi-

cation of the main populations of leukocytes was performed
as previously described. All antibodies were purchased from
BioLegend (San Diego, CA), except antibodies for CD163
(Trillium Diagnostics Bangor, ME), CD312 (AbD Serotec,
Raleigh, NC), CD97 (eBiosciences, San Diego, CA), and
CD3-BUV395 (BD Biosciences, San Jose, CA). Optimal
concentrations of antibodies were determined in preliminary
titration experiments.

Data acquisition and analyses were performed by using an
LSRFortessa flow cytometer and FACSDiva software (BD
Biosciences, San Jose, CA). Compensation for fluorescence

FIG. 1. Gating strategy for identifying T cell subpopulations and the expression pf PD-1. PBMCs were separated from
blood samples by centrifugation on Ficoll, and cells were cryopreserved in liquid nitrogen until flow cytometry analysis was
performed. Viable T cells were identified as CD3+ and L/D Blue-dim cells (a), and subpopulations of CD4+ and CD8+ T
cells were further divided into central memory (Tcm), effector memory (Tem), and effector (Te) T cells based on the
expression of CCR7 (CD197) and CD45RO (b). Naı̈ve and stem cell-like memory T cells (Tscm) were gated based on their
high expression of CD27 and low SSC values (c). Tscm cells were distinguished from naı̈ve (Tn) T cells based on higher
levels of FasR (CD95) expression (d). Histograms were used for gating PD-1-positive cells in each of the T cell sub-
populations described (e–h). PBMC, peripheral blood mononuclear cell.
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spillover was performed for each panel of antibodies in
FACSDiva by using OneComp eBeads from eBiosciences
(San Diego, CA) stained with each antibody individually and
PBMCs stained with Live/Dead blue dye. Gating strategy for
identifying the T cell subsets and the expression of PD-1 is
shown in Figure 1.

IL-6 and CRP quantitations were performed by using
solid-phase sandwich enzyme-linked immunosorbent assay
(ELISA) kits from Invitrogen/Life Technologies (Grand Is-
land, NY).

Soluble CD163 was measured by using an ELISA kit from
R&D Systems (Minneapolis, MN). The procedures provided
by the manufacturer were used for each kit, and the absor-
bance of each well was measured on a BioTek PowerWave
XS (BioTek, Winooski, VT).

Lipopolysaccharide (LPS) was measured by using the
endpoint chromogenic Limulus Amebocyte Lysate (LAL)
test for gram-negative bacterial endotoxin from Lonza (Al-
lendale, NJ), following the procedure recommended by the
manufacturer. The absorbance of each sample was measured
on a Tecan Sunrise ELISA plate reader (Tecan Systems, San
Jose, CA).

Statistical analyses

Two-tailed paired Student’s t-test was used to test for
significant differences, and Bonferroni correction for multi-
ple comparisons on longitudinal samples was applied;
0.01667 was considered the limit for rejecting the null hy-

pothesis, accounting for comparisons between values mea-
sured at entry versus three subsequent time points (8, 24, and
48 weeks).

Results

The cART regimen, including raltegravir, effectively
lowered plasma viral loads in all subjects (Fig. 2) from a
median value of 23,918 copies/mL at entry to median values
of 37, 26, and 14 copies/mL at 8, 24, and 48 weeks, respec-
tively ( p < 10-6; Fig. 2a). The range of viral load at entry was
between 2.1 · 103 and 2.8 · 105 copies/mL. After the initia-
tion of cART regimen, all participants had viral loads below
400 copies/mL, except for one subject with viral loads
ranging between 424 and 1913 at weeks 24 and 48.

The percentages of CD4+ cells increased after the initiation
of cART treatment containing raltegravir; the mean value at
entry was 20.3% and increased to 22.9% at 8 weeks, 26.3% at
24 weeks ( p < .0001), and 27.3% at 48 weeks ( p < .0005;
Fig. 2b). Conversely, the percentages of CD8+ T cells de-
creased from 53.8% at entry to 49.1% at 8 weeks ( p < .0005),
45.4% at 24 weeks ( p < 10-5), and 40.6% at 48 weeks
( p < 10-4; Fig. 2c).

We found significant correlations between the percentages
of CD4+ or CD8+ T cells measured in fresh blood samples at
the time that the study was conducted with those measured in
cryopreserved PBMCs (Fig. 2c, d). Correlations for both CD4
and CD8 were statistically significant ( p < 10-6), with Pear-
son correlation coefficients of 0.89 and 0.75 for CD4% and

FIG. 2. Viral load and percentages of CD4+ and CD8+ T cells. Viral loads (a), CD4 (b) and CD8 (c) T cell percentages in
fresh whole blood samples were measured as described under the Materials and Methods section. Individual data points
connected by solid lines are shown for each subject; blue dotted lines connect median values. Based on Bonferroni
correction for three familywise comparisons, the level of significance for p-values was set to .0167. Correlations between
CD4+ (d) and CD8+ (e) T cell percentages measured in fresh versus cryopreserved samples were significant for both
subpopulations of CD4+ and CD8+ T cells ( p < 10-6). (*p < 0.0167; **p < 10-3; ***p < 10-6).
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CD8%, respectively. Differences between median values mea-
sured in fresh whole blood samples versus cryopreserved PBMCs
were below 4%, consistent with data previously reported.25

The percentages of naı̈ve (Tn), central memory (Tcm),
effector memory (Tem), effector (Te), and stem cell-like
memory (Tscm) cells determined by polychromatic flow
cytometry in CD4+ (Fig. 3a–e) and CD8+ (Fig. 3f–j) T cells
are shown in Figure 3.

The cART regimen containing raltegravir induced signif-
icant changes in the distribution of T cell phenotypes, more
prominently in CD8+ T cells. Increased percentages of CD8
Tn were found at 24 and 48 weeks, with median values
changing from 31.5% at entry to 42.5% at 24 weeks and
57.4% at 48 weeks, respectively ( p < .005; Fig. 3f). A similar
trend was observed for CD8+ Tscm cells, with median per-
centage values increasing from 1.7% at entry to 2.2% and
2.6% at 24 and 48 weeks, respectively ( p < .01; Fig. 3j).

Unlike Tn and Tscm cells, median percentage values of
CD8 Tem cells decreased from 39.3% at entry to 26.1% and
21.6% at 24 and 48 weeks, respectively ( p < .001; Fig. 3h).
The median percentage values at 8 weeks were marginally
higher for CD8 Tn (Fig. 3f), and lower for CD8 Tem cells
(Fig. 3h) as compared with the corresponding entry values,
but the differences were not statistically significant. Neither
CD8+ Tcm nor CD8+ Te cells were changed during the cART
regimen (Fig. 3g, i).

Since the mean fluorescence intensity of PD-1 staining is
affected by cryopreservation,15,16 we measured the percent-
age of PD-1-positive cells in each T cell subpopulation as a
primary outcome of the study.

We found that the percentage of total CD4+ PD1+ cells did
not change significantly during the study, although the me-
dian values trended toward a decrease from 15.6% at entry

to 15.2% at 8 weeks, 14.5% at 24 weeks, and 11.1% at 48
weeks. The percentage of CD8+ PD-1+ cells decreased sig-
nificantly from a median value of 44.2% at entry to 41.0%,
23.5%, and 18.9% at 8, 24, and 48 weeks, respectively
( p < .014; Fig. 4a, g). Percentages of PD-1-positive naı̈ve
(Tn), central memory (Tcm), effector memory (Tem), ef-
fector (Te), and stem cell-like memory (Tscm) cells were
determined for each CD4+ (Fig. 4b–f) and CD8+ (Fig 4h–l) T
cell subpopulation in cryopreserved PBMCs. Higher per-
centages of PD-1+ CD4+ Tcm (Fig. 4c; p < .01) and CD4+

Tscm (Fig. 4f; p < .01) cells were measured at 24 and 48
weeks, respectively, whereas the other subpopulations of
CD4+ T cells did not change significantly during the study.

Among the subpopulations of CD8+ T cells, decreased
percentages of cells expressing PD-1 were found in CD8+ Tcm
(48 weeks; Fig. 4i) and Te (24 and 48 weeks; Fig. 4j) cells.

We measured significant changes in activation markers
CD38 and HLA-DR on CD8+ T cells at all time points after
the initiation of cART. Percentages of CD38+ CD8+-T cells
or dual positive for HLA-DR+ and CD38+ significantly de-
creased at 8 weeks and remained lower than at the beginning
of the study (Fig. 5). Viral loads were significantly correlated
with CD8+ CD38+ (Fig 5c) and CD8+ CD38+ HLA-DR+

(Fig. 5d); Pearson coefficients were 0.58 and 0.70, respec-
tively ( p < 10-5).

No significant differences were found between percent-
ages of B cells, monocytes, NK cells, or total T cells mea-
sured at entry as compared with the other time points in the
study (data not shown).

We measured concentrations of CRP, LPS, IL-6, and sol-
uble CD163 in cryopreserved plasma samples from the same
study participants (Fig. 5e–h). No significant differences
were detected between the levels of CRP, LPS, and IL6.

FIG. 3. T cell subpopulations in cryopreserved PBMCs. Percentages of naı̈ve (Tn), central memory (Tcm), effector
memory (Tem), effector (Te), and stem cell-like memory (Tscm) cells were determined in CD4+ (a–e) and CD8+ (f–j) T
cells in cryopreserved PBMCs. Individual data points connected by solid lines are shown for each subject; blue dotted lines
connect median values. The level of significance for p-values was set to .0167 based on Bonferroni correction for three
familywise comparisons.
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FIG. 4. Expression of PD-1 on T cells. Percentages of PD-1-positive T cells, total, naı̈ve (Tn), central memory (Tcm),
effector memory (Tem), effector (Te), and stem cell-like memory (Tscm) cells were determined in cryopreserved PBMCs
for CD4+ (a–f) and CD8+ (g–l) T cells. Individual data points connected by solid lines are shown for each subject; blue
dotted lines connect median values. Based on Bonferroni correction for three familywise comparisons, the level of sig-
nificance for p-values was set to .0167.

FIG. 5. Markers of immune activation on CD8 T cells and inflammation markers in plasma. After the initiation of cART,
the percentages of CD8+-T cells positive for CD38 or dual positive for HLA-DR and CD38 significantly decreased at 8
weeks and remained lower than at the beginning of the study (a, b). Correlations between viral loads and CD8+ CD38+ (c) or
CD8+ CD38+ HLA-DR+ (d) are shown. Individual data points connected by solid lines are shown for each patient; dotted
lines in (a) and (b) connect median values. Plasma levels of CRP (e), IL-6 (f), LPS (g), and soluble CD163 (h) were
measured as described under the Materials and Methods section. Individual data points connected by solid lines are shown
for each subject; dotted lines connect median values. The level of significance for p-values was set to .0167. cART,
combination antiretroviral therapy; CRP, C reactive protein; LPS, lipopolysaccharide.
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Mean plasma concentrations of sCD163 significantly de-
creased from 2.1 lg/mL at entry to 1.5 lg/mL at week 48
( p < .0164; Fig. 5h).

Discussion

Intensification of cART regimen with raltegravir in chil-
dren and adolescents failing a therapeutic regimen effectively
decreased viral loads and increased the percentage of CD4+

cells. We demonstrated that effective antiviral therapy is
associated with a decrease in PD-1 expression on CD8+ but
not CD4+ cells, an increase in percentage of CD8+ Tscm, and
a decrease in markers of immune activation (CD38 and HLA-
DR). This is the first report of the effect of antiviral therapy
on PD-1 expression by lymphocytes in children and adoles-
cents. By markedly reducing HIV replication, cART even-
tually triggers an often slow and incomplete recovery of the
immune system toward normality.26 In adults, effective
cART leads to a significant decline in viremia and an increase
in percentages of CD4 T cells within 1 month from the be-
ginning of therapy, mainly due to increased percentages of
central memory CD4+ T cells.27–29 After several months of
treatment, naı̈ve CD4+ lymphocytes also increase whereas
CD8+ T cells decline.

Unlike adults, children respond with a preferential ex-
pansion of the naı̈ve T cell pool after initiating successful
cART, probably due to the presence of a functioning thy-
mus.30 HIV infection may not uniformly result in accelerated
thymic involution in childhood, but studies based on the as-
sessment of T cell receptor rearrangement excision circles
demonstrated that thymopoiesis can occur in adolescents who
are perinatally infected, despite lifelong infection.31 The
percentage of CD4+ cells recently emigrated from thymus
predicts disease progression and may reflect history of dis-
ease in HIV-positive adults and adolescents.32 Many indi-
viduals after up to two decades of infection controlled with
antiretroviral therapy have sufficient thymic reserve to com-
pensate for CD4 T-cell loss.33 Inter-individual responses to
cART vary considerably34 and HIV-specific CD4+ T cell re-
sponses are rarely recovered,35 with normalization of the CD4+/
CD8+ T cell ratio occurring in only a minority of cases.36

Viral loads as well as percentages and absolute counts of
CD4+ and CD8+ T cells for all subjects enrolled in the P1066
have already been published (Nachman et al., 2013).1 The
selection of participants depended on the availability of at
least four time points of cryopreserved PBMC samples with
cell viability rates above 75%.

Consistent with previous studies and guidelines of quality
assurance,25,37,38 we found significant correlations between
the percentages of CD4 and CD8 T cells measured in fresh
samples versus cryopreserved samples, confirming that the
cell surface markers were intact. Nevertheless, it should be
noted that the CD4 and CD8 assays in fresh blood were
performed in different laboratories, and inter-laboratory
variability is expected for these type of assays. Furthermore,
the PBMC isolation procedure may also be a source of
variability.

The distribution of CD4 T cell subtypes did not change
significantly. However, two of the subjects had low per-
centages of CD4 T cells (2% and 5%), low CD4 naı̈ve (4.2%
and 7.4% respectively), and corresponding high percentages
of CD4 effector memory T cells (73.1% and 65.7%, respec-

tively) at entry. One of these two patients had multiple in-
fections (pneumonia, recurrent varicella, sinusitis, and oral
candidiasis) and presented generalized and persistent
lymphadenopathy; the other subject with low CD4 counts had
oral candidiasis but no other infections. Both patients were
men and showed improved immunologic status during the
regimen with raltegravir. The other 11 subjects had CD4 Tn
cells above 50% throughout the study. Taken together, this
group of subjects did not show significant changes in CD4 T
cell distribution. This finding may be the consequence of
previous cART treatment and the very brief 3 weeks of in-
terruption of cART before starting the raltegravir regimen.

Tscm CD4 cells are potential cellular targets for reducing
HIV reservoirs,39 and high levels of PD-1 expression on CD4
cells predict suboptimal CD4 T cell recovery after long-term
cART.12 The PD-1 expression on CD4 T cells subsets did not
decrease over time, possibly due to the fact that the subjects
were previously under cART.

We found a significant increase of CD8 Tn and Tscm
CD8 T cells at 24 and 48 weeks as compared with baseline
and percentages of CD8 Tem cells decreased significantly at
24 and 48 weeks, consistent with decreased immune activa-
tion induced by effective cART therapy.

The frequency of CD8 Tscm has been reported to decrease
in all individuals with chronic, untreated HIV-1 infection.
cART has a restorative effect on this subset, and high levels
of circulating Tscm cells are associated with improved
prognosis in chronic HIV-1 infection.40 Our data provide
further evidence that CD8 Tscm cells increase with cART,
and this finding may be used as an indicator of effective
cART therapy.

PD-1 has been investigated for its possible roles in HIV
pathogenesis.41 Cryopreservation has an impact on the level
of expression of PD-1.15,16 However, due to a limited avail-
ability of fresh human PBMC, cryopreserved cells were used
to study PD-1 expression.13,41 In general, mean fluorescence
intensity correlates with the frequency of PD-1+ cells.13

Based on our experience of the greater effect of cryopreser-
vation on mean fluorescence intensity of PD-1 staining,15,16

we focused on measuring the percentages of PD-1-positive
cells. The percentage of Tcm CD4 cells that expressed PD-1
was higher at 24 weeks than at baseline, but this change did
not persist at 48 weeks. An increase of Tscm CD4 cells that
expressed PD-1 was detected for the Tscm cells at 24 weeks,
but the differences were not significant at 8 or 48 weeks.

Effective cART along with immune restoration is associ-
ated with a decrease in PD-1 expression by CD4 T cells.42,43

We detected a moderate increase in the percentage of PD-1
expressing CD4-positive T cells during the first 2 months of
cART therapy in an adult cohort.44 The transient increase in
PD-1 levels may be due to incomplete viral suppression,
leading to continued exposure of the immune system to
low levels of viral antigens or/and to early T cell reconsti-
tution from a lymphoid tissue where PD-1 expression may
be higher.43

The most important changes in PD-1 expression were
detected for the CD8 T cells. Percentages of total PD-1-
positive cells were lower than at baseline, due mainly to
decreased percentages of Tcm and Tem cells. Tcm displayed
significantly lower levels of PD-1 expression at 48 weeks
only, whereas Tem showed a significant decrease at both 24
and 48 weeks. Breton et al.41 showed higher expression
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levels for PD-1 measured as mean fluorescence intensity on
all T cell subsets in chronic HIV-infected subjects without
treatment versus subjects on cART. We found a decrease of
PD-1 expression (measured as percentage of total PD-1-
positive cells) in CD8+ T cells after the initiation of cART
(Fig. 4g). However, the percentages of PD-1-positive CD4 T
cells did not change significantly after cART (Fig. 4a–f). The
percentages of activated CD8 T cells that express CD38 and/
or HLA-DR were the most rapid changes that signaled ef-
fective therapy (Fig. 5a, b).

We also measured the percentages of NK cells, B cells, and
monocyte subsets but we did not find significant changes over
time. Although we anticipated to find decreased percentages
in CD16+CD14low non-conventional monocytes after the
initiation of effective cART, we did not observe such a de-
crease, possibly due to small sample size.

An increase in the plasma levels of proinflammatory
markers is associated with HIV infection, whereas the sup-
pression of HIV replication with antiviral therapy leads to at
least partial resolution of chronic inflammation.45–49 Among
plasma levels of several proinflammatory markers measured,
CRP, IL6, sCD163, and LPS, only sCD163 was significantly
decreased by week 48, consistent with other reports.18 Lack
of changes in CRP levels despite viral suppression was also
previously reported.18 Long-term cART has been associated
with a decrease in plasma LPS levels in adults.50 We ob-
served no change in the plasma LPS level in this study of
children. These may be due to patient age and study duration.

Our data indicate that raltegravir improves immune status,
consistent with effective antiretroviral therapy. Decreased
expression of PD-1, CD38, and HLA-DR on CD8+ T-cells, an
increase in CD8 Tscm cells, and decreased levels of sCD163
are markers of immune restoration in response to cART with
raltegravir intensification.
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