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Abstract

Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for 

embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from 

cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis 

in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We 

noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and 

that its expression is particularly enriched in the pharyngeal region corresponding with the 

pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing 

cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the 

pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we 

ablated Fn1 using the Isl1Cre knock-in strain of mice. Deletion of Fn1 using the Isl1Cre strain 

resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development 

of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types 

responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, 

integrin α5 using the Isl1Cre strain, and observed the same spectrum of abnormalities seen in the 

Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin 

α5 in distinct cell types within the Isl1+ tissues and their derivatives, suggested that the expression 

of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural 

crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin 
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α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th 

PAAs.
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1. Introduction

Congenital heart disease (CHD) is a common birth defect, with an incidence of nearly 1% in 

newborns (Roger et al, 2011). The spectrum of abnormalities observed in CHD includes 

defects in the morphogenesis of the aortic arch arteries (AAAs). Interruption of the aortic 

arch is one of the most severe of these defects and is lethal unless corrected by surgery 

(Moon, 2006, 2008). AAAs are an asymmetrical vascular tree that routes oxygenated blood 

from the heart to the rest of the body. These blood vessels develop from three pairs of 

pharyngeal arch arteries (PAAs) – numbered 3, 4, and 6 – that are initially organized 

symmetrically around the midline (Kirby, 2007). Both the formation of PAAs and their 

subsequent asymmetrical remodeling are necessary for proper AAA morphogenesis. In this 

respect, mouse models of CHD indicated that AAA defects in patients with DiGeorge 

syndrome were likely due to aberrant. PAA formation (Lindsay and Baldini, 2001; Lindsay 

et al., 2001; Papangeli and Scambler, 2013a), while AAA defects in patients with Allagile 

syndrome were likely the result of defective PAA remodeling (High and Epstein, 2008). 

Taken together, these studies indicated that AAA morphogenesis is regulated over multiple 

steps during embryo development. Therefore, understanding the genes and mechanisms that 

regulate distinct steps in AAA morphogenesis will provide important insights into the 

etiology of CHD.

Global Fn1-null embryos arrest their development by E9.5 and die from severe 

cardiovascular defects (George et al., 1997; George et al., 1993). These embryos exhibit 
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abnormal left-right patterning, defective development of the definitive endoderm, cardiac 

outflow tract, and cardiac neural crest (Mittal et al., 2010, 2013; Pulina et al., 2011, 2014; 

Villegas et al., 2013). However, it remained unclear whether cardiac and vascular defects 

observed in global Fn1-null embryos resulted directly from the role of Fn1 in cardiovascular 

development or from the earlier role of Fn1 in embryonic morphogenesis.

Integrins are a major class of Fn1 receptors (Wickstrom et al., 2011; Yang et al., 1999), and 

at least 10 distinct integrins are known to bind Fn1 (Wickstrom et al., 2011). To understand 

the mechanisms of Fn1 signal transduction during embryogenesis, several laboratories 

generated global knockout mice by deleting Fn1 receptors singly or in combination. The 

phenotypes of integrin α5-null embryos closely resemble those of Fn1-null mutants, while 

knockouts of other Fn1 receptors (e.g. integrin heterodimers containing αv, α4, α8, or α9 

chains) do not correspond with Fn1-null phenotypes (Huang et al., 2009; Wickstrom et al., 

2011; Yang et al., 1999). Furthermore, our recent studies indicated that embryonic 

abnormalities related to defects in the left-right asymmetry, the development of the neural 

crest, and cardiogenesis in global Fn1-null embryos closely resembled defects observed in 

integrin α5-nulls (Mittal et al., 2010, 2013; Pulina et al., 2011, 2014; Villegas et al., 2013). 

Significantly, embryos in which the Arg-Asp-Gly (RGD) integrin-binding site in Fn1 was 

ablated displayed similar phenotypes when compared with integrin α5-null mutants 

(Takahashi et al., 2007). These in vivo data, along with extensive molecular, biochemical, 

and cellular studies over the past four decades, have established that integrin α5β1 binds 

Fn1 and is a major Fn1 signal transducer. However, both the nature of the pathways activated 

by Fn1-integrin α5β1 interactions in vivo and the role(s) of these pathways in cardiovascular 

morphogenesis are virtually unknown.

In our previous work, we discovered that the expression of Fn1 is dynamically regulated 

during embryogenesis, and that Fn1 mRNA and protein are distributed in non-uniform 

patterns within the developing mouse embryo (Mittal et al., 2010; Pulina et al., 2014; 

Villegas et al., 2013). In particular, we noticed that at E9.5, Fn1 is highly enriched in the 

pharyngeal arches 3, 4, and 6 (Mittal et al., 2010). Fn1 is essential for vertebrate 

development and highly evolutionarily conserved (Hynes, 2012; Hynes and Zhao, 2000; 

Whittaker and Hynes, 2002). Fn1 signals to cells by binding cell-surface integrins and 

syndecans. Cell adhesion to Fn1 regulates numerous cell biological functions such as 

proliferation, survival, and migration (Hynes, 2002, 2009; Schwartz, 2010; Schwartz and 

Assoian, 2001). In addition, Fn1 binds a number of growth factors, including VEGF, HGF, 

and many Fgfs (Giancotti and Tarone, 2003; Hynes, 2009; Martino and Hubbell, 2010; 

Miyamoto et al., 1996; Wijelath et al., 2002). Many growth factors require integrin-mediated 

cell adhesion to Fn1 for signaling (Giancotti and Tarone, 2003; Miyamoto et al., 1996). 

Taken together, these studies suggest that the enrichment of Fn1 in distinct embryonic 

regions may be important to modulate cellular responses to growth factors and to regulate 

specific morphogenetic processes.

To test this hypothesis, we ablated Fn1 in the pharyngeal region using the Isl1Cre knock-in 

strain of mice. In this strain, the Cre enzyme mediates recombination in several pharyngeal 

tissues including the pharyngeal and splanchnic mesoderm, endoderm, surface ectoderm and 

specific subpopulations of the cardiac neural crest (Cai et al., 2003; Engleka et al., 2012; 

Chen et al. Page 3

Dev Biol. Author manuscript; available in PMC 2017 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Park et al., 2006). Our studies indicate that distinct, cell type-specific pharyngeal sources of 

Fn1 play a number of distinct, indispensible roles in cardiovascular development and the 

formation of the 4th pair of PAAs. Moreover, we found that the phenotypes of Fn1flox/−; 

Isl1Cre and integrin α5flox/−; Isl1Cre mutants are similar with each other, indicating that 

integrin α5β1 acts as a major Fn1 receptor in the pharyngeal tissues. We then employed a 

series of conditional mutagenesis experiments to identify pharyngeal cell types, in which 

integrin α5-dependent signals regulate the development of distinct cardiovascular features.

2. Materials and methods

2.1. Mouse strains and genotyping

Fn1+/− mice, integrin α5+/− mice and integrin α5flox/flox mice were a gift from Dr. Richard 

Hynes (George et al., 1997; van der Flier et al., 2010; Yang et al., 1993). Fn1flox/flox mice 

were a gift from Dr. Reinhardt Fassler (Sakai et al., 2001). Isl1Cre knock-in mice were a gift 

from Dr. Sylvia Evans (Cai et al., 2003). RosamTmG mice, Gt (ROSA)26Sortm4(ACTB-

tdTomato,-EGFP) were purchased from Jackson labs (Muzumdar et al., 2007). Fn1+/− mice 

or integrin α5+/− mice were crossed with Isl1Cre knock-in mice to generate Fn1+/−; Isl1Cre/+ 

or integrin α5+/−; Isl1Cre/+ males, respectively. To obtain embryos, Fn1flox/flox females were 

crossed with Fn1+/−; Isl1Cre/+ males and integrin α5flox/flox females were crossed with 

integrin α5+/−; Isl1Cre/+ males. Adult mice and embryos were genotyped as described (Cai et 

al., 2003; George et al., 1997; Sakai et al., 2001; van der Flier et al., 2010). All experimental 

procedures were approved by the Institutional Animal Care and Use Committee of Thomas 

Jefferson University and conducted in accordance with federal guidelines for humane care of 

animals.

2.2. In situ hybridization

We generated the Fn1 in situ hybridization (ISH) probe and performed whole mount ISH 

staining procedure, as described (Mittal et al., 2010). For the ISH on tissue sections, Fn1 

probe recognizing the first exon of the Fn1 gene was purchased from the Advanced Cell 

Diagnostics (cat # 316951, ACD, Hayward, CA, USA). Detection was done using 

RNAscope 2.0 FFPE Assay Brown kit according to the manufacture’s protocol. After the 

signal was developed, sections were counterstained with Gill’s hematoxylin.

2.3. Intracardiac injection of India Ink

Embryos were dissected at E10.5 and fixed with 4% paraformaldehyde at 4 °C overnight. 

Embryos were rinsed with PBS and India ink injections were performed as described (Liang 

et al., 2014).

2.4. Immunofluorescence staining and histology

Dissected embryos were fixed with 4% paraformaldehyde at 4 °C overnight, rinsed in 

phosphate buffered saline (PBS), and stored in PBS at 4 °C for no more than 2 weeks. For 

paraffin embedding, embryos were processed through a graded series of alcohol and 

xylenes. Hematoxylin and eosin staining as well as alcian blue and nuclear fast red staining 

were done according to standard protocols. Alternatively, embryos were dehydrated through 

graded methanol series and stored at − 20 °C. For frozen sections, embryos were incubated 
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in 30% sucrose in PBS until they sunk and then in 50/50 mix of 30% sucrose and optimum 

cutting temperature (OCT) compound (Tissue-Tek) at 4 °C overnight. Embryos were 

embedded in a 50/50 mix of 30% sucrose and OCT and frozen using isopentane/dry ice 

bath. The following primary antibodies were used to stain frozen sections: anti-integrin α5 

(1:200, BD, cat #553319), anti-VEGFR2 (1:200, R&D, cat#AF644), anti-Pecam1 (1:200, 

BD Pharmingen, cat# 553370), anti-PDGFRβ (1:100; R&D, cat#AF1042), anti-NG2 (1:100, 

Millipore, cat#05-710), anti-ERG (1:100, Abcam, cat#ab110639). The following antibodies 

were used for either frozen or paraffin sections: rabbit polyclonal against mouse Fn1 (1:500, 

a gift from Dr. Richard Hynes lab, MIT) (George et al., 1993), anti-GFP (1:500, Aves labs, 

cat #GFP-1020). For staining, sections were incubated with blocking buffer consisting of 

10% Donkey serum in PBST (0.05% Tween 20 in PBS) for 1 h at room temperature (rt) and 

then incubated with primary antibodies diluted in blocking buffer overnight at 4 °C. The 

following day, sections were washed and then incubated with secondary antibodies: anti-

mouse, anti-goat, anti-chicken, or anti-rabbit conjugated to Alexa-488, Alexa-555, or Alexa 

647 (1:300, Invitrogen), or FITC-conjugated anti-chicken IgY antibodies (Jackson 

Immunoresearch). Nuclei were either stained with DAPI (1:1000 dilution of 5 mg/ml stock 

solution in H2O, Sigma, cat #32670-5MG-F) or DRAQ5 (1:1000 dilution of the stock 

solution supplied by Cell Signaling Technology, catalog #4048,). To extinguish the native 

tdTomato and memGFP fluorescence in frozen sections from embryos carrying the 

ROSAmTmG allele(s), sections were dehydrated through graded series of methanol and 

cover-slipped using glycerol:methanol (50:50) prior to imaging. For paraffin sections, the 

native tdTomato and memGFP fluorescence was extinguished by boiling sections in 10 mM 

Citric acid, pH6, for 10 min prior to staining. Slides were then mounted using ProLong® 

Gold Antifade (Invitrogen). All fluorescence images were acquired using an Olympus 

FV500 confocal microscope. Bright field images were acquired using Zeiss Axio Observer 

inverted microscope and DFC420 digital color camera (Leica).

For whole-mount immunofluorescence, embryos were isolated at E10.5 and fixed in 4% 

paraformaldehyde at 4 °C overnight. After rinsing, embryos were permeabilized with 

blocking buffer containing PBS, 0.1% Trixon X-100 (PBS-Triton) and 10% donkey serum at 

4 °C overnight. The next day, embryos were incubated with anti-Pecam1 antibody (1:200, 

BD Pharmingen, cat #550274) for 48 h at 4 °C. Embryos were then washed for 4 to 6 hours 

using PBS-Triton and then incubated with Alexa-conjugated secondary antibodies (1:300, 

Invitrogen). Embryos were then washed for 24 h at 4 °C and incubated with DRAQ5 

(1:1000) for 48 h. All incubations were performed with gentle rocking. Prior to imaging, 

embryos were dehydrated using a graded series of methanol and cleared using BABB 

solution consisting of benzyl alcohol (Sigma B-1042): benzyl benzoate (Sigma B-6630) in a 

1:2 ratio. Z-stacks were acquired using an Olympus FV500 confocal microscope and 

analyzed using Imaris software (Bitplane, USA).

2.5. BrdU labeling

BrdU (Fisher Scientific, cat # BP2508250) was dissolved in PBS at 5 mg/ml. Pregnant 

females were injected with this solution at the dose of 30 mg of BrdU per 1 kg of mouse 

body weight when embryos reached E10.5 and were sacrificed 30 min after injection. To 
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detect BrdU, sections were boiled for 10 min in 10 mM Citric acid solution, pH 6.0, and 

then stained using rat monoclonal anti-BrdU antibody (1:100, Abcam, cat #ab6326).

2.6. Outflow track measurements

The lengths of the proximal and distal portions of the cardiac outflow tract (OFT) and the 

height of the left ventricle were measured using the ruler tool in the AxioVision Zeiss image 

acquisition software as shown in Fig. 10. To account for slight differences in the size of the 

heart, the OFT measurements were normalized relative to the height of the left ventricle.

2.7. Quantitative RT-PCR

We isolated pharyngeal arches 3–6 from α5flox/+; Isl1Cre control and integrin α5flox/−; 

Isl1Cre mutant embryos at E10.5. RNA isolation, RT-PCR, quantification and primers 

sequences were as reported in (Liang et al., 2014).

2.8. Statistical methods

All statistics were performed using Prism 6 version of Graph-pad software. Data were 

analyzed using either 2-tailed unpaired Student’s t-test or 2-tailed Fisher exact test, as 

indicated in the text and figure legends.

3. Results

3.1. Expression of Fn1 in tissues derived from Isl+ progenitors is required for 
cardiovascular morphogenesis

Our previous studies indicated that the expression of Fn1 mRNA was enriched in the 

pharyngeal region corresponding with pharyngeal arches 3, 4, and 6 at E9.5 (Mittal et al., 

2010). Since the sequence of Fn1 is highly conserved in all vertebrates and is required for 

cardiovascular morphogenesis, we hypothesized that both tissue-specific synthesis of Fn1 
and signaling by Fn1 to specific tissues were important for embryonic and cardiovascular 

development.

To test our hypotheses, we conditionally ablated Fn1 expression using the Isl1Cre knock-in 

strain. The expression of Cre in this strain mediates loxP-dependent recombination in tissues 

that closely match those expressing Fn1 (Fig. 1A–A′, B–B′) and leads to specific ablation 

of Fn1 mRNA and protein in the pharyngeal region (Fig. 1B–E, 1B′–E′). The remaining 

Fn1 protein, as will be discussed later, is synthesized by the neural crest (long arrows in Fig. 

1B–E) and in neural crest-derived cells (an open arrowhead in Fig. 1E′). We found that 

conditional deletion of Fn1 in Fn1flox/−; Isl1Cre mutants resulted in late embryonic/early 

neonatal lethality in the majority of the cases (Table 1) and displayed a variety of 

cardiovascular and glandular abnormalities (Fig. 2 and Table 2). Gross dissection of E16.5 

mutant and control embryos indicated that the majority of Fn1flox/−; Isl1Cre mutants 

exhibited defects in the morphogenesis of the AAAs, which included the interrupted aortic 

arch type B (IAA-B) (compare Fig. 2A and F), aberrant origin of the right subclavian artery 

resulting in retroesophageal right subclavian artery (RERSA) (compare Fig. 2B and G, 

dotted line underlines RERSA), and defects in the branching of the carotid arteries (compare 

Fig. 2C and H), Table 2.
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In addition to vascular abnormalities, we also found membranous and muscular cardiac 

ventricular septal defects (VSD) in n = 6/11 mutants (compare Fig. 2D–E with Fig. 2I–J). 

The positions of the great vessels, relative to the left and right ventricles of the heart, were 

unaffected in the majority of Fn1flox/−; Isl1Cre mutants, except in one instance of the double 

outlet right ventricle (DORV) and one instance of persistent truncus arteriosus (PTA; 

compare Fig. 2K and M). In addition, most of the mutants developed nodules of subaortic 

cartilage, n = 7/11 (compare Fig. 2K, K′ and 2N, N′), and displayed defects in thymus 

morphogenesis, n = 7/11 (compare Fig. 2L, L′, and 2O, P), Table 2. Myocardial thickness 

and trabeculation were unaffected in the majority of Fn1flox/−; Isl1Cre mutants, n = 10/11.

The presence of membranous VSD was previously associated with direct and indirect 

defects in neural crest development (Hutson and Kirby, 2007). Intriguingly, recent studies 

using the Isl1Cre knock-in mice showed that Cre recombinase in this strain is activated in 

some populations of the neural crest-derived cells (Engleka et al., 2012). To test whether Isl1 

was expressed in the descendants of neural crest cells invading the cardiac outflow tract 

(OFT), we performed lineage-tracing studies using TFAP2αIRESCre to label neural crest-

derived cells. Simultaneously, we co-labeled sections using the antibodies to Isl1. For these 

and all other experiments involving immunofluorescence, the native GFP and tdTomato 

fluorescence due to the expression of the ROSAmTmG reporter was extinguished, as 

described in Methods. These experiments showed that Isl1 is expressed in the neural crest-

derived cells entering the cardiac OFT at E9.5 (Fig. 3A, A′). The majority of the neural crest 

cells in pharyngeal arches 3 (Fig. 3B, B′) and 4 (Fig. 3C, C′) were Isl1-negative. This was 

also the case at E10.5 (Fig. 3E–E′). To exclude the mesodermal origin of cells co-expressing 

TFAP2α and Isl1 in the OFT, we performed lineage tracing using the Mesp1Cre strain (Fig. 

3D–D′). Mesp1 is a transcription factor expressed in the earliest known mesodermal 

progenitors, which give rise to anterior mesodermal derivatives including the myocardium 

and endocardium of the heart (Saga et al., 2000). These fate-mapping experiments showed 

that Isl1+; GFP+ double-positive cells in the OFT, as seen in Fig. 3A–A′, are indeed derived 

from the neural crest and not from the mesoderm (arrows in Fig. 3D, arrowheads in 3D′). 

Cells expressing Isl1 in E10.5 pharyngeal arches mainly compose the endoderm, surface 

ectoderm, arch core mesoderm and PAA endothelium (Fig. 3E–E′ and 3F–F′).

Taken together, these studies suggest that the membranous VSD and the peri-aortic cartilage 

observed in Fn1flox/−; Isl1Cre mutants are a direct consequence of Isl1Cre-mediated ablation 

of Fn1 in neural crest-derived cells. Indeed, we found that the deletion of Fn1 in the neural 

crest using either the TFAP2αIRESCre knock-in strain or the P3Pro-Cre transgenic line, 

resulted in the membranous VSD (n = 11/32) and peri-aortic cartilage (n = 10/12) (Fig. 4).

Neural crest-derived cells are also known to play a requisite role in thymus development, 

contributing to the thymic capsule and the pericytes of thymic blood vessels (Foster et al., 

2008; Hutson and Kirby, 2007; Le Douarin and Jotereau, 1975). Since Fn1flox/−; Isl1Cre, 

Fn1flox/−; TFAP2αIRESCre and Fn1flox/−; P3Pro-Cre mutants develop thymus defects (Fig. 

2L, O, P and Fig. 4C, F, I, L), we examined the lineage relationships of cells composing the 

thymus. We found that Isl1Cre is activated neither in thymic capsule cells nor in pericytes of 

thymic blood vessels (Fig. 5A, A′), excluding direct effects on the neural crest-derived cells 

in the thymi in Fn1flox/−; Isl1Cre mutants. Vascularization of thymi in Fn1flox/−; Isl1Cre 
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embryos isolated at E16.5 appeared to be similar to that of controls; although, we noticed a 

somewhat disorganized appearance of pericytes in n = 2/3 Fn1flox/−; Isl1Cre mutants 

(compare Fig. 5B, B′ with 5D, D′, and 5C, C′ with 5E, E′). With the bulk of thymic tissue 

derived from the Isl1+ pharyngeal endoderm of the 3rd pouch (Fig. 5A, GFP+ cells), our data 

suggest that thymic defects in Fn1flox/−; Isl1Cre mutants are likely due to the direct role of 

Fn1 in the development of this endodermal tissue and indirect role in the development of 

neural crest-derived pericytes. Taken together, our data indicate that the expression of Fn1 in 

Isl1+ cells and their descendants is required for ventricular septation, thymus development, 

and AAA morphogenesis. These phenotypes fall within a spectrum of abnormalities found 

in DiGeorge patients (Moon, 2008).

Mouse models of DiGeorge syndrome indicate that AAA defects in DiGeorge patients, 

including IAA-B and RERSA, result from abnormal formation of the 4th pharyngeal arch 

arteries (PAAs) (Liao et al., 2004; Lindsay et al., 2001; Merscher et al., 2001; Papangeli and 

Scambler, 2013a). In order to test whether this was the case in our mutants, we isolated 

E10.5 embryos at the time when all three pairs of PAAs were well-formed in controls and 

assayed PAA formation either by performing India ink injections into the hearts or by whole 

mount immunofluorescence staining and imaging. These assays indicated that the left or the 

right 4th PAAs were not formed properly in n = 8/18 Fn1flox/−; Isl1Cre mutants, Table 3 

(compare Fig. 6A, B and C, D; compare Fig. 6E, F and Fig. 6G, H; and optical sections in 

Fig. 6E′, F′ and Fig. 6G′, H′). To determine whether abnormal PAA formation resulted 

from defective proliferation of endothelial cells, we labeled the embryos with BrdU in utero 
and quantified the proportion of BrdU-positive endothelial cells in the 4th PAAs in controls 

and Fn1flox/−; Isl1Cre mutants. These studies demonstrated that endothelial cell proliferation 

was similar in mutants and controls (Fig. 6I), indicating that defective formation of the 4th 

PAA was not due to differences in endothelial cell proliferation. The frequency of the 4th 

arch PAA defects in Fn1flox/−; Isl1Cre mutants (44%) at E10.5 corresponds with the 

frequency of RERSA and IAA-B observed at E16.5 in Fn1flox/−; Isl1Cre embryos (42%, 

Table 2), indicating that AAA anomalies in these mutants arose from defective formation of 

the 4th pair of PAAs.

Isl1 protein and the Cre recombinase in the Isl1Cre strain label the pharyngeal endoderm, 

surface ectoderm, arch core mesoderm and PAA endothelium (Fig. 3E, E′, F, F′; and 

Supplemental Fig. 1), but not neural crest-derived cells in the pharyngeal arches (Fig. 3 and 

Sup. Fig. 1). Consistent with these observations, the deletion of Fn1 in the neural crest did 

not result in PAA formation defects (Fig. 6J–O′). In these experiments, we used 

TFAP2αIRESCre, in which Cre is active in both the neural crest and the pharyngeal surface 

ectoderm. Taken together, these experiments indicate that these latter two pharyngeal 

sources of Fn1 are not required for PAA formation.

3.2. Integrin α5 is a major Fn1 receptor in Isl1+ cells and their descendants

Isl1+ progenitors contribute to multiple tissues within pharyngeal arches. These tissues 

comprise the pharyngeal endoderm, mesoderm (including PAA endothelium), and surface 

ectoderm (compare GFP+ patterns in Fig. 7A and B; See Sup. Fig. 1 for the full anterior-

posterior view of coronal section through the pharyngeal arches). Fn1 protein expression is 
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enriched at the tissue borders in the pharyngeal arches (Fig. 7C). Intriguingly, Fn1 mRNA is 

particularly highly expressed in the endoderm of the 4th pharyngeal arch (double-headed 

arrow in Fig. 7D). In order to understand the mechanisms by which pharyngeal Fn1 

regulates cardiovascular development, we performed conditional mutagenesis to identify 

Fn1 receptors and to determine the cell types responding to Fn1 signals in the pharyngeal 

arches. We focused our attention on integrin α5β1 since we and others have shown that 

phenotypes of integrin α5-null mice closely resemble those of Fn1-null mutants (George et 

al., 1993, 1997; Goh et al., 1997; Mittal et al., 2010, 2013; Pulina et al., 2011, 2014; 

Takahashi et al., 2007; Yang et al., 1999; Yang et al., 1993).

Immunofluorescence staining indicated that integrin α5 is expressed in all pharyngeal cell 

types (Fig. 7E) and is particularly enriched in the PAA endothelium (e.g. open arrowheads in 

Fig. 7E and F). To determine whether integrin α5β1 regulated cardiovascular morphogenesis 

downstream of Fn1, we used the Isl1Cre knock-in mice to ablate integrin α5. This strategy 

resulted in efficient downregulation of integrin α5 in the surface ectoderm, splanchnic and 

pharyngeal mesoderm, myocardium, and in the endoderm in integrin α5flox/−; Isl1Cre 

mutants at E8.5 (compare Fig. 8A, A′ and B, B′). At E10.5, we observed downregulation of 

integrin α5 in the PAA endothelium, endoderm and surface ectoderm in the pharyngeal 

arches of integrin α5flox/−; Isl1Cre mutants (Fig. 8C, D and C′, D′). Taken together, these 

studies indicate that the use of the Isl1Cre knock-in mice resulted in the downregulation of 

integrin α5 in the expected cell types.

The deletion of integrin α5 in tissues derived from Isl1+ cells was embryonic lethal in the 

majority of the cases (Table 4), and resulted in phenotypes that closely corresponded with 

those observed in Fn1flox/−; Isl1Cre mutants (Fig. 9), Table 5. Similar to Fn1flox/−; Isl1Cre 

embryos, integrin α5flox/−; Isl1Cre mutants displayed defects in AAA morphogenesis 

(compare Fig. 9A–B and Fig. 9E–F), membranous and muscular VSD (compare Fig. 9C–C′ 
and Fig. 9G–H), and defects in thymus development (Fig. 9D, I, L). We observed a slightly 

higher proportion of mutants with abnormal alignment of the great vessels relative to the left 

and right ventricles in integrin α5flox/−; Isl1Cre embryos (n = 4/10) than in Fn1flox/−; Isl1Cre 

mutants (compare Fig. 9C, C′ with Fig. 9K, K′, showing double outlet right ventricle in the 

mutant); see Tables 2 and 5. However, this difference in frequency did not reach statistical 

significance (p = 0.14, 2-tailed Fisher exact test). Membranous VSD (n = 7/14), peri-aortic 

cartilage (n = 3/12) and thymus defects (n = 10/15) were present in integrin α5flox/−; 

TFAP2αIRESCre mutants (Fig. 9M–R). Peri-aortic cartilage results from the abnormal 

differentiation of neural crest cells (Gao et al., 2010). Taken together, our data suggest that 

signaling mediated by Fn1-integrin α5β1 interactions in neural crest cells is important for 

ventricular septation and suppression of differentiation of neural crest cells into the cartilage.

Analogous to Fn1flox/−; Isl1Cre mutants, we found that defective PAA formation at E10.5 

was the basis for RERSA and IAA-B defects in integrin α5flox/−; Isl1Cre mutants (Fig. 10A–

H), Table 6. The left, right, or both PAAs were affected in individual integrin α5flox/−; 

Isl1Cre embryos, Table 6. This is similar to the PAA phenotypes observed with Fn1flox/−; 

Isl1Cre mutants (Fig. 6A–H′). The slight increase in the incidence of bilateral PAA defects in 

integrin α5flox/−; Isl1Cre mutants relative to Fn1flox/−; Isl1Cre mutants (Table 6) was not 

statistically significant (p = 0.32, 2-tailed Fisher exact test). As in Fn1flox/−; Isl1Cre mutants, 
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endothelial proliferation was not affected in integrin α5flox/−; Isl1Cre embryos (Fig. 10I). 

Finally, deletion of integrin α5 in the neural crest and surface ectoderm using the 

TFAP2αIRESCre knock-in strain did not result in PAA formation defects (Fig. 10J–K′). This 

indicates that signaling by integrin α5 in these tissues is dispensable for PAA formation. 

Taken together, similarities in the phenotypes between integrin α5flox/−; Isl1Cre and 

Fn1flox/−; Isl1Cre mutants suggest that Fn1 regulates cardiac morphogenesis and PAA 

formation by signaling through integrin α5.

3.3. Integrin α5 does not regulate the expression of Tbx1

Cardiovascular phenotypes of Fn1flox/−; Isl1Cre and integrin α5flox/−; Isl1Cre mutants fall 

within the range of phenotypes observed in DiGeorge syndrome. Therefore, we investigated 

whether integrin α5 regulates the expression of the transcription factor Tbx1. The Tbx1 gene 

is often deleted or mutated in DiGeorge patients (Moon, 2006, 2008). Heterozygous deletion 

of Tbx1 in mice gives rise to defects in the formation of the 4th pair of PAAs and in AAA 

morphogenesis (Liao et al., 2004; Lindsay and Baldini, 2001; Lindsay et al., 2001; Merscher 

et al., 2001). However, Tbx1 expression was unaffected in n = 4/4 integrin α5flox/−; Isl1Cre 

mutants, suggesting that Tbx1 expression is not regulated by integrin α5 signaling in tissues 

derived from Isl1-expressing cells (Fig. 10L).

3.4. Fn1 and integrin α5 regulate OFT morphogenesis

Proper vascular development is dependent on hemodynamic forces, and hence on the 

development and function of the heart (Culver and Dickinson, 2010; Lucitti et al., 2007; Luo 

et al., 2001). Therefore, we examined cardiac development in Fn1flox/−; Isl1Cre and integrin 

α5flox/−; Isl1Cre mutants. In our previous studies using global, Fn1-null and integrin α5-null 

embryos, we discovered that Fn1 and integrin α5 were required for the elongation of the 

cardiac OFT (Mittal et al., 2013). Since the global ablation of Fn1 or integrin α5 led to 

multiple embryonic morphogenetic defects, it was not clear whether Fn1 and integrin α5 

played direct roles in OFT development. The OFT is derived from Isl1+ second heart field 

cells (Cai et al., 2003). To determine whether defects in PAA formation were correlated with 

abnormal cardiac morphogenesis, we examined OFT development in E10.5 Fn1flox/−; Isl1Cre 

mutants with defective and normal PAAs. Our data indicate that, on average, the relative 

lengths of the proximal and distal portions of the OFT were shorter in Fn1flox/−; Isl1Cre and 

integrin α5flox/−; Isl1Cre mutants compared with controls (Fig. 11). However, when mutants 

were examined individually, defective PAAs were present in mutants with normal OFTs and 

normal PAAs were present in mutants with defective OFT (Fig. 11G). Statistical analysis 

showed that the presence of short OFT did not correlate with defective PAA formation in the 

mutants (p = 0.16, Fisher exact test). Since myocardial development was unaffected in 91% 

of our mutants, Tables 2 and 5, we conclude that the roles of Fn1 and integrin α5 in PAA 

development are independent from their roles in OFT morphogenesis.

3.5. Integrin α5 regulates PAA formation indirectly

In order to identify the cell type(s) in which signaling by integrin α5 regulates PAA 

formation, we performed a series of conditional mutagenesis studies to ablate integrin α5 in 

distinct pharyngeal cell types. Since the expression of integrin α5 was downregulated in the 

PAA endothelium of integrin α5flox/−; Isl1Cre mutants (Fig. 8C,C′,D, D′), we tested whether 
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the expression of integrin α5 in the pharyngeal arch endothelium was required for the 

formation of the 4th PAA. For these experiments, we used the knock-in Mesp1Cre strain to 

ablate integrin α5, since Mesp1+ progenitors give rise to the entire pharyngeal mesoderm 

including the PAA endothelium (Liang et al., 2014; Papangeli and Scambler, 2013b). Our 

published studies indicated that the expression of integrin α5 in Mesp1-derived mesoderm, 

including the PAA endothelium was not required for PAA formation (Liang et al., 2014). 

This concurred with the observation that the deletion of integrin α5 in the endothelium using 

the transgenic Tie2-Cre mice did not cause defects in PAA formation (van der Flier et al., 

2010). Taken together, these studies indicate that integrin α5 regulates PAA formation 

indirectly by signaling from within the cell type(s) other than endothelial cells or the 

mesoderm. The corollary of these studies is that signaling by Fn1 to the pharyngeal 

mesoderm and endothelium is not required for PAA formation. Thus, signaling by Fn1 and 

integrin α5 to other pharyngeal tissues regulates PAA formation indirectly.

We next ablated integrin α5 in the neural crest using the P3-ProCre strain, or 

simultaneously, in the neural crest and the surface ectoderm using the TFAP2αIRESCre strain. 

PAA formation was unaffected in these mutants (Fig. 10 and data not shown). Taken 

together, these data indicate that integrin α5-dependent signaling in a tissue other than the 

mesoderm, neural crest, and surface ectoderm is important for PAA formation.

Even though, integrin α5 is uniformly expressed by the pharyngeal endoderm (Figs. 7E, 

inset and 8C, C′), the expression of Fn1 mRNA is enriched specifically in the endoderm of 

the 4th pharyngeal arch (Fig. 7D). This expression pattern is consistent with our findings 

that formation of the 4th PAA is selectively affected in Fn1flox/−; Isl1Cre and integrin 

α5flox/−; Isl1Cre mutants, and suggests that integrin α5-dependent signaling by Fn1 to the 

endoderm of the 4th pharyngeal arch may be particularly important. Although the expression 

of integrin α5 is lower in the endoderm of the 4th arch compared with other pharyngeal arch 

cell types (Figs. 7E and 8C′) at E10.5, its levels may be sufficient for signaling, especially, 

given the presence of enriched levels of Fn1 mRNA synthesized by these cells (double-

headed arrow in Fig. 7D). Thus, we propose a model, wherein an (as yet unknown) integrin 

α5-dependent signal from the pharyngeal endoderm regulates PAA formation (Fig. 12).

4. Conclusions

Fn1 is highly conserved in all vertebrates (Hynes, 2012; Hynes and Zhao, 2000; Whittaker et 

al., 2006); it is prominently expressed around embryonic blood vessels, and its vascular 

expression and alternative splicing are tightly regulated upon injury in adult, reviewed by 

(Astrof and Hynes, 2009). However, direct roles of Fn1 in the development of the heart and 

blood vessels were obscured by severe morphogenetic defects that occurred at earlier stages 

of embryogenesis in global, Fn1-null embryos (George et al., 1997; George et al., 1993; 

Pulina et al., 2014; Pulina et al., 2011). Our data show that Fn1 regulates the development 

cardiac and vascular structures, and highlight an intriguing discovery that localized, cell-

specific expression of the secreted ECM glycoprotein Fn1 is essential for embryogenesis and 

cardiovascular development. We found that Fn1 synthesized by Isl1-expressing cells and 

their descendants is required for the morphogenesis of the cardiac OFT, for the formation of 

the cardiac interventricular septum, thymus development, and formation of the 4th pair of 
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PAAs. Integrin α5flox/−; Isl1Cre mutants displayed similar defects as Fn1flox/−; Isl1Cre 

embryos, suggesting that integrin α5 acts as a main Fn1 receptor in the pharyngeal region. 

Taken together, our experiments provide the first evidence for the direct involvement of Fn1 

and integrin α5 in the regulation of cardiovascular morphogenesis.

5. Discussion

Pharyngeal arches are composed of cells derived from all three embryonic germ layers and 

consist of the endoderm, mesoderm, surface ectoderm, and neural crest-derived (Hutson and 

Kirby, 2007). The PAA endothelium is derived from mesodermal progenitors that express 

the Mesp1 transcription factor early in gastrulation (Liang et al., 2014; Papangeli and 

Scambler, 2013b). While the mechanisms of PAA formation are not well understood, PAA 

development is known to rely on signaling interactions among all cell types that compose 

the pharyngeal arch (Astrof, 2013). PAA formation can be regulated directly, by signaling 

within the mesoderm, and indirectly, by signaling from the pharyngeal epithelia, the 

endoderm, and the surface ectoderm. For example, PAA formation requires the surface 

ectoderm to express the Tbx1 and Gbx2 transcription factors and the Fgf8 growth factor 

(Calmont et al., 2009; Macatee et al., 2003). In the mesoderm, PAA formation requires the 

expression of Tbx1, PlexinD1, as well as activation of Notch and retinoic acid pathways 

(Gitler et al., 2004; High et al., 2009; Li et al., 2012; Zhang et al., 2009; Zhang et al., 2006). 

Taken together, these and other studies illustrate the complex intercellular signaling 

interactions that regulate PAA formation.

In Fn1flox/−; Isl1Cre mutants, Fn1 is ablated in the pharyngeal embryonic tissues that include 

splanchnic and pharyngeal mesoderm, pharyngeal endoderm, surface ectoderm, and select 

populations of neural crest cells. Which of these source(s) of Fn1 is(are) required for 

cardiovascular development, and do different sources of Fn1 regulate distinct morphogenetic 

processes? To address these questions we performed conditional mutagenesis studies by 

ablating Fn1 expression in distinct cell types within the expression domain that encompasses 

Isl1+ cells and their descendants. These studies showed that Fn1 expression in neural crest-

derived cells, surface ectoderm and their derivatives are important for thymus development, 

for blocking the differentiation of cardiac neural crest cells into the cartilage, and for the 

development of the membranous ventricular septum but are not required for the formation of 

the 4th PAA. Conditional mutagenesis studies to ablate Fn1 in other pharyngeal tissues are 

currently ongoing.

Identification of cell type(s) that regulate cardiovascular morphogenesis in response to Fn1 

is essential for uncovering the downstream pathways engaged by Fn1 in vivo. To accomplish 

this, we first asked whether the expression of integrin α5β1 in Isl1+ tissues and their 

descendants was necessary for cardiovascular development and compared the phenotypes of 

integrin α5flox/−; Isl1Cre embryos with those of Fn1flox/−; Isl1Cre mutants. We found that the 

phenotypes of integrin α5flox/−; Isl1Cre embryos are indistinguishable from those of 

Fn1flox/−; Isl1Cre mutants, suggesting that Fn1 expressed by the pharyngeal tissues regulates 

cardiovascular morphogenesis by signaling through integrin α5β1.
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Global mutation in integrin α5 led to severe cardiovascular defects, however, whether 

integrin α5 played a direct role in cardiovascular development was difficult to discern due to 

the complicating morphogenetic defects in these embryos (Pulina et al., 2011, 2014; Yang et 

al., 1993). Conditional knockouts of integrin α5 in a number of different cell types, such as 

endothelial cells, using the Tie2-Cre transgenic line (van der Flier et al., 2010), in lymphatic 

endothelial cells and mesodermal precursors of mural cells, using the PDGFRβ-Cre 

transgenic line (Turner et al., 2014), in the pharyngeal mesoderm and endothelium, using the 

Mesp1Cre knock-in strain (Liang et al., 2014) and in smooth muscle cells, using the SM22α-

Cre transgenic line (Turner et al., 2015), showed that the expression of integrin α5 in these 

cell types did not affect blood vessel formation. This suggested that concomitant signaling 

by integrin α5 from multiple cell types may be important for cardiovascular development 

(van der Flier et al., 2010) and/or that cardiovascular defects in global integrin α5-null 

embryos arose as a consequence of other embryonic abnormalities in these mutants (Goh et 

al., 1997; Mittal et al., 2010, 2013; Pulina et al., 2011, 2014; Yang et al., 1993). Consistent 

with these ideas, the ablation of integrin α5 in multiple cell types using the Isl1Cre knock-in 

strain demonstrated that integrin α5 expression in multiple pharyngeal tissues plays requisite 

roles in the regulation of cardiovascular morphogenesis. Particularly interesting is the role of 

integrin α5 and Fn1 in the formation of the 4th PAA. While we do not yet understand the 

mechanisms, it is important to note that the roles of integrin α5 and Fn1 in cardiac 

development are separate from their functions in the formation of the 4th PAAs, since 

cardiac and PAA defects occurred independently of one another.

To determine the cell types, in which signaling by α5β1 regulates cardiovascular 

development, we performed conditional mutagenesis studies to ablate integrin α5 in distinct 

tissues within the Is1-expression domain and its derivatives. We found that the expression of 

α5β1 in the neural crest or in the Mesp1-derived mesoderm (Liang et al., 2014) was required 

for the formation of the membranous ventricular septum. These studies suggested that the 

expression of integrin α5β1 in both the neural crest-derived cells and the mesoderm jointly 

regulates the development of the membranous ventricular septum. Interestingly, and 

consistent with the studies of (Haack and Hynes, 2001; Turlo et al., 2012), our work 

indicates that neither Fn1 nor integrin α5 are required for the migration of NC-derived cells.

Mesp1-derived cells include splanchnic mesoderm and all of the known pharyngeal 

mesodermal cells and their derivatives, such as the OFT and PAA endothelial cells. 

Interestingly, the expression of integrin α5 in the Mesp1-derived mesoderm was not required 

for PAA formation. Similarly, concomitant ablation of integrin α5 in the neural crest-derived 

cells and the surface ectoderm did not affect the formation of the PAAs. These studies 

suggest the pharyngeal endoderm as an important integrin α5 expression domain regulating 

PAA formation.

Fn1 and integrin α5 are prominently expressed in the pharyngeal endoderm at E8.5 (Figs. 

1B′, 7D, and 8A–A′). At the later embryonic stages, the expression of integrin α5 

diminishes but is clearly detectable in the endoderm of the pharyngeal arches at E10.5 (Figs. 

7E and 8C, C′). Remarkably, the expression of Fn1 mRNA becomes highly enriched in the 

endoderm of the 4th PAAs at E10.5 (Fig. 7D), potentially explaining why the development 

of the 4th PAAs is particularly defective in Fn1flox/−; Isl1Cre and integrin α5flox/−; Isl1Cre 
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mutants. Taken together with our conditional mutagenesis studies, these data suggest that 

Fn1 synthesized by the endoderm mediates the formation of the 4th PAAs indirectly by 

signaling to the endoderm of the 4th pharyngeal arch through integrin α5β1. This hypothesis 

needs to be carefully and directly evaluated in the future, since many factors such as 

potential differences in strains’ genetic backgrounds (all of our mice are on a mixed 129-

C57BL/6J background), differences in the efficiency and timing of the genetic deletion, as 

well as other factors may influence PAA formation in the mutants utilized in our work. As 

an alternative to our model, concomitant integrin α5-dependent signaling in multiple 

pharyngeal tissues may be required to mediate PAA formation.

How pharyngeal endoderm may regulate PAA development is currently unknown. However, 

it is well established that both vasculogenesis and angiogenesis can be regulated by signals 

extrinsic to endothelial cells (Adams and Alitalo, 2007; Bressan et al., 2009; Garriock et al., 

2010; Meadows et al., 2012). By circumventing early embryonic lethality, our conditional 

mutagenesis strategy will facilitate identification of cellular and molecular mechanisms by 

which Fn1 and integrin α5β1 regulate embryogenesis and cardiovascular development.
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Fig. 1. 
Conditional ablation of Fn1 in pharyngeal tissues using the Isl1Cre knock-in strain. All 

embryos are at E9.5. Brackets in all panels mark the pharyngeal region where arches 3, 4, 

and 6 will develop. Long arrows in (A–E) point to the neural crest. (A–A′) Fate map of Isl1+ 

cells and their descendants; Dashed line in A marks approximate planes of sections shown in 

(A′–E′), open arrowhead points to endocardium in A′–C′. (B-B′) Fn1 mRNA expression is 

enriched in the surface ectoderm (arrowhead in B′), pharyngeal pocket endoderm (small 

black arrow), mesoderm, and endocardium (arrowhead). (C-C′). Fn1 mRNA is ablated in 

the pharyngeal tissues following Cre-mediated recombination in Fn1flox/−; Isl1Cre mutants. 

Myocardium (white arrow) does not express Fn1. Short arrows in (B–C) point to somites, 

where Isl1Cre is not expressed and Fn1 expression is unaltered. (D) Expression of Fn1 

protein is enriched in the posterior pharyngeal arches (bracket). E. Fn1 protein is depleted 

from the pharyngeal region in Fn1flox/−; Isl1Cre mutants. (D′–E′) Transverse sections 

through (D–E). Fn1 is depleted in pharyngeal arches and the heart (h) in Fn1flox−; Isl1Cre 

mutants (E′). Fn1 remains expressed by the neural crest-derived cells (arrowhead in E′) and 

by more dorsal regions, including the dorsal aorta (short arrows in D′–E′); g - gut, LV, RV - 

left and right ventricles, NT - neural tube. Scale bars in (A–E) are 500 µm; in (A′–E′) 100 

µm.
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Fig. 2. 
Cardiovascular and thymus defects in Fn1flox/−; Isl1Cre mutants at E16.5. (A–E) Fn1flox/+; 

Isl1Cre controls. (F–J) Fn1flox/−; Isl1Cre mutants. All sections are cut in a coronal orientation 

and stained with H&E. A. Ventral view. Ao - ascending aorta, PT - pulmonary trunk; arrow 

points to the arch of aorta. (B) Dorsal view, arrow points to the right subclavian artery. (C) 

Ventral view, arrow points to a high branch-point of the left carotid artery. (D–E) Complete 

septum separates the right and left ventricles (RV and LV). Aorta (arrow) originates from the 

LV. (F) Arrow points to the absent aortic arch. (G) Arrow and the dashed line highlight the 

right subclavian artery aberrantly originating from the descending aorta, dAo. (H) Arrow 

points to the low branch point of the right carotid artery. (I) Membranous septum defect, 

arrow. (J) Muscular septum defect, arrow. H&E stained sections in (D) and (I) and in(E) and 

(J) show views at equivalent section levels. (K–L′). Fn1flox/+; Isl1Cre controls. (M–P) 

Fn1flox/−; Isl1Cre mutants. (K), (K′), (M–N′) are H&E stained sections. (K) Aorta and 

pulmonary trunk are two separate vessels in controls. K′. Histology of the suboartic region 

outlined by the dashed box in (K). (L) Thymus. (L′) The same as L, but with the two lobes 
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outlined by the dashed line. (M) * marks the region where Ao and PT are fused in the 

Fn1flox/−; Isl1Cre mutant. (N–N′) Histology of the subaortic region. The dashed region in 

(N) is magnified in N′ and shows cartilage-like nodule, white arrow. (O–P) Dashed regions 

outline the asymmetric thymus lobes in O and a single thymus lobe in (P). Scale bars are 

500 µm in all panels, except they are 100 µm in (K), (M), (N) and 10 µm in (K′), (N′).
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Fig. 3. 
Neural crest-derived cells in the cardiac outflow tract express Isl1. (A–C), (A′–C′) 

Transverse sections through TFAP2αIRESCre; ROSAmTmG embryos isolated at E9.5. Boxed 

regions in (A–D) are expanded in (A′–D′). (A–C) Fate map of TFAP2αIRESCre - expressing 

cells and their descendants. GFP (green) marks both the surface ectoderm (short arrows in 

A–B) and neural crest-derived cells, marked by the open arrowheads and open arrows. 

Arrowheads point to Isl1+ neural crest-derived cells and arrows point to Isl1-negative neural 

crest cells. Isl1 staining is in red. (A–A′). Section is at the level of the outflow tract (OFT, 

long arrow). AoS-aortic sac. (B–B′) Section is at the level of the 3rd pharyngeal arch. (C–C

′) Section is at the level of the 4th pharyngeal arch. Open arrows point to IslGFP+ 

pharyngeal neural crest cells, arrows in (B′–C′) point to Isl+GFP− pharyngeal mesoderm, 

and a small arrowhead in (C′) points to Isl+GFP splanchnic mesoderm. (D–D′) E9.5 

embryos. Transverse section at the OFT level shows lineage map of Mesp1-derived cells 

(GFP+, green) and TFAP2α expression (red, small arrows in D). OFT myocardium 

originates from Mesp1-derived cells (long arrow in D′). TFAP2α+GFP− cells (open 

arrowheads) in the OFT are not derived from the mesoderm. (E–E′), (F–F′) E10.5 embryos. 

Boxed areas in (E–F) are expanded in (E′–F′). (E) The majority of neural crest cells in the 

pharyngeal arches are Isl1GFP+. Isl1+GFP− cells form the arch core mesoderm (boxed in E, 

expanded in E′) and PAA endothelium (arrows in F′). Native GFP and Tomato fluorescence 

in all sections were extinguished by mounting sections in 50/50 MeOH/Glycerol, see 

Methods. Scale bars are 100 µm in (A–D), (E–F), 30 µm in (A′–D′), 20 µm in (E′–F′).
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Fig. 4. 
Cardiovascular and thymus defects in Fn1flox/−; TFAP2αIRESCre mutants at late gestation. 

(A–C) Fn1flox/+; TFAP2αIRESCre controls; (D–F) Fn1flox/−; TFAP2αIRESCre mutants; (G–I) 

Fn1flox/+; P3Pro-Cre+ controls; and (J–L) Fn1flox/−;P3Pro-Cre+ mutants. All sections were 

cut in coronal orientation. (A, D, G, J) - H&E staining. Slim arrows in (D) and (J) point to 

the membranous ventricular septal defect (VSD). Ao - ascending aorta. PT - pulmonary 

trunk, RV-right ventricle, LV - left ventricle. (B, E, H, K) - Alcian blue and nuclear fast red 

staining. Cartilage in the mutants is stained in blue (dashed box, expanded in insets of E and 
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K). (C, F, I, L) - whole isolated thymus lobes. Mutants display hypoplastic and asymmetric 

thymus lobes (F, L). Scale bars: 100 µm in (A), (D), (G), and (J); 200 µm in (B), (E), (H), 

and (K); 500 µm in (C), (F), (I), and (L).
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Fig. 5. 
Isl1 lineage map of the thymus and thymus vasculature in control and Fn1flox/−; Isl1Cre 

mutants. Sections through the thymus isolated from E16.5 embryos. (A-A′) Section from 

Isl1Cre;ROSAmTmG embryo. The bulk of the thymus and thymus endothelial cells (Pecam1, 

blue, arrowhead in A′) are derived from Is1+ cells. Pericytes (NG2, red, arrows) in the 

thymus are not of the Isl1+ lineage. Thymi from control (B–C) and Fn1flox/−; Isl1Cre mutant 

embryos (D–E) were stained to detect endothelial cells (Pecam1, green), pericytes 

(PDGFRβ, red, arrows) and nuclei (DAPI, blue). 40 × (B–B′; D–D′) and 63 × (C–C′, E–E′) 

images are shown. All scale bars are 100 µm, except in C–C′ and E–E′, where they are 10 

µm.
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Fig. 6. 
Expression of Fn1 in the Isl1-derived tissues regulates formation of the 4th PAAs. All 

images in (A–M) are from E10.5 embryos. PAAs are numbered. (A–D) Intracardiac India 

ink injections label the PAAs. All PAAs are visible in controls (A–B). The right 4th PAA 

(arrow) is non-patent in the Fn1flox/−; Isl1Cre mutant (C–D). E-H. Whole mount Pecam1 

staining (green) and 3D–confocal image reconstruction show well-formed PAAs in controls 

(E–F), and bi-laterally thin 4th PAAs in the Fn1flox/−; Isl1Cre mutant, arrows (G–H). Dashed 

lines in (E–H) mark optical planes of section shown in (E′–H′). Pecam1 (blood vessels, 

green) and DRAQ5 (nuclei, blue). Arrows point to pharyngeal arches with thin/disorganized 

PAAs. Scale bars are 100 µm; R - right, L - left. I. BrdU incorporation into endothelial cells 

in controls (white bars) and mutant (gray bars) embryos; Each dot represents measurements 

in one pharyngeal arch; p was determined using 2-tailed, unpaired Student′s t test. (J–O′) 

Expression of Fn1 in the neural crest and the surface ectoderm is not required for PAA 

formation. (J–M) India ink injections at E10.5. All PAAs are visible in control Fn1flox/+; 

TFAP2αIRESCre and mutant Fn1flox/−; TFAP2αIRESCre embryos at E10.5. (N–O′) Coronal 

sections through E11.5 embryos show that all PAAs (numbered 3–6) are formed normally in 

control Fn1flox/+; TFAP2αIRESCre and mutant Fn1flox/−; TFAP2αIRESCre embryos. Neural 

crest is stained using anti-GFP antibodies (blue), due to the presence of the ROSAmTmG 

allele and endothelium is labeled with anti-Pecam1 antibodies (white). Red dashed lines 
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outline the endoderm (en). Native GFP and tdTomato fluorescence was extinguished by 

boiling sections in 10 mM Citric Acid pH 6.0 as described in Methods.
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Fig. 7. 
Lineages labeled in the Isl1Cre and TFAP2αIRESCre strains and expression patterns of Fn1 

and integrin α5 in the 4th pharyngeal arch at E10.5. (A–A″) Isl1Cre; ROSAmTmG. (B–B″) 

TFAP2αIRESCre; ROSAmTmG. Native GFP and tdTomato fluorescence was extinguished by 

boiling in 10 mM Citric Acid pH 6.0 as described in Methods. C. Fn1 protein (white). (D) 

Fn1 mRNA (brown). (E) Integrin α5 protein (white); Arrows in the inset point to integrin α5 

expression in the endoderm. (F) Same section as in (E) co-stained with antibodies to 

VEGFR2 (white). Endo–endoderm; arrowheads point to ectoderm; Pharyngeal arches are 

numbered; Scale bars in (A–B) 30 µm; scale bars in (C–F) 50 µm.
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Fig. 8. 
Ablation of integrin α5 using the Isl1Cre strain. (A–B) Transverse sections through E8.5 

embryos. Integrin α5 – red, nuclei – blue. (A–A′) Control. (B–B′) Mutant. Boxed regions in 

A and B are expanded in A′ and B′. Arrows – endoderm; open arrows – splanchnic 

mesoderm; closed arrowheads – myocardium; open arrowheads – ectoderm. (C–D) Coronal 

sections through the 4th pharyngeal arch in E10.5 control (C, C′) and mutant (D, D′) 

embryos. Integrin α5 – red, VEGFR2 (endothelium) – green. Open arrows point to PAA 

endothelium; Long arrows in (C′), (D′) point to the endoderm;. All scale bars are 50 µm.

Chen et al. Page 29

Dev Biol. Author manuscript; available in PMC 2017 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Cardiovascular and thymus defects inintegrin α5flox/−; Isl1Creand in integrin α5flox/−; 

TFAP2αIRESCre mutants at E16.5 and E17.5. (A–D) Controls; E-L Mutants. (A, E, D, I, L) - 

ventral views; (B, F) - dorsal views. Ao - ascending aorta; PT - pulmonary trunk; Long 

arrow in A points to the aortic arch; dAo-descending aorta is marked in (B). (C) PT 

originates from the right ventricle (RV) in controls; Ao originates from the left ventricle 

(LV) in controls; (D) two symmetrical thymus lobes of a control embryo are outlined. (E) 

Arrow points to the missing aortic arch; (F) Arrowhead points to the subclavian artery 
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originating from the dAo. (G) Arrow points to the membranous ventricular septal defect 

(VSD); This mutant also has an overriding aorta, receiving the blood from the RV and LV. 

(H) Arrow points to the muscular septal defect in the mutant. (I, L). Three thymus lobes are 

outlined in the mutants. (J–J′) Subaortic cartilage nodule in the mutant (boxed). The box in J 

is expanded in (J′), arrow in (J′) points to the cartilage. (K–K′) Double outlet right 

ventricle: both the PT (K) and Ao (K′) originate from the right ventricle in this mutant. (M–

O). Integrin α5flox/+; TFAP2αIRESCre controls. (P–R) Integrin α5flox/−; TFAP2αIRESCre 

mutants. All sections were cut in coronal orientation and stained with Alcian blue and 

nuclear fast red. Boxed regions in M and (P) are expanded in (M ‘) and (P′). Cartilage in the 

mutants is stained blue (boxed region in P and arrow in P′). Arrow in (Q) points to the 

membranous VSD. Asymmetric and hypoplastic thymus lobes in integrin α5flox/−; 

TFAP2αIRESCre mutant are outlined in (R). All scale bars are 500 µm, except they are 100 

µm in (J) and 50 µm in (J′).
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Fig. 10. 
PAA defects in α5flox/−; Isl1Cre mutants at E10.5. (A–D) 3D reconstructions of whole mount 

confocal data from Pecam1-stained embryos. L-left; R-right. Each PAA is labeled. The 

boxed regions in (B) and (D) are expanded in (B′) and (D′). Arrows point to the 4th PAAs 

in the control and mutant. Vertical doted lines are the planes of sections shown in (E–F) and 

(G–H). (E, G) - right sides; (F, H) - left sides. Arrow in (H) points to the 4th arch with the 

defective PAA. All scale bars are 100 µm. (I) BrdU incorporation into endothelial cells in the 

4th pharyngeal arches. (J-J′), (K-K′). Coronal sections through E11.5 pharyngeal regions in 

integrin α5flox/+; TFAP2αIRESCre control (J-J′) and integrin α5flox/−; TFAP2αIRESCre 

mutant (K-K′) embryos. PAAs (numbered 3–6) form normally in control 

Fn1flox/+;TFAP2αIRESCre and mutant Fn1flox/−; TFAP2αIRESCre embryos. Neural crest is 

stained using anti-GFP antibodies (blue), due to the presence of the ROSAmTmG allele and 

the endothelium is labeled with anti-Pecam1 antibodies (white). Red dashed lines outline the 

endoderm (en). Native GFP and tdTomato fluorescence was extinguished by boiling in 10 

mM Citric Acid, pH 6.0 as described in Methods. (L) Expression levels of integrin α5 and 

Tbx1 mRNA in the mutants (gray bars) were normalized to those of control embryos (white 
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bar). For (I) and (L): each data point represents one arch; p was determined using 2-tailed, 

unpaired Student’s t test.
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Fig. 11. 
Defects in OFT elongation in Fn1flox/−; Isl1Cre and integrin α5flox/−; Isl1Cre mutants are not 

correlated with the defects in PAA formation at E10.5. In A-F. Dotted brackets mark the 

lengths of the distal and proximal OFT. Red brackets mark OFT lengths that differ from 

controls, white brackets mark OFT lengths that are similar to controls. (A′-F′) Double-

headed arrows mark the heights of the left ventricle. (A-C, D-F) Right side views. (A′-C′, D

′-F′) Left side views. All scale bars are 200 µm. G. Normalized lengths of the proximal and 

distal OFT. Red symbols mark embryos with defective PAAs. Control embryos, (unfilled 

circles) were collected from Fn1 and integrin α5 crosses and their genotypes are marked in 

H. H. Normalized OFT lengths in control embryos from Fn1 and integrin α5 crosses. (G–H) 

Each symbol represents one embryo. p-Value was determined using 2-tailed, unpaired 

Student’s t test.
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Fig. 12. 
Summary of PAA formation phenotypes resulting from the ablation of integrin α5 using the 

Isl1Cre, Mesp1Cre, and TFAP2αIRESCre strains. Green color marks the tissues in which 

integrin α5 was ablated in each strain. We hypothesize that an integrin α5-dependent signal 

in the pharyngeal endoderm regulates PAA formation.
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Table 3

PAA formation in Fn1flox/−; Isl1Cre mutants.

Embryo
number

Number of
somites

Method of analysis Right 4th PAA Left 4th PAA

1 36–40 PECAM1/confocal Thin Thin

2 36–40 PECAM1/confocal Thin 4th PA absent

3 36–40 PECAM1/confocal Grossly normal Thin

4 36 PECAM1/confocal Grossly normal Grossly normal

5 36 PECAM1/confocal Grossly normal Grossly normal

6 37 PECAM1/confocal Grossly normal Grossly normal

7 36–40 PECAM1/confocal Grossly normal Grossly normal

8 36–40 PECAM1/confocal Grossly normal Grossly normal

9 36–40 PECAM1/confocal Grossly normal Grossly normal

10 36–40 PECAM1/confocal Grossly normal Grossly normal

11 3 6 –40 PECAM1/confocal Grossly normal Grossly normal

12 36–40 PECAM1/confocal Grossly normal Grossly normal

13 36 Intracardiac ink injection Thin Grossly normal

14 37 Intracardiac ink injection Thin Grossly normal

15 36–40 Intracardiac ink injection Thin Grossly normal

16 36–40 Intracardiac ink injection Thin Grossly normal

17 3 6 –40 Intracardiac ink injection Thin Grossly normal

Penetrance: 8/18=44%(embryos); 9/35=26% (pharyngeal arches)
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Table 6

PAA formation in individual integrin α5 flox/−; Isl1Cre mutants.

Embryo number Number of somites Method of analysis Right 4th PAA Left 4th PAA

1 37 PECAM1/confocal Thin Thin

2 36 PECAM1/confocal Thin Grossly normal

3 36 PECAM1/confocal Thin Thin (mild)

4 36–40 PECAM1/confocal Grossly normal All plexus (no main artery)

5 36–40 PECAM1/confocal Grossly normal Thin

6 36–40 PECAM1/confocal Thin Grossly normal

7 36–40 PECAM1/confocal Grossly normal Grossly normal

8 36–40 PECAM1/confocal Grossly normal Grossly normal

9 36–40 PECAM1/confocal Grossly normal Grossly normal

10 36–40 PECAM1/confocal Grossly normal Grossly normal

11 36 –40 PECAM1/confocal Grossly normal Grossly normal

12 36–40 Intracardiac ink injection Thin Grossly normal

13 36–40 Intracardiac ink injection Thin Not patent in the middle

14 36–40 Intracardiac ink injection Not patent Grossly normal

15 36–40 Intracardiac ink injection Not patent Thin

16 36–40 Intracardiac ink injection Not patent Thin

17 36–40 Intracardiac ink injection Grossly normal Grossly normal

18 36–40 Intracardiac ink injection Grossly normal Grossly normal

Penetrance: 11/18 = 61% (embryos); 16/36 = 44% (pharyngeal arches)
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