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Principle and Instrumentation of OCT

OCT is an emerging medical imaging technology which 
enables cross-sectional imaging of tissue microstructure in situ 
and in real-time.1 OCT can achieve 1–10 µm resolutions and 1–2 
mm penetration depths, approaching those of standard excisional 
biopsy and histopathology, but without the need to remove and 
process tissue specimens.2 OCT is analogous to ultrasound 
imaging, except that imaging is performed by measuring the 
echo time delay and intensity of backscattered light rather 
than sound. OCT imaging can be performed fiber-optically 
using delivery devices such as hand-held probes, endoscopes, 
catheters, laparoscopes, and needles which enable non-invasive 
or minimally-invasive internal body imaging.3,4

Figure  1A shows a schematic of time-domain OCT. 
Measurements are performed using a Michelson interferometer 
with a low coherence length (broadband) light source. One arm 

of the interferometer illuminates the light on the tissue and 
collects the backscattered light (typically referred to as “sample 
arm”). Another arm of the interferometer has a reference path 
delay which is scanned as a function of time (typically referred 
to as “reference arm”). Optical interference between the light 
from the sample and reference arms occurs only when the optical 
delays match to within the coherence length of the light source.

Alternatively, OCT interference signals can be detected 
in frequency or Fourier domain. In Fourier-domain OCT, 
the reference mirror position is fixed, and echoes of light are 
obtained by Fourier transforming the interference spectrum. 
These techniques are somewhat analogous to Fourier transform 
spectroscopy and have a significant sensitivity and speed 
advantage compared with time-domain OCT because they 
measure the optical echo signals from different depths along the 
entire axial scan simultaneously rather than sequentially. Fourier-
domain detection enables 10–100 folds improvement in detection 
sensitivity and speed over the time-domain configuration.5-7 
These advances greatly improve the performance of OCT, 
enabling three-dimensional OCT (3D-OCT) imaging in vivo.

Fourier-domain OCT can be performed using two 
complementary techniques, known as spectral/Fourier-domain 
OCT and swept-source/Fourier-domain OCT (SS-OCT, also 
known as Optical Frequency Domain Imaging, OFDI). Spectral/
Fourier-domain detection uses a spectrometer and a high speed 
line scan camera to measure the interference spectrum in parallel 
(see Fig. 1B).8,9 In contrast, swept-source/Fourier-domain OCT 
uses a frequency-swept laser light source and a photodetector 
to measure the interference spectrum (see Fig.  1C).10-12 Three-
dimensional imaging of biological tissue in vivo enabled by 
Fourier-domain OCT promises to have a powerful impact in 
disease diagnosis13,14 and therapy monitoring.15,16 Up to date, 
many clinical applications using OCT have demonstrated 
in a diverse set of medical and surgical specialties. Several 
commercially-available devices have received US Food and Drug 
Administration (FDA) clearance to be sold in the market,17 such 
as Imalux Corporation (Fig. 1D) whose OCT system is based on 
time-domain mechanism for endoscopic imaging, and LightLab 
Imaging (now part of St. Jude Medical, Inc.) (Fig.  1E) that 
adapts frequency-domain mechanism for their OCT system in 
cardiovascular imaging.
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Since optical coherence tomography (OCT) was first 
demonstrated in 1991, it has advanced significantly in technical 
aspects such as imaging speed and resolution, and has 
been clinically demonstrated in a diverse set of medical and 
surgical applications, including ophthalmology, cardiology, 
gastroenterology, dermatology, oncology, among others. 
This work reviews current clinical applications in urology, 
particularly in bladder, urether, and kidney. Clinical applications 
in bladder and urether mainly focus on cancer detection and 
staging based on tissue morphology, image contrast, and 
OCT backscattering. The application in kidney includes kidney 
cancer detection based on OCT backscattering attenuation 
and non-destructive evaluation of transplant kidney viability 
or acute tubular necrosis based on both tissue morphology 
from OCT images and function from Doppler OCT (DOCT) 
images. OCT holds the promise to positively impact the future 
clinical practices in urology.
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To image internal organs, miniaturized catheter/endoscope 
imaging devices have been developed for intraluminal and 
intravascular imaging.18,19 Other imaging devices such as 

laparoscopes20,21 and needle imaging device have been developed 
to enable solid organ imaging.22-27 Nowadays, various OCT 
imaging probes have been developed for different clinical 

Figure 1. Schematics of (A) time-domain, (B) spectral / Fourier-domain, and (C) swept-source / Fourier-domain OCT systems. (D) A Clinical OCT system 
and endoscopic probes from Imalux Corporation. (E) A clinical vascular OCT system and the fiber optic probe from LightLab Imaging (now St. Jude 
Medical, Inc.).

Figure 2. Fiber-optic probes for catheter/endoscope, biopsy needle, and laparoscope. (A) Schematic of the distal end of an OCT probe. (B) Photograph 
of an intravascular imaging catheter (0.4 mm in diameter). (C) Schematic of a modified core-needle biopsy device with a catheter-based OCT probe 
(figures are adapted from reference25 with permission) and photographs of modified tip. (D) The photograph of a custom laparoscopic OCT probe for 
imaging human ovary. Figures are adapted from reference 21 with permission.
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applications.23,28-43 Development of such devices facilitates the 
translation of OCT to clinical applications and allows clinicians 
to use the enhanced imaging capabilities of this technique to 
benefit the patients.

Figure  2A shows the schematic of a representative OCT 
catheter/endoscope device consisting of a hollow cable carrying 
a single-mode (SM) optical fiber. The beam from the distal end 
of the fiber is focused by a gradient-index (GRIN) microlens and 
is directed perpendicular to the catheter axis by a microprism 
or micromirror. The distal optics is encased in a transparent 
housing. The beam can be scanned either circumferentially (by 
rotating the cable) or linearly (by translating the cable) to form a 
cross-sectional OCT image. The outer diameter of the catheter/
endoscope can be made small enough to image inside a human 
coronary artery (see Figure 2B). Figure 2C shows the schematic 
of a catheter based OCT (from St. Jude Medical, Inc.) combined 
with a modified vacuum-pumped biopsy needle.25 This modified 
core-needle biopsy device includes the addition of a transparent 
front window for real-time OCT guidance, the addition of a long 
steel/plastic tube through which the OCT catheter is inserted, 

and a Y-valve to allow both linear access for the OCT catheter 
and the vacuum/pressure tube connection. Figure 2D depicts a 
custom laparoscopic OCT device imaging the ovaries in patients 
undergoing oophorectomy.21

Clinical Applications of OCT

Since its invention in 1991, OCT has rapidly developed as 
a non-invasive biomedical imaging modality that enables cross-
sectional visualization of tissue microstructures in vivo.44-47 The 
resolution of OCT is one to two orders of magnitude higher than 
conventional ultrasound, approaching that of histopathology, 
thereby allowing architectural morphology to be visualized in situ 
and in real-time. OCT enables imaging of structures in which 
biopsy would be hazardous or impossible, and promise to reduce 
the sampling errors associated with excisional biopsy. OCT 
has been translated from bench to various clinical applications 
including ophthalmology,48 cardiology,49-52 gastroenterology,28,53-67 
dermatology,68-70 dentistry,71-73 urology,74-77 gynecology,78-80 

Figure 3. In vivo surface (A and D), cross-sectional OCT (B and E), and H&E-stained histologic images (C and F) of normal human bladder (A–C) vs a 
papillary TCC (D–F). The morphologic details of normal bladder (U, urothelium; LP, lamina propria; M, upper muscularis) were clearly delineated by OCT, 
but those of papillary TCC diminished. Solid arrows: subsurface blood vessels; dashed arrows: papillary features; dashed circle: TCC, identified by OCT 
based on increased urothelial heterogeneity; dashed line: boundary with adjacent normal bladder. Figures and captions are adapted from reference 
107 with permission.
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among others.52 The most developed clinical OCT applications 
are those focusing on ophthalmic, cardiovascular, and oncologic 
imaging. For the application in oncology, many cancers arise 
from the epithelial layers, and demonstrate disruption of normal 
architectural morphology of tissues. The resolution and imaging 
field-of-view of OCT is approaching those of standard biopsy 
and histopathology, therefore OCT represents a potential 
method for “optical biopsy” of the tissue in situ, which can guide 
the excision biopsy to improve the sampling accuracy. OCT has 
shown promises in detecting structural alterations associated 
with malignancies including those arising in the breast,81-85 
bladder,77,86-89 brain,90-92 gastrointestinal,65,66,93,94 respiratory95 and 
reproductive tracts,96,97 skin,98 larynx,99,100 and oral cavity.101,102

Clinical applications of OCT in ophthalmology,48,52 
cardiology,52,103 and gastroenterology28,53-67 have been reviewed 
extensively elsewhere. In this review, we focus on clinical OCT 
applications in urology, particularly in bladder, ureter, and 
kidney.

Bladder

Bladder cancer originates in the urothelium and is curable 
if diagnosed and treated early, but has a high mortality rate in 
advanced stages.104 However, early diagnosis of bladder cancer 
remains a clinical challenge. The other problem is its high 
recurrence rate resulting in lifelong follow-up and possible 
repeated treatments, which make bladder cancer one of the most 
expensive cancers to manage. Currently, white light cystoscopy 
(WLC) is the standard for initial bladder cancer diagnosis 
with several shortcomings such as flat carcinoma in situ (CIS) 
is difficult to visualize. OCT and several other optical imaging 
techniques (such as fluorescence imaging) have been developed 
to better identify and characterize bladder lesions beyond what is 
possible with standard WLC.

Over the last decade, both ex vivo88,105,106 and in vivo 
studies76,77,89,107-109 have been conducted on the ability of OCT 
to detect bladder cancer by resolving the changes of bladder wall 

Figure 4. In vivo surface (A and D), cross-sectional OCT (B and E), and H&E-stained histologic images (C and F) of a recurrent TCC post-TUR bladder tumor 
(A–C) and a CIS (D–F). Yellow and white arrows: papillary features and scar or necrotic lesions. OCT differentiation of TCC (left circle) vs scar was based 
on low-scattering and papillary features in TCC vs ultrahigh superficial scattering with abruptly diminished underlying architecture in scar or necrotic 
lesion, which was nonspecific under surface image (A). Arrows in (E and F): blood vessels. The morphology (e.g., lamina propria [LP] and muscularis [M]) 
under CIS (U*) diminished. CIS was low backscattering and identified by OCT based on increased urothelial heterogeneity and less distinguishable U-LP 
interface. Figures and captions are adapted from reference 107 with permission.
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layers in urothelium, lamina propria, and muscularis propria and/
or the corresponding backscattering. A 32 patient study showed 
that OCT has high detection accuracy for real-time imaging and 
staging of bladder cancer adjunct to WLC (90% sensitivity and 
89% specificity for tumor confined to the mucosa, and 100% 
sensitivity and 90% specificity for muscle-invasive tumors).89 
Another clinical study based on OCT imaging with 24 patients 
reported an overall sensitivity of 100%, specificity of 89%, and 
diagnostic accuracy of 92% for superficial bladder transitional-
cell carcinoma (TCC).77 A 56 patient study showed that the 
overall specificity of cystoscopic OCT (81%) was comparable 
to voided cytology (88.9%, P = 0.49), but significantly higher 
than WLC (62.5%, P = 0.02) in TCC diagnosis.107 Figure  3 

illustrates in vivo WLC, OCT, and H&E images of normal 
human bladder (Fig.  3A–C) and TCC (Fig.  3D–F).107 TCC 
exhibited enhanced urothelial heterogeneity as indicated by 
the arrows shown in Figure  3E. Furthermore, the same work 
also demonstrated better tumor margin detection using OCT 
to guide transurethral resection (TUR), which is commonly 
used for non-muscle-invasive bladder cancer such as TCC that 
attributes to approximately 75% of all bladder cancer,110 and 
to enhance re-TUR cases where the scar or necrosis induced 
by previous TUR may make it difficult to identify residual or 
recurrent tumors by WLC. Figure 4 shows in vivo WLC, OCT, 
and H&E images of TCC post-TUR (Fig. 4A–C) and carcinoma 
in situ (CIS) (Fig. 4D–F).107 It demonstrated that OCT image 

Table 1. Summary of OCT Patient Studies in diagnosis of urological diseases

Reference 
number

Number of 
Patients

Sensitivity(%), 
Specificity(%), and others

Determination of 
diseases by OCT

OCT image features

Bladder

89 32

90, 89, 90(PPV), 89(NPV)a

75, 97, 75(PPV), 97(NPV)

100,90,70(PPV), 100 (NPV)

Tumor confined to the mucosa 
(Ta);

Lamina propria-invasive tumor 
(T1);

Muscle-invasive tumor (T2)

Enhanced urothelial heterogeneity and/or 
urothelial thickening

77 24

100, 89, 75 (PPV), 100 (NPV), 
92 (accuracy)

90 (PPV)

Bladder carcinoma including 
16 papillary Transitional-cell 
carcinoma (TCC) and 5 flat 

lesions;
Tumor invasion

Enhanced urothelial heterogeneity and/or 
urothelial thickening

107 56 94, 81 CIS and TCC (Ta, T1, and T2)

TCC: enhanced urothelial heterogeneity and/or 
urothelial thickening;

CIS: no obvious urothelial thickening, slightly 
decreased backscattering in urothelium, and 

drastically diminished backscattering in lamina 
propria layer

108
164
28

85, 68
100, 77

Bladder carcinoma;
Differentiation between 

muscle-invasive and non-
muscle-invasive TCC during 

TUR

Enhanced urothelial heterogeneity and/or 
urothelial thickening for carcinoma

106 142b 83.8, 78.1 Malignant bladder
Enhanced urothelial heterogeneity and/or 

urothelial thickening for carcinoma

Ureter

134 8 Not available (NA)

Invasive tumor (pT1);
Noninvasive tumor (pTa);

CIS;

Grade 2 vs. grade 3

Interruption of the basement membrane;
Basement membrane appeared as a thin dark line 

below the tumor;
Flat, broadened urothelial layer with low reflectivity 
without interruption of the basement membrane;

Grade 3 lesions have higher calculated attenuation 
coefficient

Kidney

135 16 NA Malignant tumor
Malignant tumor has higher calculated attenuation 

coefficient than normal parenchyma

122 20 NA
Angiomyolipoma;

Transitional cell carcinomas

Fat elements appear as lucent dark areas easily 
visible on OCT;

Unique and layered papillary architecture

126 29 NA Ischemic kidney
Close kidney parenchyma tubular, less blood flow 

from vessels and glomeruli

aPPV, positive predictive value; NPV, negative predictive value. bThe number of fresh human bladder tissue samples.
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can differentiate recurrent TCC from scar or necrosis (Fig. 4B). 
CIS has low diagnostic sensitivity and specificity (e.g., 30–60%) 
under routine WLC and remains a critical clinical problem.111,112 
Its OCT image showed characteristics including no obvious 
urothelial thickening, slightly decreased backscattering in 
urothelium, and drastically diminished backscattering in lamina 
propria layer (Fig.  4E). Finally, Zagaynova et  al. evaluated 28 
cases with OCT during TUR to discriminate between muscle-
invasive and non-muscle-invasive tumors with a sensitivity 
of 100% and specificity of 77%.108 Table  1 summarizes the 
performance of OCT in clinical diagnosis of urological diseases.

Computer-aided recognition of bladder cancer using OCT 
and texture analysis is under investigation to improve the clinical 
utility of OCT.88 Higher OCT axial resolution demonstrated 
the ability to differentiate healthy urothelial tissue, CIS, and 
TCC from 142 fresh human bladder tissue samples.106 The 
reported sensitivity and specificity to detect malignant bladder 
are 83.8% and 78.1%, respectively. Recently, real-time 3D-OCT 
imaging was demonstrated in 3 clinical cases with bladder/ureter 
carcinoma to show the contrast of muscle-invasive carcinoma 
area, the scar tissue area from normal bladder wall, and ureter 
with three distinguishable layers, including the urothelium, 
lamina propria, and muscularis layer.113

Similar to other techniques, OCT has some limitations in 
bladder cancer detection.110,114 One is false-positives that may be 
induced by scarring107 or inflammation of the mucosa.89 More 
clinical studies are needed to confirm the reported results in 
detecting bladder cancer. The other limitation is the limited field-
of-view (FOV) in both lateral and depth directions. OCT was 
compared with high-resolution ultrasound (i.e., 40 MHz high 
frequency ultrasound, HFUS) in a rat bladder cancer model.87 
Results showed that OCT could differentiate inflammatory 

lesions and TCC based on characterization of urothelial 
thickening and enhanced backscattering or heterogeneity, which 
HFUS failed due to insufficient image resolution and contrast. 
On the other hand, HFUS was able to stage large T2 tumors 
that OCT failed due to limited imaging depth. Multimodality 
cystoscopy combining OCT and HFUS, or the combination of 
OCT with larger lateral FOV technique such as WLC, narrow 
band imaging, and photodynamic diagnosis may help improve 
diagnosis and staging.87,110,114,115

Ureter

Few OCT studies have been conducted in ureter, which has 
somewhat similar mucosal morphology as bladder that the tissue 
surface is covered with urothelial cells. Early detection of ureteral 
cancer, as well as accurate tumor staging and grading, is also 
critical to reduce the mortality of the disease and help making 
the optimal treatment decisions.116 The staging and grading of 
urothelial carcinoma in ureter is challenging because the narrow 
caliber makes biopsy difficult and unreliable. Endoscopic OCT 
(EOCT) is necessary to access the layer structures of the ureteral 
wall with sufficient resolution to stage early ureteral cancer. 
Several ex-vivo studies in porcine ureter have demonstrated to 
clearly distinguish anatomical layers particularly the urothelium 
and lamina propria layers117,118 with better differentiation 
ability than endoluminal ultrasound.117 Bus et  al. reported the 

Figure  5. OCT of healthy ureter. (A) Individual OCT images obtained 
from volumetric OCT data set. Inset, higher magnification reveals normal 
ureter urothelium (pond sign), lamina propria (asterisk), and muscularis 
(dollar sign). (B) 520-frame volumetric data set across 52 mm trajectory 
along probe in approximately 5.2 s, resulting in 52 mm long by 10 mm 
diameter total scanned cylindrical volume. Figures and captions are 
adapted from reference 119 with permission. Figure 6. (A and B) Cross-sectional OCT images of proximal ureter show 

interruption (white asterisk) of thin dark line (white pound sign) suggest-
ing invasive tumor. Distinction among anatomical layers was not pos-
sible. Corresponding histology reveled T3G3 urothelial carcinoma (black 
arrow). (C) 3D pullback of OCT built from 520 individual cross-sectional 
images over 5.2 cm length. Figures and captions are adapted from refer-
ence 119 with permission.
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intraluminal OCT identification of anatomical layers of the 
healthy human ureter in vivo and the results for grading and 
staging upper urinary track (UUT) urothelial carcinoma using 
OCT.119 They identified several unique features by OCT although 
this study does not have enough patients to provide information 
on OCT’s sensitivity and specificity of UUT diagnosis. Their 
study demonstrated that OCT can: (1) distinguish healthy 
tissues from tumors; (2) differentiate invasive and non-invasive 
tumors; (3) differentiate grade 2 and 3 lesions by quantifying 
OCT backscattering attenuation and, thus, has the potential to 
provide intraoperative real-time histological information on stage 
and grade during minimally-invasive procedures. Figure 5 shows 
representative OCT images of healthy ureter with identified 
urothelium, lamina propria, and muscularis layers. Figure  6 
shows representative OCT images of invasive tumor (namely 
stage T3G3 urothelial carcinoma) where distinction among 
anatomical layers was not possible.

Kidney

OCT studies in clinical kidney diseases include applications in 
kidney cancer120-122 and non-destructive evaluation of transplant 
kidney viability or acute tubular necrosis (ATN).123-126 Barwari 
et al. conducted both an ex vivo study with 14 patients and an 
in vivo study with 16 cases. They demonstrated the capability of 
OCT to distinguish normal renal parenchyma from malignant 

renal tumors based on the backscattering properties. Both studies 
measured higher backscattering property in malignant tumors 
(measured from the surface or measured directly in the internal 
tumors) than normal parenchyma. The averaged backscattering 
value of three benign tumors reported in the in vivo study is 
between the value from normal and malignant tumor but it did not 
show significant difference from that of normal renal parenchyma 
and tumors. Linehan et al. imaged fresh surgical resected tissues 
of normal renal parenchyma and neoplasm using a laboratory 
OCT system with lateral resolution of 10 μm and axial resolution 
of 4 μm.122 They found angiomyolipoma and transitional cell 
carcinomas127,128 can be distinguished from normal parenchyma. 
However, higher resolution OCT is necessary to distinguish clear-
cell tumors and other renal carcinoma subtypes from normal 
parenchyma and between carcinoma subtype themselves, which 
had a heterogeneous appearance on OCT. Figure 7 shows OCT 
image and corresponding light microscopy of renal carcinoma, 
chromophobe subtype (top panel) and papillary subtype, grade 

Figure 7. OCT image and corresponding light microscopy of renal carci-
noma, chromophobe subtype (top panel) and papillary subtype, grade 
4 (bottom panel). In the chromophobe subtype (top panel), collections 
of large polygonal cells arranged in trabeculae are seen as areas of inter-
mediate brightness with intervening dark spaces on OCT. In the papil-
lary subtype (bottom panel), elements of cuboidal cells surrounding a 
fibrovascular stalk were seen on light microscopy but not visible on the 
OCT image. Bars are 500 μm. Figures and captions are adapted from ref-
erence 122 with permission.

Figure  8. (A) Transplant surgeons used the sterilized hand-held OCT 
probe shown in (B) to image a transplanted human donor kidney in the 
operating room. Both surgeons are looking at real-time images of the 
functioning kidney. The OCT probe and associated wires are covered 
with a sterile camera sleeve. (C) The OCT imaging probe covered with 
transparent Tegaderm (small arrow). The cords leading to the probe are 
covered with a sterile camera sleeve (large arrow). (D) In vivo OCT imag-
ing of human kidneys following transplantation showing open urinifer-
ous tubules below the renal capsule. Tubules appear to be fairly open 
and round with some degree of homogeneity throughout the images. 
Scale bar is 500 μm. (E) In vivo human kidney showing open tubules and 
cortical blood flow. Open tubules appear round and relatively uniform 
across all images. Also, a larger blood vessel is seen. Scale bar is 500 μm. 
D and E are from reference 126 with permission.
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4 (bottom panel). Some defining features such as collections 
of large polygonal cells arranged in trabeculae in chromophobe 
renal carcinoma and elements of cuboidal cells surrounding a 
fibrovascular stalk in papillary renal carcinoma were not clearly 
evident on corresponding OCT images.

Acute tubular necrosis (ATN) is the most common insult to 
donor kidneys destined for transplantation.129,130 ATN is caused 
by a lack of oxygen to the kidney (ischemia of the kidneys), and 
is one of the most common causes of kidney failure. Both ex 
vivo,123-126 and in vivo126 studies demonstrated the capability of 
OCT to visualize kidney parenchyma morphology and function 
(i.e., tubular morphology, blood flow from vessels and glomeruli) 
that provide information to kidney ischemic damage. Figure 8 
shows the hand-held OCT imaging device used in the operating 
room (Fig.  8A–C). Figure  8D depicts representative in vivo 
kidney OCT images after kidney transplant showing cross-
sectional profiles of superficial proximal tubules below the renal 
capsules. The openness of tubule lumens labeled in Figure 8D 
reflects a functioning post-transplanted kidney. Figure 8E shows 
the combination of morphological imaging with OCT and 
functional imaging with DOCT for one patient that displayed 
good tubular morphology and blood flow. Fairly densely packed 
uriniferous tubules are observed with several cortical blood vessels 
indicating re-perfusion. Finally, Video S1 shows combined OCT 
and DOCT real-time images of the living kidney following its 

transplant as would be seen while imaging the kidney in the 
operation room.

Summary

OCT is a powerful medical imaging technology that can 
reveal microstructure and blood flow in biological tissues in 
a non-invasive fashion and in real-time. Current technology 
improvements enable 3D-OCT imaging in real-time,131-133 
thereby dramatically reducing the motion artifacts during image 
acquisition when accurate quantification of OCT/DOCT image 
is essential for disease diagnosis and decision making. In addition, 
higher resolution might also help to enhance the classification 
of imaging parameters for disease diagnosis. With continued 
technology development and clinical translation, OCT promises 
to enhance current clinical practice in urology.
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