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Abstract

Spontaneous adenosine release events have been discovered in the brain that last only a few 

seconds. The identification of these adenosine events from fast-scan cyclic voltammetry (FSCV) 

data is difficult due to the random nature of adenosine release. In this study, we develop an 

algorithm that automatically identifies and characterizes adenosine transient features, including 

event time, concentration, and duration. Automating the data analysis reduces analysis time from 

10–18 hours to about 40 minutes per experiment. The algorithm identifies adenosine based on its 

two oxidation peaks, the time delay between them, and their current vs. time peak ratios. In order 

to validate the program, 4 data sets from 3 independent researchers were analyzed by the 

algorithm and then compared to manual identification by an analyst. The algorithm resulted in 10 

± 4% false negatives and 9 ± 3% false positives. The specificity of the algorithm was verified by 

comparing calibration data for adenosine triphosphate (ATP), histamine, hydrogen peroxide, and 

pH changes and these analytes were not identified as adenosine. Stimulated histamine release in 
vivo was also not identified as adenosine. The code is modular in design and could be easily 

adjusted to detect features of spontaneous dopamine or other neurochemical transients in FSCV 

data.
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Introduction

Adenosine is a byproduct of ATP catabolism and an important biological nucleoside 

involved in cell signaling,1 neuromodulation,1,2 and neuroprotection.1,2 In the brain, 

adenosine regulates cerebral blood flow and modulates neurotransmission.3,4 The ability to 

measure adenosine is important in understanding the roles it plays in neuromodulation and 

homeostatic regulation. Recently, direct measurements of spontaneous transient adenosine 

release in vivo have been made by fast-scan cyclic voltammetry (FSCV).5 These events are 

spontaneous, rather than stimulated, and last only a few seconds. Several hundred transients 

can occur in the 4 hour data collection typical of an in vivo experiment. Current data 

analysis protocols require a human analyst to pick the transients by hand; an experienced 

analyst can identify a transient approximately every 1.5 minutes. Therefore, if a data set 

contains 700 transients, then it would take about 18 hours to analyze. Adenosine transient 

events are random and do not follow any regular pattern so all the data must be painstakingly 

analyzed. In addition to being slow, identification by an analyst could be potentially 

inconsistent. Automating identification of adenosine transients would save time and 

normalize data analysis between researchers.

Algorithms have been developed to automate identification of molecules in chemical 

data.6–16 For in vivo electrochemical data, peak identification has used the cyclic 

voltammogram (CV) as a chemical fingerprint to identify which peak is detected. However, 

there are 144,000 CVs collected in a four hour voltammetry experiment so they cannot be 

individually examined. Principal component regression (PCR) uses those cyclic 

voltammograms to identify compounds in a mixture and remove noise from the data.17,18 In 

particular, PCR has proven to be a powerful tool to separate dopamine from pH shifts. This 

method was used previously to identify adenosine and create concentration vs time traces 

that are examined by an analyst to identify adenosine transients.3 The problem with PCR for 

adenosine is that the cyclic voltammogram of adenosine changes over time, with a primary 

peak that is large in the first few cyclic voltammograms and a secondary peak that grows in 

over time.5 Thus, it is hard to select a representative training set, the residuals (i.e. noise) are 

large, and the residual noise (Q) is often above the threshold residual noise (Qα), denoting 

the training set is not sufficient to predict the concentration of the neurochemical.17 The 

other major problem for finding adenosine transients is that they are random events, with no 

unique time markers. While many dopamine events are linked to behaviors or cues, finding 

adenosine transients requires an algorithm that does not use time as a rule for identification.

In this study, an algorithm was designed to identify and characterize random adenosine 

transients from FSCV data. Our program automatically reads, analyzes, and creates a report 

characterizing the duration, concentration, and event time for each adenosine transient. This 

automated analysis takes only about 40 minutes to analyze a four hour in vivo data set. The 

program was validated with 4 data sets from 3 independent researchers and compared to the 

results of the analysts. The program resulted in 10 ± 4% false negatives (FN), due to 

multiple peaks and high thresholds, and 9 ± 3% false positives (FP), due to random noise 

that occurs in biological experiments. The algorithm was tested against ATP, histamine, 

hydrogen peroxide, and pH, known interferents in the brain, and only generated one false 

positive in 82 measurements. This study demonstrates the reliability of the automated 
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identification program for adenosine and the program is customizable to study other 

electroactive analytes in the future. Automated analysis of FSCV data will allow faster data 

analysis and less analyst bias for identifying and characterizing adenosine in vivo.

Results and discussion

Rules for adenosine detection

In order to develop an automated program to detect adenosine transients, rules must be 

constructed about what constitutes a transient. In a typical fast-scan cyclic voltammetry 

experiment, the voltage is ramped up and back to collect a cyclic voltammogram (CV) and 

the scan is repeated every 100 ms. Large background currents due to capacitive charging are 

subtracted out to reveal Faradaic current changes over time. Because of the large amount of 

data, multiple CVs are often viewed as a three dimensional color plot, with data stacked 

horizontally as a function of time. The color plot in Fig. 1 shows spontaneous adenosine 

transients in vivo. Adenosine is irreversibly oxidized around 1.4 V and forms a primary 

product,19 which can be oxidized again to form a secondary product.4 The oxidation of this 

secondary product is detected on subsequent scans at 1.0 V. The presence of two oxidation 

peaks for adenosine within the CV is a hallmark of its detection and the voltage at which 

these peaks occur is constant for an experiment.

Taking the current at the primary and secondary peak voltages from the CV and plotting it 

vs. time reveals how adenosine changes over time (above color plot, Fig. 1). In this current 

vs time trace, the peak current maximums are marked as diamonds and the primary peak 

always occurs before the secondary peak because the primary product is the precursor for 

the secondary product.20 In addition, the primary transient peak current is larger than the 

secondary peak current because not all of the primary product is oxidized to secondary 

product on the subsequent scan. CVs of adenosine were taken from a single adenosine 

transient event to show the changes in adenosine CV over time. CV 1 shows the first 

appearance of adenosine with a primary peak and no secondary peak, CV 2 is taken at a 

maximum current of primary peak and the secondary peak is growing in, and CV 3 is taken 

at the maximum of the secondary peak. Analysis of 108 in vivo transients (from 3 rats) 

reveals this secondary to primary peak ratio is between 0.49 and 0.89 and this range was 

used to as a filter for identifying in vivo adenosine transients. The secondary peak redox 

reaction is reversible and the duration of this peak in the current vs time trace is longer than 

the duration of primary peak because the secondary product can be reformed and oxidized 

again on future scans. These data illustrate the rules for identifying an adenosine transient in 

current vs. time traces: (1) a peak must be present at both the primary and secondary 

oxidation voltages; (2) the secondary peak must lag the primary peak; (3) the ratio of 

secondary to primary peak currents must be in an acceptable range consistent with 

adenosine; (4) the duration of secondary peak must be longer than the primary peak in 

current vs. time traces. Additionally, the adenosine transients are fast, so the duration must 

be between 0.6 (smallest peak that can be empirically observed with our 0.1 s temporal 

resolution) and 15 s (over 5 s larger than empirically observed largest transient) and all 

peaks must have S/N ratios greater than 3. With these rules, an algorithm for adenosine 

transient identification was built.
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Overview of adenosine algorithm

Fig. 2 shows a schematic overview of the automated algorithm for adenosine detection. 

Three dimensional raw data is read into the program and then background subtracted21 at 

defined intervals (incremental background subtraction). The primary and secondary 

maximums are scanned for peaks in current vs. time traces. In order to verify the peak is an 

adenosine transient, it is more accurate to background subtract directly adjacent to the peak. 

With this adjacent background subtraction, if a peak is detected that meets all rules for 

adenosine (S/N >3, secondary lags primary and is longer in duration, secondary to primary 

peak ratio in correct range) then the peak is counted as an adenosine transient. The program 

then automatically records the peak height, of the primary peak, using Matlab’s findpeaks.m 

function as well as the time at which the peak maximum occurs.

Algorithm Inputs

The algorithm requires a few inputs by the analyst in order to search for adenosine 

transients. First, the voltages for the primary peak and secondary peaks, termed pmax and 

smax respectively must be determined. Using the in vivo data, the peak voltages are chosen 

by reviewing a few large adenosine transients in the data set; voltages generally vary only 

slightly between electrodes. Second, the analyst must choose a peak current threshold, i.e. 

the minimum current for a peak in the current vs time trace. The minimum peak threshold 

can be chosen by determining the noise in a part of a trace and then picking three times the 

noise or one can be more lenient in the screening process, using a lower threshold, and then 

apply a more stringent S/N filter later. Generally, for in vivo data we used a minimum peak 

threshold around 2 nA, but for slice data, the noise is smaller and this value could be set 

closer to 1 nA. Third, the prominence is defined (Supplemental Figure 1). This value defines 

the minimum height, in current, of the valley between two overlapping peaks. In general, we 

empirically found that leaving this value at 0.64 nA is a good balance between identifying 

multiple peaks clustered together and rejecting noise. This means the smaller of the two 

overlapping peaks has a height from valley to peak that is greater than 0.64 nA. The 

minimum prominence value was used to filter out peak noise and therefore its value was 

kept constant. Fourth, the lag time filter is defined. For a peak to be identified as adenosine it 

must have a peak both at the primary and secondary voltages and the secondary peak must 

lag the primary peak by at least 0.1 s but be within 2.5 s of the primary peak. The 0.1 s is the 

minimum lag time possible given our temporal resolution of 0.1 s and the 2.5 s was larger 

than any empirically determined delay (n=108 peaks, 3 rats). Finally, the analyst inputs the 

expected ratio of secondary peak max current to primary peak max current for adenosine, 

Sp/Pp. This ratio was empirically determined to be 0.49 to 0.89 from an analysis in vivo 
transients, but could differ for different waveforms or types of electrodes.

Background Subtraction

In FSCV experiments, stable non-faradaic currents occur due to background charging of the 

surface of the CFME and these background currents are subtracted to study Faradaic redox 

reactions. Because the locations of adenosine transients are not known a priori, it is not 

obvious where to pick to perform background subtraction. Thus, the program first picks 

several places for background subtraction, at defined increments, and then background 
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subtracts each data set at these times. By examining the same data set background subtracted 

from different places, we correct for 2 fundamental problems. First, if we only picked one 

background subtraction time, it may inadvertently be during an adenosine peak and the 

results would not be interpretable. Second, the background current drifts over time so 

background subtraction should be performed as near to a peak as possible to accurately 

identify and define all possible adenosine peak characteristics. Figure 3 A–C shows color 

plots of the same data, background subtracted at 3 different time points. Long duration color 

changes, away from the oxidation peaks, are due to electrode drift and thus, it is easier to 

distinguish small transients from drift if the background is taken nearby. Practically, after the 

initial background subtraction, the program iterates at a defined increment value (usually 

10s) repeating the procedure of doing a background subtraction and identifying adenosine 

transients using that background point. All potential adenosine transients are collected and 

identified by event time for use in the next step, adjacent background subtraction.

It is standard to do background subtraction directly adjacent to the peak,5 so the next part of 

the algorithm uses the event times for putative transients to background subtract adjacent to 

the peak. Adjacent background subtraction is performed approximately 2.5 s before each 

peak and results in a more accurate determination of concentration change and duration 

because there is less background drift. The time input for adjacent background subtraction is 

generated from the event times obtained during incremental background subtraction and 10 

baseline data points are included for background subtraction. If spurious peaks are collected 

during the increment part of the algorithm, they are often rejected when adjacent background 

subtraction is performed. The incrementing part of the program is a wide net to collect all 

potential transients while during adjacent background subtraction, threshold values are set 

higher and therefore are more discriminating. Once peaks are found with adjacent 

background subtraction, they are subject to the lag time filter, Sp/Pp ratio filter and S/N filter 

that identifies them as adenosine transients. The program then calculates the peak height 

from the primary peak in current, which can be changed to concentration with a known 

calibration value, which has been previously described.5 In addition, the peak width at half 

height is calculated for each peak as well as the S/N value. Peaks that are identified in the 

initial incremental background stage but rejected in the more stringent adjacent background 

stage are flagged in the output for what criteria they fail (Fig. S2). Thus, an analyst could go 

back and check these peaks if desired.

Analyst validation of adenosine transient program

To determine the robustness of the adenosine transient program, the algorithm was tested by 

comparing transients identified by the program to data analyzed by an analyst using 

traditional methods. The analyst used principal component regression to produce a trace of 

adenosine concentration changes using High Definition Cyclic Voltammetry (HDCV), a 

program developed in the Wightman lab.22 Table 1 shows false positives and negatives for 

the algorithm compared to the analyst for 4 different data sets. If the algorithm selects a peak 

that was not identified as adenosine by the analyst, it is counted as a false positive (FP). If 

the analyst finds a peak that the program missed, it is counted as a false negative (FN). Each 

data set was from an independent animal experiment and data sets were obtained from three 

separate researchers. In the first data set (S1), an in vivo measurement in the caudate 
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putamen, only 41 adenosine transients were observed and the FP and FN were below 5%. 

Data sets 2 and 3 were in vivo measurements in the hippocampus, with more adenosine 

transients and a slightly higher FN and FP rate. In data set S4, a brain slice experiment from 

the prefrontal cortex, the algorithm resulted in 16% FN and 7% FP. Overall, analyst 

validation of the adenosine algorithm resulted in 10 ± 4% FN and 9 ± 3% FP for a total of 

640 confirmed adenosine transients.

The concentration of the transients and the event times of the transients were also compared 

between the analyst and the algorithm. For concentration, the average difference between the 

analyst and algorithm was 0.029 ± 0.002 µM (n=397 transients, 3 data sets) which was 

statistically different than the expected value of 0 (p<0.001). The algorithm consistently 

reported slightly lower concentrations than the analysts (by about 15%), likely due to the 

algorithm accounting for baseline changes near the peak. Alternatively, the difference could 

be that the analyst tends to maximize the current value by adjusting their background 

subtraction location, while the algorithm has set rules for background placement. While the 

peak concentrations were slightly lower with the algorithm, it was consistent in its definition 

and the concentrations are only estimates due to the calibration factors being obtained in 
vitro. For event time, the difference between the analyst and algorithm reported times was 

0.008 ± 0.009 s, not significantly different than the expected value of 0 (p=0.45, n=397 

transients, 3 rats). The event durations were not compared, because the analyst did not have 

a good method to determine the duration at half-height. Previously, we had reported peak 

durations as the full width of the peak5 so duration values here are shorter, but are in line 

with expected results.

Statistics were calculated for each data set (then averaged) and the adenosine algorithm had 

a mean precision of 0.91 ± 0.01, meaning that 91% of the peaks it returned were commonly 

identified peaks. The sensitivity of 0.90 ± 0.04 indicates that 90% of peaks identified by the 

analyst were also found by the program. The accuracy of 0.90 ± 0.02 is geometric mean of 

sensitivity and precision, weighting both FP and FN to determine the overall accuracy. Thus, 

the program is 90% accurate in identifying transients, showing it can discern adenosine, with 

a high degree of certainty in a similar manner as an analyst.

Neither the algorithm nor the human analyst is perfect at identifying adenosine transients. 

When checking the algorithm against the human, we found that the analyst was less likely to 

find transients in the beginning and end of the files, due to background subtraction issues 

and difficulty visualizing transients on the edges of the color plots. In addition, the analysts 

did not have a good way to calculate signal to noise in our traditional method, so an analyst 

may infrequently count a peak with an S/N less than 3. For the algorithm, false positives 

were mainly due to noise. False negatives were primarily due to multiple peak maximums 

occurring in a single peak (i.e. a human might count 3 peaks close together where the 

computer would find 1 or 2). However, it will always be difficult to measure the 

concentration and duration of multiple peaks that do not go back to baseline. The program 

can flag potential multiple peaks so that the analyst can go back to better examine that data. 

Ultimately, false positives and false negatives are minimized by setting thresholds properly 

in both background subtraction parts of the adenosine algorithm.
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Testing biologically relevant interferents (in vitro)

There are many electroactive molecules in the brain that have electrochemical signatures that 

are similar to adenosine. In order to test the robustness of the algorithm, adenosine and 

possible interferents were measured in vitro. Pmax and Smax were determined for adenosine 

for an electrode and then data from possible interferents run through the algorithm to 

determine if it would be identified as adenosine. The ratio of secondary to primary peaks 

was critical for identifying interferents.

Fig. 4 shows example electrochemical data for adenosine as well as potential interferents 

adenosine triphosphate (ATP), histamine, hydrogen peroxide,23 and pH. ATP differs from 

adenosine by only three phosphate groups and has the same electrochemical moiety.20 ATP 

has primary and secondary peaks but the secondary peak is not as prominent, so the Sp/Pp 

ratio is below the threshold for adenosine (mean=0.18±0.05, range=0.07–0.27, 15 injections, 

6 electrodes). In addition, the secondary maximum occurs before the primary maximum. 

Thus, ATP fails to be identified as adenosine. Histamine also has 2 oxidation peaks, but the 

secondary peak maximum is at 0.76 V instead of 1.06 V. Thus, when the program scans for a 

secondary peak at 1.06 V, the peak there is small and histamine fails for a Sp/Pp ratio below 

threshold (mean=0.15±0.07, range=0.03–0.24, 20 injections, 6 electrodes). Hydrogen 

peroxide does not have a prominent secondary peak. Although some current from the 

primary peak is present at 1.06 V, it fails for the Sp/Pp ratio of 0.18 (mean=0.08±0.05, 

range=0.03–0.18, 19 injections, 6 electrodes) and not having a time lag between the peaks. 

Finally, we tested pH changes of 0.1, both acidic and basic. The max Sp/Pp ratio for pH 7.3 

and pH 7.5 are below threshold (pH 7.3, mean=0.19±0.09, range=0.06–0.30, 13 injections, 6 

electrodes; pH 7.5, mean=0.20±0.09, range=0.07–0.37, 15 injections, 6 electrodes). The 

algorithm has a maximum duration of a transient for in vivo data and pH shifts are generally 

long lasting, so they would not be likely to generate false positives in vivo. These 

experiments show that biologically relevant interferents do not result as false positives for 

adenosine during in vitro calibration experiments and help solidify the identity of the species 

detected as adenosine.

Future studies could also examine mixtures of adenosine and interferents to determine the 

extent to which potential corelease of an interferent might obscure adenosine detection by 

the algorithm. Although principal component regression is useful for dopamine analysis to 

remove contributions from pH or noise,24 it is more challenging for adenosine where the 

CVs are not consistent over time (Fig. 1). Here, chemical noise is not removed here but we 

rely on the filters to remove transients that do not fit the rules for adenosine. Another 

limitation is that the analyst defines the primary and secondary peak voltages because it 

could lead to potential bias; future work will focus on automatically determining these 

inputs. Other strategies, such as image analysis of color plots might be more useful for 

deconvoluting mixtures, but the overall conclusion here is that adenosine transients can be 

clearly detected and are not due to these other possible interferents.

In vivo testing of stimulated histamine

Redox voltages and currents observed during in vivo experiments can differ from those 

observed during in vitro experiments. Histamine is a possible interferent for adenosine due 

Borman et al. Page 7

ACS Chem Neurosci. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to similar cyclic voltammograms and a secondary peak formation.25 While in vitro data 

showed that histamine would not be counted as an adenosine transient, to further validate 

this in vivo, we performed a stimulated histamine release experiment and ran the result 

through the adenosine algorithm. Measurements were made in the premammillary nucleus 

with a stimulating electrode in the medial forebrain bundle region. Figure 5 shows the results 

for the in vivo histamine stimulation.25 The white lines are the peak max values for 

adenosine; both the primary and secondary peak maximums for histamine occur at a lower 

voltage than the adenosine peak maximums. Histamine fails to be identified as an adenosine 

transient because it fails both the lag time filter and the Sp/Pp ratio filter. Histamine also 

failed the lag time and peak ratio filters in vitro, showing that the calibration tests produced 

similar results to the in vivo test. Overall, this validation shows that the algorithm is good at 

distinguishing adenosine from histamine during both in vitro calibration experiments and in 
vivo.

While we have optimized this algorithm for finding adenosine transients, the software is 

modular and could easily be trained with “new rules” to identify other analytes in FSCV 

data. For example, dopamine could be detected by setting the algorithm to scan the oxidation 

and reduction voltages for dopamine, having a lag-time of zero, and inputting an expected 

reduction to oxidation peak ratio range. Alternatively, dopamine data could be pre-processed 

by principle components regression to remove noise26,24 and the program could then 

subsequently pick the peaks and characterize them from that trace. Another possible 

extension is to look for multiple analytes in the same data. Adenosine and oxygen release 

events are correlated,27 so the program could scan the reduction voltage for oxygen and 

identify oxygen transients that occurs after an adenosine transient. Thus, as long as there is 

enough information to make rules about detection from the electrochemical data, this 

modular program can be used to automatically pick peaks and characterize them. Ultimately, 

this automated algorithm can save hundreds of hours of tedious data analysis and normalize 

data analysis between analysts.

Conclusions

An automated algorithm was built to identify transient changes in adenosine concentration in 

in vivo data sets. The algorithm uses rules about the electrochemistry of adenosine to 

identify peaks and is 90% accurate. Data from multiple analysts, brain regions, and types of 

tissue were analyzed and the algorithm was found to be robust. The algorithm detects 

adenosine but not possible interferents, both in vitro and in vivo and they did not cause false 

positives. This algorithm could be adjusted to detect many other electroactive compounds in 

neurochemistry experiments. In summary, an automated algorithm to identify adenosine 

peaks will be useful for streamlining and accelerating data analysis and will therefore 

increase laboratory throughput.

Methods

FSCV Transient

The adenosine feature detection algorithm, named FSCV Transient, was written in Matlab 

2016a (The MathWorks Inc, Natick, MA, USA) and run on a 3.4 GHz PC computer with 
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Windows 10 for data analysis. The user inputs are first defined: maximum primary (pmax) 

and secondary (smax) oxidation voltage, background subtraction increment value, and 

threshold level for a peak for both background subtraction stages. There are also values such 

as prominence, Sp/Pp ratio, and peak duration that can be changed, but are usually left at a 

default value. Experimental data was collected using High Definition Cyclic Voltammetry 

(HDCV), a program developed in the Wightman lab.22 Non-background subtracted and non-

filtered FSCV color plot data were exported from HDCV and imported into Matlab. Then 

the FSCV data is convoluted with a 2-D Gaussian filter (size=7, σ=2), which is a low-pass 

blurring filter that removes noise and a median filter [3×3] is applied to further smooth the 

data set.

In the first part of the algorithm (Figure 2, Steps 1–3), incremental background subtraction is 

performed by background subtracting at several times, then searching the primary and 

secondary peak traces for peaks. For example, an initial background subtraction occurs at t = 

1.0 s, the two current vs. time traces are scanned for adenosine peaks, and every peak over 

threshold is compiled and concatenated until the end of file. Then the program would 

background subtract at the next defined increment value, usually 10 s, and search again for 

peaks. A typical increment value of 10.0 s would result in 17 incremented background 

subtractions in a 180 s file. After all possible adenosine peaks are amassed and duplicates 

are removed, the algorithm imposes a constraint that a peak must be detected at both the 

primary and secondary voltages and that the primary adenosine peak maximum must occur 

before the secondary peak maximum. The final set of event times identified during 

incremental background subtraction is subsequently used as seeds during the second part of 

the program, adjacent background subtraction.

In the second part of the algorithm (Steps 4–7), adjacent background subtraction is 

accomplished by performing background subtraction approximately 2.5 s before, i.e. 

adjacent to, each individual peak found during incremental background subtraction. 

Adjacent background subtraction is more accurate for measuring peak characteristics 

because of possible baseline drift. The minimum concentration that can be detected is 

usually around 40 nM. Additionally, the noise is calculated as the standard deviation of the 

baseline taken adjacent to the peak and only peaks with S/N > 3 are kept. Supplemental Fig. 

2 shows the output from our program of peak current, duration, and event time, including 

peaks that are flagged as not meeting the criteria for being an adenosine peak.

Chemicals

The effect of interferents was tested in vitro using a flow-injection system.28 Compounds 

were dissolved in PBS buffer containing (in mM) 131.25 NaCl, 3.0 KCL, 10.0 NaH2PO4, 

1.2 MgCl2, 2.0 Na2SO4, and 1.2 CaCl2 (pH 7.4, all Fisher Scientific, Fair Lawn, NJ). All 

aqueous solutions were prepared with deionized water (Milli-Q Biocel; Millipore, Billerica, 

MA, USA). Adenosine, histamine, and adenosine triphosphate were purchased from Sigma 

Aldrich and hydrogen peroxide was purchased from Macron (Center Valley, PA, USA). All 

were made up as 10.0 mM stock solutions in 0.1 M HClO4 and then diluted to their 

concentration in PBS buffer. The interferent pH was tested by adjusting pH=7.4 PBS buffer 

to pH=7.3 with HCl or pH=7.5 with NaOH.
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Carbon-fiber microelectrodes and FSCV

Carbon-fiber microelectrodes (CMFEs) were prepared with standard fabrication techniques 

using 7 µm diameter T-650 carbon fibers with a length between 100 – 150 µm (Cytec 

Engineering Materials, West Patterson, NJ, USA)29. Data were collected using a Dagan 

ChemClamp potentiostat (Dagan Corporation; Minneapolis, MN, USA). All electrodes were 

scanned from a holding potential of −0.40 V and scanned to a switching potential of 1.45 V 

and back at 10 Hz versus a Ag/AgCl reference electrode, at a scan rate of 400 V/s.

Data sets analyzed

All animal experiments were approved by the University of Virginia Animal Care and Use 

Committee. In vivo data set (S1) was measured in the caudate putamen (coordinates: ML: 

+2.0, AP +1.2, DV −4.5) and data sets (S2 and S3) were measured in the hippocampus 

(coordinates: ML: +2.0, AP −3.8, DV −2.5) according to procedures previously described.5 

The brain slice data was measured in the prefrontal cortex, as previously described.23 

Analysts chose adenosine transients using principal components analysis in HDCV, using 

the 5 largest transients as the training set, according to our established procedure.5 Peak 

heights and event times were hand calculated for each peak.

Error analysis

Sensitivity, precision, and accuracy were calculated from true positive (TP), false positive 

(FP), and false negative (FN) values determined from analyst validation of FSCV transient 

algorithm results. The analyst data was assumed to be the true data, since no true data exists. 

Sensitivity or recall is the fraction of relevant peaks that are returned by the algorithm from 

the data set. If the algorithm contains a large number of FNs the sensitivity decreases.

(1)

Precision or positive predictive value is the fraction of peaks returned by the algorithm from 

the data set that are relevant peaks. If the algorithm contains a large number of FPs the 

precision decreases.

(2)

Accuracy was calculated from the F1 score, which is the harmonic mean of sensitivity and 

precision. The harmonic mean weights sensitivity and precision equally.

(3)

Data are presented as mean ± standard deviation.
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Figure 1. 
In vivo spontaneous adenosine transients in the hippocampus. Top: CVs of adenosine are 

taken from a single adenosine transient event, showing changes of adenosine over time. CV 

1 is when adenosine first appears. CV 2 is when the primary peak is at a maximum and CV 3 

is when the secondary peak is at maximum. Middle: Current vs. time traces with 5 transients 

detected. The primary peak maximums (black trace) occur before secondary peak 

maximums (red trace) and is the basis for the lag time filter (diamonds mark peak max 

values). The Sp / Pp ratios for each of the 5 peaks are between 0.49 and 0.89. Bottom: False 
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color plot of adenosine transients with white lines marking the primary and secondary 

oxidation voltages.
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Figure 2. 
Algorithm for FSCV transient. (1) Files are read into the program and background 

subtracted at defined increments. (2) Primary and secondary oxidation voltages are scanned 

for adenosine (ADO) peaks. (3) Lag time filter is applied to make sure two peaks are present 

and the secondary peak lags the primary peak (4) resultant peaks are background subtracted 

adjacent to the peak then (5) identified similarly to steps 2 and 3. (6) Signal-to-noise and 

ratio filter are applied to detected peaks to remove spurious peaks. (7) Event time, 

concentration, and duration are written to file.
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Figure 3. 
Incremental background subtraction of in vivo adenosine transients from the hippocampus 

brain region. A.) Background subtraction at 50 s. B.) Background subtraction at 100 s. C) 

Background subtraction at 150 s. The white vertical lines show where the background was 

taken.
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Figure 4. 
In vitro testing of biologically relevant interferents. Current vs timetraces, cyclic 

voltammograms, and false color plots for A) 1 µM adenosine, B) 1 µM ATP, C) 1 µM 

histamine, D) 1 µM hydrogen peroxide, E) pH 7.3 shift, F) pH 7.5 shift. Interferents are 

rejected by the algorithm due to smax occurring before pmax and an interferent Sp,/Pp ratio 

below the minimum for adenosine.
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Figure 5. 
in vivo stimulated histamine from the premammillary nucleus. A) Primary (black) and 

secondary (red) oxidation peak i vs t traces of stimulated histamine fail lag time filter 

because maximums occur at the same time. B) False color plot of stimulated histamine. 

White lines are pmax and smax generated from adenosine transients.
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