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Abstract

Audiovisual speech integration combines information from auditory speech (talker’s voice)

and visual speech (talker’s mouth movements) to improve perceptual accuracy. However, if

the auditory and visual speech emanate from different talkers, integration decreases accu-

racy. Therefore, a key step in audiovisual speech perception is deciding whether auditory

and visual speech have the same source, a process known as causal inference. A well-

known illusion, the McGurk Effect, consists of incongruent audiovisual syllables, such as

auditory “ba” + visual “ga” (AbaVga), that are integrated to produce a fused percept (“da”).

This illusion raises two fundamental questions: first, given the incongruence between the

auditory and visual syllables in the McGurk stimulus, why are they integrated; and second,

why does the McGurk effect not occur for other, very similar syllables (e.g., AgaVba). We

describe a simplified model of causal inference in multisensory speech perception (CIMS)

that predicts the perception of arbitrary combinations of auditory and visual speech. We

applied this model to behavioral data collected from 60 subjects perceiving both McGurk

and non-McGurk incongruent speech stimuli. The CIMS model successfully predicted both

the audiovisual integration observed for McGurk stimuli and the lack of integration observed

for non-McGurk stimuli. An identical model without causal inference failed to accurately pre-

dict perception for either form of incongruent speech. The CIMS model uses causal infer-

ence to provide a computational framework for studying how the brain performs one of its

most important tasks, integrating auditory and visual speech cues to allow us to communi-

cate with others.

Author Summary

During face-to-face conversations, we seamlessly integrate information from the talker’s

voice with information from the talker’s face. This multisensory integration increases

speech perception accuracy and can be critical for understanding speech in noisy environ-

ments with many people talking simultaneously. A major challenge for models of multi-

sensory speech perception is thus deciding which voices and faces should be integrated.

Our solution to this problem is based on the idea of causal inference—given a particular
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pair of auditory and visual syllables, the brain calculates the likelihood they are from a sin-

gle vs. multiple talkers and uses this likelihood to determine the final speech percept. We

compared our model with an alternative model that is identical, except that it always inte-

grated the available cues. Using behavioral speech perception data from a large number of

subjects, the model with causal inference better predicted how humans would (or would

not) integrate audiovisual speech syllables. Our results suggest a fundamental role for a

causal inference type calculation in multisensory speech perception.

Introduction

Speech is the most important method of human communication and is fundamentally multi-

sensory, with both auditory cues (the talker’s voice) and visual cues (the talker’s face) contrib-

uting to perception. Because auditory and visual speech cues can be corrupted by noise,

integrating the cues allows subjects to more accurately perceive the speech content [1–3].

However, integrating auditory and visual speech cues can also lead subjects to less accurately

perceive speech if the speech cues are incongruent. For instance, a unisensory auditory “ba”

paired with a unisensory visual “ga” (AbaVga) leads to the perception of “da”, a speech stimu-

lus that is not physically present. The illusion was first described experimentally by McGurk

and MacDonald in 1976 [4] and is commonly known as the McGurk effect.

The McGurk effect has become a staple of classroom demonstrations and television docu-

mentaries because it is both simple and powerful—simply closing and opening one’s eyes

completely changes the speech percept—and is also an important tool for research, with over

3,000 citations to the original paper in the last ten years. The McGurk effect is surprising

because the incongruent speech tokens are easy to identify as physically incompatible: it is

impossible for an open-mouth velar as seen in visual “ga” to produce a closed-mouth bilabial

sound as heard in auditory “ba”. The effect raises fundamental questions about the computa-

tions underlying multisensory speech perception: Why would the brain integrate two incom-

patible speech components to produce an illusory percept? If the illusion happens at all, why

does it not happen more often?

We propose a comprehensive computational model of multisensory speech perception that

can explain these properties of the McGurk effect, building on previous models [2, 5–9]. Our

model is based on the principle of causal inference [10–12]. Rather than integrating all available

cues, observers should only integrate cues resulting from the same physical cause. In speech

perception, humans often encounter environments with multiple faces and multiple voices

and must decide whether to integrate information from a given face-voice pairing. More pre-

cisely, because observers can never be certain that a given face pairs with a given voice, they

must infer the likelihood of each causal scenario (a single talker vs. separate talkers) and then

combine the representations from each scenario, weighted by their likelihoods. For simple syl-

lable perception, individuals often perceive the auditory component of speech when the face

and voice are separate talkers [13]. The final result of causal inference is then the average of the

integrated multisensory representation (the representation assuming a single talker) and the

auditory representation (the representation assuming separate talkers), weighted by the likeli-

hood that the face and voice arise from a single talker vs. separate talkers.

To test whether causal inference can account for the perception of incongruent multisen-

sory speech, we created two similar models, one that did perform causal inference on multisen-

sory speech (CIMS) and a model identical in every way, except that it did not perform causal

inference (non-CIMS). We obtained predictions from the CIMS and non-CIMS models for a
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variety of audiovisual syllables and compared the model predictions with the percepts reported

by human subjects presented with the same syllables.

Methods

In everyday environments, we encounter audiovisual speech and must decide whether the

auditory and visual components of the speech emanate from a single talker (C = 1) or two sep-

arate talkers (C = 2; Fig 1A). Most studies of multisensory integration assume that C = 1 and

focus on the details of the inference used to produce a single multisensory representation that

is then categorized as a particular percept [2, 5]. To carry out causal inference, we must per-

form the additional steps of calculating the C = 2 representation and then combining the C = 1

and C = 2 representations. This combined representation is then categorized as a particular

percept. Critically, identical stimuli can result in different percepts with (CIMS) and without

(non-CIMS) causal inference.

We begin by describing the common elements of the CIMS and non-CIMS models. We

define a two-dimensional space as the minimum possible dimension for characterizing audi-

tory and visual speech information (Fig 1B). The x-axis represents auditory information in the

stimulus while the y-axis represents visual information in the stimulus. For simplicity, we

model a space containing only 3 speech token categories, “ba,” “da,” and “ga”. Based on behav-

ioral confusability studies and previous modeling work [8, 14], “da” was placed intermediate

to “ba” and “ga” on both the auditory and visual axes, slightly closer to “ba” on the auditory x-

axis, and slightly closer to “ga” on the visual y-axis. These syllable locations can be thought of

as prototypes, with different talkers (or different utterances from the same talker) differing

from the prototype. To model these category distributions as simply as possible, we defined

two-dimensional variance-covariance matrices (identical across syllables) with zero covariance

(information in auditory and visual axes is uncorrelated) and equal variances along each axis.

The axes of this representational space do not correspond in a simple way to physical proper-

ties of the stimulus; instead, they correspond to some internal neural representational space in

which auditory and visual syllables are mapped into a single representational space that allows

for integration.

A staple of Bayesian models of perception is the concept of sensory noise. Not only do indi-

vidual exemplar stimuli vary from their prototype, the perceived stimulus varies from its actual

physical properties due to sensory noise. We model this as two-dimensional variance-covari-

ance matrices representing Gaussian noise in each modality (SA and SV, for auditory and

visual encoding) with variances inversely proportional to the precision of the modality. We

chose Gaussian noise both because of its use in previous computational models [2, 5] and

because Gaussian noise arises naturally in situations where a signal is corrupted by multiple

independent sources. Modalities are encoded separately, but through extensive experience

with audiovisual speech, encoding a unisensory speech stimulus provides some information

about the other modality. For instance, hearing an unisensory auditory “ba” informs the

observer that the mouth of the talker must have been in an initially lips-closed position. For

such a unisensory cue, the information provided about the other sensory modality has higher

variance. In our model, we assume that for auditory cues, the standard deviation along the

visual axis is 1.5 times larger than the standard deviation along the auditory axis. For visual

cues, the standard deviation along the auditory axis is 1.5 times larger than the standard devia-

tion along the visual axis. This setup produces unisensory noise matrices that are rotations of

one another (ellipses labelled A and V in Fig 1C).

For each presentation of a given audiovisual stimulus, the model encodes each modality

separately. For a single trial of a stimulus with auditory component SA and visual component

Causal Inference in the McGurk Effect

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005229 February 16, 2017 3 / 15



Fig 1. Modeling of multisensory speech perception without causal inference. (A) There are two possible causal structures for a

given audiovisual speech stimulus. If there is a common cause (C = 1), a single talker generates the auditory and visual speech.

Alternatively, if there is not a common cause (C = 2), two separate talkers generate the auditory and visual speech. (B) We generate

multisensory representations in a two-dimensional representational space. The prototypes of the syllables “ba,” “da,” and “ga” (location

of text labels) are mapped into the representational space with locations determined by pairwise confusability. The x-axis represents

auditory features; the y-axis represents visual features. (C) Encoding the auditory “ba” + visual “ga” (AbaVga) McGurk stimulus. The

unisensory components of the stimulus are encoded with noise that is independent across modalities. On three trials in which an

identical AbaVga stimulus is presented (represented as 1, 2, 3) the encoded representations of the auditory and visual components

differ because of sensory noise, although they are centered on the prototype (gray ellipses show 95% probability region across all

presentations). Shapes of ellipses reflect reliability of each modality: for auditory “ba” (ellipse labeled A), the ellipse has its short axis

along the auditory x-axis; visual “ga” (ellipse labeled V) has its short axis along the visual y-axis. (D) On each trial, the unisensory

representations are integrated using Bayes’ rule to produce an integrated representation that is located between the unisensory

components in representational space. Numbers show the actual location of the integrated unisensory representations from C.

Because of reliability weighting, the integrated representations are closer to “ga” along the visual y-axis, but closer to “ba” along the

auditory x-axis (ellipse shows 95% probability region across all presentations). (E) Without causal inference (non-CIMS), the AV

representation is the final representation. On most trials, the representation lies in the “da” region of representational space (numbers

and 95% probability ellipse from D). (F) A linear decision rule is applied, resulting in a model prediction of exclusively “da” percepts

across trials. (G) Behavioral data from 60 subjects reporting their percept of auditory “ba” + visual “ga”. Across trials, subjects reported

the “ba” percept for 57% of trials and “da” for 40% of trials. (H) Encoding the auditory “ga” + visual “ba” (AgaVba) incongruent non-

McGurk stimulus. The unisensory components are encoded with modality-specific noise; the auditory “ga” ellipse has its short axis

along the auditory axis, the visual “ba” ellipse has its short axis along the visual axis. (I) Across many trials, the integrated

representation (AV) is closer to “ga” along the auditory x-axis, but closer to “ba” along the visual y-axis. (J) Over many trials, the

integrated representation is found most often in the “da” region of perceptual space. (K) Across trials, the non-CIMS model predicts

“da” for the non-McGurk stimulus. (L) Behavioral data from 60 subjects reporting their perception of AgaVba. Subjects reported “ga” on

96% of trials.

doi:10.1371/journal.pcbi.1005229.g001
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SV, the model generates two vectors: the auditory representation XA � N ðSA;SAÞ and the

visual representation XV � N ðSV;SVÞ, where N ðm;SÞ is a normal distribution with mean μ
and variance S. Across many trials, the values of XA and XV will cluster around the exemplar

locations SA and SV with variance equal to the modality-specific encoding variances (Fig 1C,

where SA and SV are the set to the prototypical representations for “ba” and “ga”, respectively).

To form the C = 1 representation, the model assumes Bayesian inference (integration of

auditory and visual speech cues according to their reliabilities). We use the two-dimensional

analog of the common Bayesian cue-integration rules as described by [2]. On each trial, we calcu-

late the integrated representation as XAV ¼ SAVðS
� 1

A XA þ S� 1

V XVÞ, where SAV ¼ ðS
� 1

A þ S� 1

V Þ
� 1

.

Across many trials, the distribution of the C = 1 representations will be the weighted average of

the locations for SA and SV with the weighting controlled by the relative precision of the encod-

ing matrices (Fig 1D).

Without causal inference, the integrated representation, XAV, is the final representation.

Although the representational space is continuous, speech perception is categorical. Therefore,

to produce a categorical percept, we determine the syllable that is most likely to have generated

the integrated representation: PðXA;XV jSiÞ ¼ N 2ðXA;XV; mSi ;C¼1;SSi ;C¼1Þ, where N 2 is the two-

dimensional Gaussian density function, mSi ;C¼1 is the two-dimensional location of a particular

syllable category and SSi ;C¼1 ¼ Si þ SAV is the sum of the category’s variance-covariance

matrix and the variance of XAV. For simplicity, we have assumed that all syllables have equal

prior probability, all locations within the representational space have equal prior probability,

and that the category variance-covariance matrices are equal. The resulting linear decision

boundaries are shown in Fig 1E.

Across many trials, we can calculate the model responses for a given audiovisual stimulus.

The frequency of each percept across simulated trials is tallied (Fig 1F) and the percentage of

each percept is compared with behavioral data from human subjects (Fig 1G). All model simu-

lations were done in R [15], multivariate probabilities were calculated using the mvtnorm pack-

age [16, 17]. Model predictions were generated based on 10,000 samples from each audiovisual

syllable tested.

In the CIMS model, rather than assuming that C = 1, we take both the C = 1 and C = 2 rep-

resentations into consideration, weighting them by their likelihood. For C = 1, the representa-

tion is the same as for the non-CIMS model (Fig 2A). For C = 2, the representation is simply

the encoded representation of the auditory portion of the stimulus; this is reasonable because

most incongruent pairings of auditory and visual speech result in perception of the auditory

syllable [13]. Next, we calculate the log posterior ratio of C = 1 to C = 2:

d ¼ log
PðC ¼ 1jXA;XVÞ

PðC ¼ 2jXA;XVÞ
¼ log

PðXA;XV jC ¼ 1Þ

PðXA;XV jC ¼ 2Þ
þ log

PðC ¼ 1Þ

PðC ¼ 2Þ

The prior probability of a common cause, P(C = 1), is set to 0.50 (giving no prior bias

toward one or two causes), resulting in P(C = 2) = 0.50. We calculate P(XA,XV|C = 1) by look-

ing at each syllable, Si, individually. These probabilities are then combined, weighted by their

respective prior probabilities (assumed to be equal) to determine the overall conditional prob-

ability:

PðXA;XV jC ¼ 1Þ ¼
X

i

PðXA;XV jSiÞpSðSiÞ

Causal Inference in the McGurk Effect
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Fig 2. Modeling of multisensory speech perception with causal inference. (A) For the McGurk stimulus AbaVga, two causal

structures are considered. If auditory and visual speech emanate from a single talker (C = 1), the integrated representation is

calculated as in Fig 1D. If auditory and visual speech emanate from two talkers (C = 2) the representation is assumed to be the

auditory component of the stimulus (Fig 1C). (B) The likelihood of each causal structure is calculated using knowledge about the

natural statistics of audiovisual speech (red/blue color scale). Numbers (showing representation of an identical McGurk stimulus

on three trials) are centered over the white region, indicating similar probability of C = 1 vs. C = 2 (ellipse shows 95% probability

region across trials). (C) On each trial, a weighted average of the C = 1 (AV) and C = 2 (A) representations is calculated, using the

probabilities from B. This shifts the representation so that it is intermediate between the AV and A representations (compare

location of numbers with B). Red ellipse labelled CIMS shows 95% probability region across all trials. (D) A linear decision rule is

applied to categorize the representation (same number and red ellipse as C). The CIMS representation is found most often in the

“da” region of perceptual space, but sometimes lies in the “ba” region. (E) The model predicts “ba” for 51% of trials and “da” for

Causal Inference in the McGurk Effect
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We calculate P(XA,XV|C = 2) using a similar process for all possible incongruent syllable

combinations. Their locations in representational space are determined as

mSi;C¼2 ¼ SSi ;C¼2ðS
� 1

A0 XA þ S� 1

V0 XVÞ; with SSi;C¼2 ¼ ðS
� 1

A0 þ S� 1

V0 Þ
� 1

XA and XV are the locations for the unisensory components. The matrices SA0 and SV0 are the

original sensory noise matrices plus the variance of the syllable category that generated the

exemplar. The probabilities are then calculated using the two-dimensional Gaussian density:

N 2ðXA;XV; mSi ;C¼2;SSi ;C¼2Þ and weighted by their prior probabilities (assumed to be equal).

After the decision variable d is computed, we convert it into the probability of each causal

structure (shown for all positions in the representational space in Fig 2B):

P C ¼ 1jXA;XVð Þ ¼
1

1þ e� d
; P C ¼ 2jXA;XVð Þ ¼

1

1þ ed

The next step is to combine the C = 1 and C = 2 representations, weighted by their likeli-

hood (Fig 2C):

XCIMS ¼ PðC ¼ 1jXA;XVÞXAV þ PðC ¼ 2jXA;XVÞXA

This combination is done on a trial-by-trial basis, producing a non-linear combination of the

original noisily-encoded exemplars (XA and XV). Across many trials the distribution of encoded

exemplars is not multivariate Gaussian (an ellipse), but fitting a two-dimensional Gaussian to the

exemplars provides a useful visual approximation for their distribution, depicting how the causal

inference representations are intermediate between the C = 1 (AV) and C = 2 (A) representations

(Fig 2C). For each trial, this representation is categorized into a percept using the same linear

decision rule as for the model without causal inference (Fig 2D). The CIMS model responses

across trials are computed (Fig 2E) and compared with human behavioral data (Fig 2F).

Behavioral data

To test the predictions of each model, we collected syllable recognition data from 60 partici-

pants (18 female; mean age = 33) for 9 stimuli: all possible combinations of auditory and visual

“ba”, “da” and “ga” from a single talker. Participants were recruited using Amazon Mechanical

Turk, using an identical design and procedure as a previous study of McGurk perception [18].

Each stimulus was repeated 10 times in a randomized order. Participants reported their per-

cept of each audiovisual syllable by selecting from among: “ba”, “da/tha”, and “ga”. Perfor-

mance on congruent syllables was at or near ceiling for all subjects (mean accuracy = 97%;

range 87% to 100%).

Results

We constructed two similar computational models of audiovisual speech perception that dif-

fered only in whether they did (CIMS) or did not (non-CIMS) incorporate causal inference.

49% of trials. (F) Across trials, subjects reported the “ba” percept for 57% of trials and “da” for 40% of trials. (G) Causal inference

for the non-McGurk auditory “ga” + visual “ba” (AgaVba) stimulus. The C = 1 representation (AV ellipse from Fig 1I) and the C = 2

representation (A ellipse from Fig 1H) are calculated. (H) The AV representations have a higher likelihood of originating from C = 2

(AV ellipse centered over red region). (I) Across many trials, the CIMS representations (red ellipse labelled CIMS is the 95%

probability region) are shifted toward the C = 2 percept (A) away from the C = 1 representation (AV). (J) Over many trials, the CIMS

representation is found most often in the “ga” region of perceptual space (same red ellipse as I). (K) The CIMS model primarily

predicts “ga” (97%) for the non-McGurk AgaVba stimulus. (L) Behavioral data from 60 subjects reporting their perception of

auditory “ga” + visual “ba.” Across trials, subjects reported “ga” for 96% of trials.

doi:10.1371/journal.pcbi.1005229.g002

Causal Inference in the McGurk Effect

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005229 February 16, 2017 7 / 15



While the non-CIMS model assumes a common cause, the CIMS model estimates the likeli-

hood of common vs. separate causes for each trial (Fig 1A). We calculated the predictions of

the models for two types of incongruent speech, McGurk syllables and non-McGurk syllables,

and compared the predictions with behavioral data collected from human subjects.

First, we examine the non-CIMS model. A McGurk stimulus consisting of an auditory “ba”

and visual “ga” is represented in the model by a two-dimensional representational space in

which the x-axis represents visual information and the y-axis represents auditory information

(Fig 1B). The model assumes that the auditory “ba” and visual “ga” emanate from a single talker

(C = 1) and integrates the unisensory cues according to Bayesian principles, with each cue

weighted by its reliability. This results in an integrated audiovisual representation that is closer

to “ba” along the auditory axis and closer to “ga” along the visual axis (Fig 1D). After applying a

linear categorization rule, the multisensory percept lies in the “da” region of perceptual space

(Fig 1E). Across multiple trials, identical physical stimuli are encoded differently because of sen-

sory noise, resulting in a distribution of representations. Because speech is categorical, this vari-

ability can still lead to identical percepts; in this case, the model predicts a percept of “da” on

>99% of trials and “ba” or “ga” on<1% of trials (Fig 1F). Comparing this result to behavioral

data collected from 60 human subjects (Fig 1G) shows a poor correspondence. Subjects

reported the “da” percept on only 40% of trials, and the “ba” percept on 57% of trials.

The non-CIMS model’s correspondence with human perception was even worse for a non-

McGurk syllable consisting of an auditory “ga” and visual “ba” (Fig 1K and 1L). This stimulus

is the reverse of the McGurk syllable (auditory “ba” and visual “ga”) so that when the two uni-

sensory cues were integrated according to Bayesian principles, the audiovisual representation

was placed in a different region of perceptual space than the McGurk syllable (Fig 1I). How-

ever, applying the linear categorization rule meant that the model still classified the percept as

“da” (Fig 1J) on>99% of trials (Fig 1K). This prediction was inaccurate, as human subjects

reported “da” on 2% of trials, instead reporting “ga” on 96% of trials (Fig 1L).

Next, we examined the predictions of the CIMS model. The noisy encoding, Bayesian inte-

gration, and categorization modules were identical to the non-CIMS model, but an additional

step of causal inference was performed. For any given speech stimulus, the true causal struc-

ture is unknown, meaning that the optimal strategy is to estimate the C = 1 and C = 2 represen-

tations (Fig 2A) and combine them, weighted by their probabilities.

For a McGurk stimulus, the audiovisual representation lies in a region in which C = 1 and

C = 2 are equally likely (Fig 2B). This results in a CIMS representation located between the

C = 1 (audiovisual, “da”) and C = 2 representations (auditory, “ba”) (Fig 2C). Applying the cat-

egorization rule to the representations generated across many trials (Fig 2D), the CIMS model

predicts a mixture of “ba” percepts (51%) and “da” percepts (49%; Fig 2E). This prediction is a

good match to the behavioral data (57% “ba”, 40% “ba”; Fig 2F).

For a non-McGurk stimulus (Fig 2G), the audiovisual representation is much more likely

to be obtained from the C = 2 than the C = 1 distribution (Fig 2H). Therefore, the output of

the causal inference step is much more strongly weighted towards the C = 2 representation

(auditory, “ga”) than the C = 1 representation (audiovisual, “da”) (Fig 2I). Applying the catego-

rization rule to the causal inference representations generated across many trials (Fig 2J), the

model predicts predominantly “ga” percepts (97%; Fig 2K) as was observed in the behavioral

data (96% “ga”; Fig 2L).

Testing with other syllable combinations

To assess generalizability, we also tested both CIMS and non-CIMS models with other audio-

visual syllables (Fig 3). For congruent syllables (AbaVba, AdaVda, AgaVga) human subjects

Causal Inference in the McGurk Effect
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show little variability, always reporting the syllable that is present in both modalities (Fig 3A).

Both the non-CIMS (Fig 3B) and CIMS (Fig 3C) models predict this behavior with excellent

fidelity (correlation between behavior and model prediction r� 1 for both). However, differ-

ences between the predictions of the two models appear when they are tested with incongruent

audiovisual syllables, with only the CIMS model able to accurately predict human perception.

Across six different incongruent syllables, the CIMS model showed a significantly stronger

correlation with human perception (correlation between behavioral and model: CIMS r = 0.95

vs. non-CIMS r = 0.21, z = 4.3, p = 10−5 from Fisher r-to-z transformation.)

Fig 3. Generalizability of models tested with other audiovisual syllables. (A) Behavior for congruent

syllables. Each row represents a different congruent audiovisual syllable (AbaVba, AdaVda, AgaVga). Subjects

made a three-alternative forced choice (ba, ga, da). The colors within each row show how often subjects reported

each choice when presented with each syllable (e.g. for AbaVba, they always reported “ba”). (B) Non-CIMS model

predictions for congruent syllables. Rows show syllables, colors across columns within each row show how often

model predicted that percept (darker colors indicate higher percentages). (C) CIMS model predictions for

congruent syllables. (D) Behavior for incongruent syllables. Each row represents a different incongruent

audiovisual syllable. Subjects made a three-alternative forced choice (ba, ga, da). The colors within each row

show how often subjects reported each choice when presented with each syllable (e.g. for AbaVda, they more

often reported “ba”, less often reported “da”, never reported “ga”). (E) Non-CIMS model predictions for incongruent

syllables. Rows show syllables, colors across columns within each row show how often model predicted that

percept (darker colors indicate higher percentages). (F) CIMS model predictions for incongruent syllables.

doi:10.1371/journal.pcbi.1005229.g003
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Discussion

These results are important because speech is the most important form of human communica-

tion and is fundamentally multisensory, making use of both visual information from the talk-

er’s face and the auditory information from the talker’s voice. In everyday situations we are

frequently confronted with multiple talkers emitting auditory and visual speech cues, and the

brain must decide whether or not to integrate a particular combination of voice and face. The

best known laboratory example of this situation is the McGurk effect, in which an incongruent

auditory “ba” and visual “ga” are fused to result in the percept “da”. This simple yet powerful

illusion has been used in thousands of studies, ranging from developmental to clinical, to inter-

cultural. However, there has been no clear theoretical understanding of why the McGurk effect

occurs for some incongruent syllables (e.g. AbaVga) but not others (e.g. AgaVba). Some pro-

cess must be operating that distinguishes between incongruent audiovisual speech that should
and should not be integrated. A quantitative framework for this process is provided by causal

inference.

We constructed two similar computational models of audiovisual speech perception. The

CIMS and non-CIMS models, although identical in every respect except for the inclusion of

causal inference, generated very different predictions about the perception of incongruent syl-

lables. When tested with McGurk and inverse-McGurk incongruent syllables, the non-CIMS

model predicted exclusively “da” responses. This was an inaccurate description of the percep-

tual reports of human subjects, who reported distinct percepts for the two types (mixture of

“da” and “ba” for McGurk syllables vs. exclusively “ga” for inverse-McGurk syllables). In con-

trast, the CIMS model successfully reproduced this pattern of perceptual reports. In a test of

generalizability, the CIMS model also was able to better predict perception than the non-CIMS

model for six other incongruent audiovisual syllables.

The comparison between CIMS and non-CIMS models was fair because (except for causal

inference) they were identical across all model steps, including the layout of the representa-

tional space, the amount of encoding noise, the rule used to integrate auditory and visual cues,

and the rule used to categorize the final representations. We did not explicitly optimize the

model parameters to the behavioral data for either model, simply choosing the values heuristi-

cally or setting them at plausible defaults (e.g., flat priors). Thus, any difference in performance

between the CIMS and non-CIMS models is attributable to causal inference, not to over-fitting

(the CIMS model has only one extra free parameter). There is no way for the non-CIMS

model to accurately predict behavior for both McGurk and inverse McGurk stimuli without

imposing arbitrary rules about integration, which is, after all, the rationale for considering

causal inference in the first place.

Similarly, the precise stimuli and subjects used to generate the behavioral data was also not

a key factor in the better performance of the CIMS model. Although there is variability in the

frequency with which different subjects report the illusory McGurk percept and the efficacy of

different stimuli in evoking it [18, 19], we are not aware of any reports of the inverse McGurk

stimuli evoking an illusory percept, as predicted by the non-CIMS model. Without a way to

predict integration for some combination and segregation for others, the non-CIMS model

simply cannot replicate the observed pattern of human syllable recognition.

Model predictions

A key reason for creating models of cognitive processes is to generate testable predictions. The

CIMS model successfully predicted perception for arbitrary combinations of three auditory

and visual syllables (“ba”, “da”, and “ga”). By extending the representational space to consider
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other factors (e.g., voice onset time) the CIMS model could predict perception for any combi-

nation of auditory and visual syllables.

The CIMS model is also extensible to other cues that provides information about the causal

structure of the stimulus. For the incongruent speech considered in the present paper, the

main cue for causal inference is the content of the auditory and visual speech. However, there

are other useful cues that can be used to estimate whether auditory and visual speech emanate

from the same talker, especially the temporal disparity between auditory and visual speech

[20–23]. As the delay between auditory and visual speech is increased, observers are more

likely to judge that they emanate from different talkers [24]. Causal inference predicts that

observers should be less likely to integrate incongruent auditory and visual speech at high tem-

poral disparity than at low disparity, and this is indeed the case: the McGurk percept of “da”

for AbaVga stimuli is reported less frequently as temporal disparity increases [25–27]. This

phenomenon could be incorporated into the CIMS model by adding an additional dimension

to the common-cause computation, allowing for independent estimates of P(C = 1) for any

given speech content disparity or temporal disparity. A similar extension would be possible for

the different syllable exemplars of the same syllable combination generated from different talk-

ers. One talker’s “ga” might provide more or less visual speech information than another talk-

er’s, driving P(C = 1) and the frequency of the McGurk effect higher or lower. Some evidence

for this idea is supported by data showing that detection of audiovisual incongruence is corre-

lated with McGurk perception [28].

A key direction for future research will also be a better understanding of the neural mecha-

nisms underlying causal inference in speech perception. The CIMS model predicts that the

ultimate percept of multisensory speech results from a combination of the C = 1 (AV) and

C = 2 (A) representations. This requires that the brain must contain distinct neural signatures

of both C = 1 and C = 2 representations. In an audiovisual localization task, there is fMRI evi-

dence for C = 2 representations in early sensory cortex and a C = 1 representation in the intra-

parietal sulcus [29]. For multisensory speech, the C = 1 (AV) representation is most likely

represented in the superior temporal sulcus (STS) because interrupting activity in the STS

interferes with perception of the McGurk effect [30] and the amplitude of STS activity mea-

sured with fMRI predicts McGurk perception in adults [31] and children [32].

Relationship with other models

McGurk and MacDonald offered a descriptive word model of the illusion, stating that for

AbaVga “there is visual information for [ga] and [da] and auditory information with features

common to [da] and [ba]. By responding to the common information in both modalities, a

subject would arrive at the unifying percept [da].” [4]. The CIMS model differs from this word

model in several fundamental respects. Unlike the word model, the CIMS model is both quan-

titative, allowing for precise numerical predictions about behavior, and probabilistic, allowing

percepts to vary from trial-to-trial of the identical stimuli as well as across different stimuli and

observers. This allows it to more accurately describe actual human perception. For instance,

the word model predicts that every AbaVga stimulus will be perceived as “da” while behavioral

data show a wide range in efficacy for different AbaVga stimuli [18, 19].

The fuzzy logical model of perception (FLMP) as developed by Massaro [7, 33] was an

important advance because it was one of the first probabilistic models, allowing successive pre-

sentations of identical stimuli to produce different percepts. However, because the FLMP does

not explicitly model the processes underlying perception, it has no way to separate stimulus

variability (the location in representational space for CIMS) and sensory noise (the ellipse

describing the distribution of encoded representations for CIMS).
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Another important model of the McGurk effect uses predictive coding [8]. While the repre-

sentational space in this model is somewhat similar to that of the CIMS model, the predictive

coding model is a multi-level network model that allows for dynamic prediction of perception

as evidence from different sensory modalities arrives asynchronously. However, because it

does not incorporate sensory noise it cannot account for trial-to-trial differences in perception

of identical stimuli.

The noisy encoding of disparity (NED) model used three parameters to account for trial-

to-trial differences in perception [6]. However, the NED model predicts only one of two pre-

specified percepts resulting from either the presence or absence of integration. The CIMS

model is a significant advance over the NED model because it allows for a continuous variation

along the axis from complete integration to complete segregation, and can thus produce the

percept of any stimulus within the representational space.

Other variables impacting causal inference

The role of causal inference in multisensory speech has been previously considered within the

context of a synchrony judgment task [24]. Although this model is a Bayesian causal inference

model, it has only superficial similarity to the current model. The earlier model focused on

how an observer could use causal inference to decide if two signals produced at distinct points

in time were generated from the same talker. The input to the model was thus a fixed asyn-

chrony and the output a binary judgment of synchronous vs. asynchronous. In contrast, the

current model does not consider the temporal relationship between the auditory and visual

syllables, but rather is concerned only with their content and outputs a perceived syllable. In

principle a more complicated that considers content and temporal disparity jointly.

Previous research has shown that not all kinds of disparity are used to determine how much

to integrate auditory and visual speech streams. Previous researchers have created McGurk sti-

muli in which the auditory sounds and visual faces were from talkers with different genders

[34]. Even though participants were able to identify this discrepancy, the McGurk effect was

not diminished compared to stimuli with talkers from the same gender. This study highlights

the important distinction between the perceived speech, and the judgment of a common cause

per se.

There are at least two ways to square the idea that causal inference is important for integra-

tion but ignores information that would seemingly inform the calculation. First, even when

the probability of a common cause is low, some weight is still given to the multisensory repre-

sentation and thus a “da” percept is still possible. For instance, on a given trial where the prob-

ability of a common cause is 0.4, the optimal report from the participant is that there are 2

talkers. However, the final representation will still be given a substantial weight and thus the

percept could be driven to a fusion response, rather than an auditory report. Second, there

may be other, stronger indicators of a common cause that can override a noted discrepancy in

a particular feature. For instance, the temporal simultaneity and the spatial compatibility of the

auditory and visual tokens may together make the C = 1 scenario plausible, despite an apparent

mismatch between the perceived gender of the auditory and visual speech. Well-studied phe-

nomenon like the ventriloquist illusion [10, 35, 36] provide strong evidence that temporal cues

elicit strong control of integration despite spatial disparity that would otherwise indicate sepa-

rate talkers. These options are not mutually exclusive. A study of how temporal synchrony

affect McGurk perception suggest both explanations may be at play. In one study, researchers

measured perception of synchrony and perceived speech using both congruent and McGurk

stimuli [27]. Reported synchrony was lower for McGurk stimuli than for congruent stimuli,

consistent with the use of a combined disparity measure. In a separate study, the McGurk
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effect was perceived at asynchronies these same subjects judge to be asynchronous, and osten-

sibly not uttered by the same talker [25]. Taken together, these studies show that the general

framework of causal inference can be fruitfully explored, and that a major issue for future stud-

ies is to determine the relative weighting of stimulus features in estimating the likelihood of a

common cause.

Generalized causal inference

The CIMS model is a simplification of a full Bayes-optimal causal inference model. For

instance, the CIMS calculation of the final percept ignores differences in the prior for different

locations within the representational space and the CIMS estimates of the likelihood of each

causal structure are calculated using only integrated location (AV) rather than the joint distri-

bution of the individual cues (A and V).

While our results suggest that causal inference is a key step in audiovisual speech percep-

tion, there are many possible solutions to the general problem of causal inference [37]. The

CIMS model solves the problem by combining the C = 1 and C = 2 representations according

to their probability (sometimes known as a “weighted average” or “model averaging”

approach). A second option is to select the percept that is most likely on each single trial (“win-

ner-take-all” or “model selection”). A third option is to distribute choices between C = 1 and

C = 2 based on their probability (“probability matching”). The categorical nature of speech

perception means that a very large stimulus set (much larger than that used in the present

study) would be needed to determine which solution or solutions is used for audiovisual

speech perception by human subjects. Here, we focused on model averaging because it was

shown to be successful in previous studies of audiovisual perception in human subjects [10,

24].
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