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Abstract: Nanopore technology for DNA sequencing is constantly being refined and 

improved. In strand sequencing a single strand of DNA is fed through a nanopore and 

subsequent fluctuations in the current are measured. A major hurdle is that the DNA is 

translocated through the pore at a rate that is too fast for the current measurement systems. 

An alternative approach is “exonuclease sequencing”, in which an exonuclease is attached 

to the nanopore that is able to process the strand, cleaving off one base at a time. The bases 

then flow through the nanopore and the current is measured. This method has the 

advantage of potentially solving the translocation rate problem, as the speed is controlled 

by the exonuclease. Here we consider the practical details of exonuclease attachment to the 

protein alpha hemolysin. We employ molecular dynamics simulations to determine the 

ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate 

nucleotides upon release from the exonuclease such that they will enter the protein.  

Our results indicate an almost linear decrease in the probability of entry into the protein 

with increasing distance of nucleotide release. The nucleotide orientation is less significant 

for entry into the protein. 
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1. Introduction 

DNA sequencing using nanopores is a method that allows for direct analysis of genomic DNA [1–8]. 

Benefits of nanopore-based sequencing include detection of epigenetic markers [9,10], which is not 

possible using chemical methods as well as reducing costs compared to more traditional methods.  

The early promise has been realized by Oxford Nanopore Technologies in 2011–2012, however, the 

initial devices continue to be upgraded and improved to push the boundaries of what this technology  

can achieve. 

The pore forming toxin, alpha-hemolysin (αHL) from S. aureus [11] is perhaps the best studied 

example of a proteinaceous nanopore for DNA sequencing [12]. This protein has two domains, the 

vestibule or cap domain and the transmembrane pore domain (Figure 1) [11]. While αHL is a robust 

protein that is resistant to changes in pH and temperature over practical ranges, issues related to the 

high voltage thresholds required for DNA translocation render wild type αHL unsuitable for 

incorporation into a sequencing device. However, engineered mutants have shown considerable 

success for DNA sequencing, although they too are continuously being improved for more efficient 

DNA sequencing. For example, methods to improve the accuracy of the device by decreasing the rate 

of translocation of ssDNA [2,13] through the protein pores are being investigated. It has been proposed 

that incorporation of an exonuclease enzyme, which would split the ssDNA into individual 

mononucleotides before they enter the nanopore, may be an efficient way to reduce the translocation 

rate [10,14]. Selection of an exonuclease enzyme for incorporation into an alpha-hemolysin based 

sequencing device is dependent upon practical considerations such as temperature and pH dependence, 

size and conformational flexibility of the enzyme. Furthermore it is imperative that the enzyme is 

positioned relative to the αHL such that there is a practical level of confidence mononucleotides 

exiting the enzyme will enter the αHL and not simply diffuse away in solution. This information is 

vital for the practical design and construction of the chimera protein. 

Molecular dynamics simulations provide a route to study the translocation of biological molecules 

through nanoscale pores at levels of detail that are difficult to achieve with experimental methods  

alone [15–19]. Here we employ atomistic molecular dynamics simulations to characterize the “nucleotide 

capture area” of the wildtype alpha-hemolysin protein. Capture of the cytosine monophosphate (CMP), 

was investigated by embedding alpha-hemolysin in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC) bilayer and solvating in 1 M NaCl, resulting in a simulation system composed of  

273,000 atoms. Only one of the four mononucleotides was simulated due to the similarity in their 

masses with respect to the protein. The distance of CMP from the protein was varied. Specifically, 

CMP was positioned above the protein on the vestibule side such that it was located centrally, above 

the entrance to the protein (where central is defined here as the average co-ordinates of the C-alpha 

atoms of K8 residues which are in the vestibule domain of the protein) as shown in Figure 1. 

Simulations were performed with the nucleotide initially positioned at 10, 15, 20, 30 and 40 angstroms 

above the ring of K8 residues, along the principal axis of the protein. Additional systems were set up in 

which, at a distance of 30 angstroms from the K8 residues, the nucleotides were displaced in the plane 

parallel to the membrane, by 5, 10, 15 and 20 angstroms. Two sets of simulations were performed for 

each location of CMP, in which the CMP was orientated with either the phosphate moiety furthest or 

closest to the vestibule entrance, which we define as phosphate “up” or “down” orientations 
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respectively, shown in the inset of Figure 1. For each location, 20 independent simulations of 5 ns 

duration were performed at 310 K, with an applied electric field of magnitude 0.1 V·nm−1 equivalent to 

approximately 350 mV across the membrane. Simulations were performed using the GROMACS [20] 

software package, version 4.5.5 [20,21] with the GROMOS53a6 [22] forcefield and the SPC model of 

water [23]. Further details of the methodology are provided in the Experimental Section. 

 

Figure 1. The alpha-hemolysin (αHL) protein in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC) bilayer, with the mononucleotide positioned above the vestibule entrance, where 

each mononucleotide represents an individual simulation. The protein is represented by 

yellow ribbons and for other atoms: Carbon is shown in cyan, oxygen in red, nitrogen in 

blue, phosphorus in brown and hydrogen in white. The waters and ions are excluded for 

clarity. (Inset) The phosphate orientations used, termed the “up” and “down” orientations, 

shown top and bottom respectively. 

2. Results and Discussion 

For the purposes of clarity when reporting our results, we use two terms for the behaviour of the 

nucleotide with respect to the protein: “capture” and “possible capture”. These are defined as follows: 

When the entire CMP is below the ring of C-alpha atoms of N17, it is regarded as captured as over all 

simulations we observed no examples of exit from the vestibule entrance once interacting with the 

protein below this region. In contrast, if the CMP is entirely above this ring, it is deemed not captured. 

The final alternative is when simultaneously parts of the CMP are above and below the N17 ring, 

which we refer to as possible capture, as it was observed that CMP in this region, which we describe as 

the “edge” of the vestibule entrance, is capable of either entering the vestibule or diffusing into solution. 

As the distance from which the mononucleotide is released from the protein is increased, the 

probability of entry into the vestibule decreases almost linearly, this reduction in the likelihood of 

entry occurs at approximately the same rate regardless of phosphate orientation (Figure 2). The 

probability of capture is higher with the phosphate in the down orientation, by an average of 10%. The 

phosphate orientation has negligible impact on the probability of “possible capture”. 
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As the CMP is displaced away from the centre of the vestibule entrance at a distance of  

30 angstroms, in general, the probability of entry decreases, however we note that there is an increased 

probability of entry with translation of 0.5 nm (Figure 2). We theorize that this is due to the CMP now 

being released above the edge of the vestibule entrance instead of above the centre; therefore, less 

lateral diffusion is required to interact with the protein. Here we note a higher correlation between the 

phosphate orientation and entry, with the phosphate down orientation demonstrating an average of 

15% higher entry probability. The minimum probability of entry is generally higher by 10% with the 

CMP in the down orientation, and the rate of decrease in the capture probability as the translation away 

from the centre of the vestibule entrance increases, is lower than observed for the up orientation. 

 

Figure 2. Plots showing the relaionship between release loction and probability of capture. 

The highest possible probability of entry for (a) the distance study and (b) the 

displacement study, e.g., these are the simulations where either capture or possible capture 

is observed. The lowest possible probability of entry for (c) the distance study and (d) the 

displacement study, e.g., these are the simulations where capture is observed. The black 

lines are for the phosphate up orientation and the red lines are the phosphate down 

orientation. Error bars were calculated by using the standard error, treating the data as a 

binomial distribution. 

We also note that unlike OccD1 [17] or OprP [24] the orientation of the molecule, beyond release, 

does not have a noticeable impact on entry into the vestibule entrance or the translocation process, as 
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the protein freely interacts with the various moieties on the substrate, e.g., the nucleobase, the hydroxyl 

group on the sugar and the phosphate group. 

An in-house script was used with the graphics software Visual Molecular Dynamics (VMD) [25] to 

calculate the frequency and duration of Van der Waals contacts between protein residues and CMP. 

For simulations in which entry to the vestibule was observed, the CMP had extended interactions (an 

average of more than 5% over all simulations) with: D2, S3, K8, T9, D13 and N293 residues, which 

are located predominately in the vestibule. Whilst for simulations in which possible entry was 

observed, interactions were noted with residues A1, N6, K8, T9, G10, T11, D13, G15, S16, D17, T18, 

T19, V20, D45, K46 and N47, these residues predominately lie on the edge of the entrance to the 

protein. For those simulations where entry to the vestibule was not observed we noticed the majority 

simply didn’t interact with the protein at all, or when they did, it was with residues K8, I16, N17, T18, 

K46 and D47. This data and the location of these residues is summarized in Figure 3. Based on these 

observations we propose that the D45, K46 and N47 residues reduce the probability of entry to the 

vestibule via alternative favourable interactions with CMP outside the vestibule, on the surface of the 

cap region. The protein–nucleobase interactions that dominate here are largely hydrogen bonding of 

the amino acid side chains to the base and the sugar hydroxyl groups. The phosphate moiety is 

typically excluded from these interactions with the only exception being transient interactions with the 

side chain of K46 (for durations of less than 100 ps). An example interaction between CMP and the  

3 residues is shown inset in Figure 3. 

(a) (b) 

Figure 3. The residues with the highest propensity to interact with the nucleotide for: 

failed capture (a) and possible capture (b). The blue highlighted residues corresponding to 

failed capture are on the edge of the vestibule entrance and on the surface of the vestibule. 

The red highlighted residues associated with possible capture are predominantly on the 

edge of the entrance to the vestibule. (Inset) The most frequently observed binding mode 

between cytosine monophosphate (CMP) and the amino acid triplet, D45, K46 and N47. 

Hydrogen bonds (dashed lines) are observed between the hydroxyl group of the sugar and 

the side-chain of D45, as well as the nucleobase and the side-chain of N47. These 

hydrogen bonds are stable and are present for extended periods of time (greater than 1 ns). 

Residues are coloured for clarity; D45 in red K46 in blue, and N47 in yellow. 

K46 
CMP 

N47 

D45 
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Over the 360 simulations performed, translocation through the entire alpha-hemolysin protein was 

observed in only two simulations, as the remainder of captured CMP substrates found various binding 

sites in the vestibule or beta barrel. Figure 4 provides a schematic summary of the probability of entry 

into the vestibule as a function of distance of release. 

(a) (b) 

Figure 4. The probabilities of entry for given release points relative to the ring of K8 

residues for (a) the phosphate down orientation and (b) the phosphate up orientation. 

Simulations performed with the phosphate in the down orientation are closer than the 

corresponding phosphate up simulations for the same capture probability. 

Sum Effects to CMP Entry into the Vestibule 

Root mean squares linear regression was used to calculate the equations of the lines for the 

relationship between distance away from the vestibule (variable labelled “height” in equations) and 

probability of entry into the vestibule, shown below in Equation (1), phosphate up and Equation (2), 

phosphate down. It was observed that with the nucleotide at the position of K8, or zero distance, the 

probability of capture is 72% to 93%, demonstrating that nucleotides can diffuse rapidly under the 

conditions used, failing to remain captured even when released below residue N17. Probability	of	possible capture = 72%− (16.5% nm heightିଵ	) (1)ܲݕݐ݈ܾܾ݅݅ܽݎ	݂	݈ܾ݁݅ݏݏ ݁ݎݑݐܽܿ = 93%− (20.5% nm heightିଵ	) (2)

The data from the simulations in which the CMP had been translated in the xy plane, had the effect 

of distance removed by setting the probability at zero translation equal to the predicted probability 

from the previous equations. From this data an equation was calculated using the previous method, 

which provides the total effect of nucleotide release location on the probability of entry into the 

vestibule, see Equations (3), phosphate up, and (4), phosphate down, below. Probability	of	possible	capture= 72%− (16.5% nmିଵ height) − (2.3% nm translatedିଵ) (3)

20% at 35.6 Å

40% at 25.9 Å

60% at 16.1 Å

80% at 6.3 Å 
K8

20% at 31.5 Å
 
40% at 15.5 Å
 
60% at 7.2 Å 
 

K8 



Nanomaterials 2015, 5 150 

 

 

Probability	of	possible	capture= 93%− (20.5% nmିଵ height) − (6.2% nm translatedିଵ) (4)

3. Experimental Section 

Energy minimization was carried out by the method of steepest descents for either 2000 steps or a 

force of 1000 kJ·mol−1. Equilibration was using the canonical (NVT) ensemble for 1 ns, and NPT for  

1 ns, using the Berendsen thermostat and barostat [26] prior to electric field equilibration for 1 ns and a 

field strength of 0.1 V·nm−1. The electric field equilibration and production molecular dynamics (MD) 

runs were run using the V-rescale thermostat [27] and the Parrinello-Rahman barostat [28]. All 

simulations were run at 310 K and 1 Bar. 

The trajectories were visually analyzed using VMD to determine if the mononucleotide had drifted 

into the bulk water. A script was then used to compare of co-ordinates of the CMP to the c-alphas of 

N17, with successful capture defined as all atoms below this ring, possible capture as some above, 

some below and failed capture as all atoms above. The visualization step was required to prevent 

simulations where the nucleotide was below N17 but outside the pore being counted. 

4. Conclusions 

In conclusion, our simulations predict that optimisation of alpha-hemolysin for nanopore 

sequencing, which incorporates an exonuclease enzyme for cleaving nucleotides from a strand of 

DNA, must consider the protein-exonuclease distance of nucleotide release. We show that for 

successful capture of the nucleotide by the protein, the point of nucleotide release above the protein is 

more important than the lateral displacement of the nucleotide with respect to the dimensions of the 

entrance to the protein. In other words it is more important to release the nucleotide closer to the mouth 

of the vestibule, than it is to ensure that it is released directly above the centre of the mouth. 

Furthermore, our simulations reveal that the orientation of the nucleotide is also only likely to have 

negligible impact on the probability of entry into the protein. 

Closer inspection of the wildtype alpha hemolysin revealed that residues D45, K46 and N47 play a 

role in interacting with CMP in instances of failed capture, therefore we recommend mutational studies 

to optimise this region. Of course, it must be noted that due to the number of simulations appropriate 

for this study, we have been unable to vary the effects of forces on the nucleotides due to the  

electro-osmotic flow of ions through the pore such as have been described in [29]. For a fuller picture 

of nucleotide dynamics in and around nanopores, in future work we plan longer simulations to include 

these effects and also to study all four nucleotides. 
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