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ABSTRACT: We present a second-order N-electron valence
state perturbation theory (NEVPT2) based on a density matrix
renormalization group (DMRG) reference wave function that
exploits a Cholesky decomposition of the two-electron
repulsion integrals (CD-DMRG-NEVPT2). With a parameter-
free multireference perturbation theory approach at hand, the
latter allows us to efficiently describe static and dynamic
correlation in large molecular systems. We demonstrate the
applicability of CD-DMRG-NEVPT2 for spin-state energetics
of spin-crossover complexes involving calculations with more
than 1000 atomic basis functions. We first assess, in a study of a
heme model, the accuracy of the strongly and partially
contracted variant of CD-DMRG-NEVPT2 before embarking
on resolving a controversy about the spin ground state of a
cobalt tropocoronand complex.

1. INTRODUCTION

An electronic structure that is governed by strong electron
correlation effects is a commonly encountered phenomenon in
molecules that are, for example, (i) in a nonequilibrium
structure, (ii) in an electronically excited state, and/or (iii)
contain transition metal center(s). Multiconfigurational meth-
ods, which have been very successful in describing strongly
correlated systems,1,2 typically feature a separation of the
electron correlation into a static and a dynamic contribution.3−5

Static correlation is often described by a complete active space
self-consistent field (CASSCF) ansatz,6,7 which requires a
careful selection of a limited number of (partially occupied)
active orbitals that may be automated.8,9 As the computational
cost for CASSCF scales exponentially with the number of active
orbitals, CASSCF calculations (on traditional computer
architectures) are limited to about 18 electrons in 18 orbitals.10

In contrast, the density matrix renormalization group11−13

(DMRG) approach in quantum chemistry14−23 in combination
with a self-consistent-field orbital optimization ansatz (DMRG-
SCF) is capable of approximating CASSCF wave functions to
arbitrary accuracy with a polynomial rather than an exponential
scaling. DMRG-SCF therefore provides access to much larger
active orbital spaces than those that are in reach for standard
CASSCF.
For a quantitative description of electron correlation, a

subsequent step must account also for dynamic correlation. In
this context, multireference perturbation theories such as the
second-order complete active space perturbation theory
(CASPT2)24,25 or N-electron valence state perturbation theory

(NEVPT2)26 have been successfully employed to obtain
energies, properties, and approximate wave functions for a
variety of strongly correlated systems.2,27−29

Both CASPT224 and NEVPT230 require the evaluation of
higher-order reduced density matrices (RDMs) in the active
space. The salient properties of NEVPT2 (see below) require
the four-body RDM, which scales as L8 where L is the number
of active orbitals. This L8 scaling, although subexponential, still
puts a constraint on the active orbital space size tractable by
multireference perturbation theory, in particular in combination
with a DMRG reference wave function. Therefore, in addition
to straightforward implementations such as DMRG-CASPT231

or strongly contracted (SC)-DMRG-NEVPT2,32,33 several
approaches have been proposed to tackle the scaling problem
of the higher-order RDMs. The CASPT2 implementation of
Kurashige et al.34 and the NEVPT2 implementation of Zgid et
al.35 employ cumulant-type expansions to approximate the
three- and four-body RDMs which, however, may entail N-
representability problems of the approximated higher-order
RDMs and/or lead to numerical instabilities in the perturbation
summations. Very promising alternative formulations such as
matrix product state perturbation theory (MPS-PT),36,37 a
time-dependent formulation,38 or the projected approximation
to SC-NEVPT239 avoid the construction of higher-order RDMs
altogether. Besides multireference perturbation theory, DMRG-
SCF has been successfully combined with other methods such
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as multireference configuration interaction (MRCI),40 canon-
ical transformation theory,41−43 coupled cluster (CC) theory,44

and short-range density functional theory45 to describe dynamic
correlation.
In this work, we present a full-fledged NEVPT2 for a DMRG

reference function that exploits density fitting for the two-
electron integrals in order to make large molecules more
accessible to this methodology. We apply our implementation
to a prototypical problem in transition metal chemistry, namely,
the spin-state energetics problem.46 In computational transition
metal and bioinorganic chemistry, gaining insight into the
electronic structure, spin-state energetics and reactivity of
(polynuclear) transition metal complexes with extensive ligands
are key components for the understanding of the chemistry of
metalloproteins.47 Albeit being in many cases unreliable and/or
heavily dependent on the choice of the density functional,
density functional theory (DFT) is the standard approach to
study such systems,48,49 mainly because of its affordable
computational cost. Thermal spin crossover (SCO) complexes
constitute prime examples for the difficulty of DFT with
present-day functionals. On the one hand, this may be due to
static correlation abundant in many transition metal systems50

which none of the currently available standard density
functionals can describe properly. On the other hand, the
prediction of the correct ground state in SCO complexes is
often a matter of a few kJ/mol, an accuracy which DFT does
not always offer.51 To this end, multiconfigurational studies on
SCO complexes have become increasingly popular.52

In the quest for making multiconfigurational methods
capable of treating larger molecular systems of arbitrary
complexity (and therefore establishing them as a part of the
standard toolbox in theoretical transition metal and bio-
inorganic chemistry), providing access to larger active orbital
spaces only partly solves the problem as the convergence of the
results can be slow with respect to the size of the atomic basis
set. For large atomic basis sets, the transformation of the two-
electron repulsion integrals from an atomic orbital (AO) to a
molecular orbital (MO) basis required for the subsequent
perturbation theory step will become a (second) bottleneck. In
this context, a promising ansatz has been recently proposed by
Neese and co-workers,53 who have developed a domain-based
pair local natural orbital NEVPT2 (DLPNO-NEVPT2)
formulation. Very recently, Evangelista and co-workers54,55

put forward a novel second-order multireference perturbation
theory based on the driven similarity renormalization group
which exploits factorized two-electron integrals to enable an on-
the-fly generation of the two-electron repulsion integrals in the
MO basis while avoiding any explicit storage of the latter.
In this work, we will take advantage of a Cholesky

decomposition (CD) of the two-electron integral matrix.56,57

Although the idea of CD for two-electron integrals dates back
to 1977,56 the approach has been only recently fully explored
and elaborated by Aquilante et al.58 They also implemented CD
for traditional multiconfigurational electronic structure meth-
ods such as CASSCF59,60 and CASPT2.2,61,62 While these
developments have significantly spurred various applications of
CASPT2 in theoretical inorganic and bioinorganic chemistry,2

CASPT2 in its most successful formulation contains a
parameter (the so-called IPEA shift) with a default value of
0.25 au introduced by Ghigo et al.63 to match a set of
experimental dissociation energies of main group diatomics.
The default value of the IPEA shift has sparked a controversy
among researchers employing CASPT2 for problems other

than dissociation energies, such as excited states,64 magnetic
coupling constants, and spin-state energetics of SCO
complexes65−68 which still remains unsettled. Moreover,
CASPT2 shows in some cases unstable results due to the so-
called “intruder-state problem” due to the appearance of very
small denominators in the perturbation expansion. This
problem has been counteracted with a level-shift technique,69,70

but the final CASPT2 energies depend on the value of the level
shift. In contrast, NEVPT2, which is parameter-free and has the
noteworthy property of avoiding the intruder state problem
(owing to the sophistication of its zero order Hamiltonian), not
only avoids any IPEA shift controversy but also has shown
promising results for spin-state energetics in model compounds
and SCO complexes.28,65,68

We here present a DMRG-NEVPT2 implementation
employing CD that is capable of treating both large active
orbital spaces and large AO basis sets which allows for
multireference calculations on large transition metal complexes
that are typically encountered in bioinorganic chemistry. To
demonstrate its capabilities, we examine the spin-state
energetics of two SCO complexes.

2. THEORY AND COMPUTATIONAL METHODOLOGY
As details of the NEVPT2 approach, quantum-chemical
DMRG, and its combination to DMRG-NEVPT2 have been
discussed elsewhere,11−13,15,16,19,22,23,26,30,32,35,71,72 we only
outline briefly the Cholesky decomposition and show how it
is employed in the context of CD-DMRG-NEVPT2.

2.1. Cholesky Decomposition. Mathematically, CD73 is a
special case of a LU decomposition of a positive semidefinite
symmetric matrix M into a product of a triangular matrix L and
its transpose,

=M LLT (1)

M now contains two-electron integrals (ij|kl) (with indices ij
and kl combined to row and column indices of M). Of
particular interest is the incomplete CD, where M may be
approximated to an arbitrary accuracy with Cholesky vectors L⃗J,
which constitute the columns of the matrix L,58

∑≈ ⃗ ⃗
=

L LM ( )
J

M
J J T

1 (2)

where M is typically significantly smaller than the full
dimension of M. One important advantage of CD is that the
Cholesky vectors can be computed without evaluating the full
matrix M,58 resulting in large disk space savings. Two-electron
integrals may then be reconstructed from the corresponding
Cholesky vector elements,

∑| ≈
=

ij kl L L( )
J

M

ij
J

kl
J

1 (3)

CD also proves particularly useful in integral trans-
formations: instead of a full-fledged integral transformation,
we only need to transform Cholesky vectors,

∑ ∑=μν μ νL c c LJ

i j
i j ij

J

(4)

where i, j and μ, ν refer to indices in the AO and MO basis,
respectively. The cost of such a transformation is K3M in
contrast to a formal K5 scaling for the full integral trans-
formation. In NEVPT2, two-electron integrals with up to two
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inactive and two virtual orbital indices must be transformed
from AO to the MO basis, which is typically the most time-
consuming step following the calculation of four-body RDMs.
Additionally, in a multistate calculation, integrals with inactive/
virtual indices must be transformed to a state-specific
representation. In our implementation of CD-DMRG-
NEVPT2, the integral transformation based on Cholesky
vectors yielded by far the largest computational savings.
Additionally, we implemented the construction of the Fock
matrix directly from the Cholesky vectors (albeit without
employing the local K screening by Aquilante et al.74 for the
exchange contributions); however, the computational advant-
age arising from this step is negligible compared to the integral
transformation.
2.2. Selected Spin-Crossover Complexes. The first

complex studied in this work, [Fe(C3N2H5)2(OH2)] (Figure
1a), is a heme model employed by Strickland and Harvey75

(named model 2 in their paper). We employ the model 2
complex as a benchmark system and assess the performance of
the CD-DMRG-NEVPT2 method for spin-state energetics by
comparing the relative energies of the lowest singlet, triplet, and
quintet states of the model 2 with previous accurate CCSD(T)
calculations.
The second compound investigated is a cobalt tropocor-

onand nitrosyl complex, [Co(TC-3,3)(NO)] (Figure 1c). In a
series of homologous tropocoronand complexes with an
increasing methylene chain length n, initially [Co(TC-
3,3)(NO)] with n = 3 was previously found to be paramagnetic
unlike its homologues with larger n.76−78 However, a recent
DFT and experimental study79 showed the opposite. Nitrous
oxide (NO) is a well-known noninnocent ligand,80,81 and
therefore, transition metal nitrosyl complexes are known to
have an intricate and challenging electronic structure, described
best with multiconfigurational methods.82−86 Here, we employ
CD-DMRG-NEVPT2 to contribute to the discussion of spin-
state energetics of [Co(TC-3,3)(NO)].

2.3. Computational Details. The structures of both
complexes studied in this work were taken from previous
publications: the model 2 structures were optimized by
Strickland and Harvey75 for each individual spin state with
the B3LYP87,88 density functional, a Los Alamos effective core
potential, and LACV3P basis set for Fe and the 6-311G* basis
set for other atoms with a C2v symmetry constraint. The
[Co(TC-3,3)(NO)] structures were taken from ref 79, where
they were optimized with the PW9189 density functional and 6-
311G** basis set.
Subsequently, DMRG-SCF calculations employing a 14

electrons in 18 spatial orbitals, i.e., (14,18), active space for
the model 2 complex and a (22,22) active space for [Co(TC-
3,3)(NO)] have been performed. A procedure following our
automated active space selection8 delivered the choice of the
active spaces (more details on the active spaces and the
selection procedure can be found in the Supporting
Information). To study the effect of the number of
renormalized block states m on the results and the errors
arising from the CD approximation, different approaches to
prepare the DMRG wave function were investigated for the
model 2 complex: (i) DMRG-SCF calculations with m values of
256, 512, 1024, and 2048; (ii) DMRG-SCF calculations with m
= 256 followed by a DMRG-CI calculation with m = 512 and m
= 1024 (denoted as 512/256 and 1024/256, respectively, in the
following); (iii) DMRG-SCF calculations with m = 256 but
without employing the Cholesky decomposition, denoted as
256* in the following. For the [Co(TC-3,3)(NO)] complex,
DMRG-SCF calculations with m = 512 and 1024 were carried
out. NEVPT2 calculations with DMRG-SCF reference wave
functions with m = 1024 and 2048 for the model 2 complex and
m = 1024 for the [Co(TC-3,3)(NO)] complex were performed
omitting energy contributions which require the four-body
RDM (i.e., those in Sr

(−1) and Si
(1) subspaces in the notation of

ref 30): due to the missing contributions, these calculations
were not used for the evaluation of spin-state energetics but
rather for the estimation of errors of the full-fledged
calculations with smaller m values.
We have implemented the CD-DMRG-NEVPT2 approach

in a modularized version of the original QDNEVPT2 program
by Angeli et al.90 for both the strongly contracted (SC) and
partially contracted (PC) variant of NEVPT2.30 SC- and PC-
NEVPT2 calculations were performed with all DMRG-SCF and
DMRG-CI reference wave functions. The ANO-RCC91 basis
set was chosen for all calculations: in the model 2 complex, a
moderately sized double-ζ (VDZP) contraction on all atoms
was employed to facilitate the comparison with a conventional
integral calculation (yielding 248 basis functions in total),
whereas for [Co(TC-3,3)(NO)], a larger triple-ζ (VTZP)
contraction on all atoms, totaling 1147 basis functions, was
used.
Additionally, CCSD(T) calculations were performed on the

model 2 complex employing the same ANO-RCC-VDZP basis
set for comparison. For the open-shell species, restricted open-
shell reference wave functions and the triples contributions
according to Watts et al.92 were calculated.
Cholesky vectors in the AO basis were generated on the basis

of the atomic compact Cholesky decomposition (acCD)
approach93 with a decomposition threshold of 10−4 a.u. as
implemented in the MOLCAS 8.0 program.10 All DMRG
reference wave functions and three- and four-body RDMs were
calculated with the QCMaquis33,94−96 program with its

Figure 1. Structures of the compounds used in this work: (a)
[Fe(C3N2H5)2(OH2)] (model 2), (b) the TC(n,n) ligand, and (c)
[Co(TC-3,3)(NO)].
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MOLCAS interface.97 Additional CCSD(T) calculations with
conventional integrals were carried out with MOLCAS 8.0.

3. RESULTS AND DISCUSSION
3.1. Harvey’s Model 2 Complex. The model 2 complex is

one of the three heme models employed by Strickland and
Harvey75 in their ab initio and DFT study of ligand binding to
heme and the largest model treated with the CCSD(T) method
in their work. Given its small size, which still allows one to
employ the conventional integral implementation for compar-
ison with the CD approach, an electronic structure typical for
SCO complexes, and the availability of CCSD(T) reference
data, we chose the model 2 complex to study the performance
and the accuracy of CD-DMRG-NEVPT2 for spin-state
energetics.
3.1.1. Spin-State Energy Differences. Table 1 lists electronic

energies of the lowest singlet (1A1) and triplet (3B1) states of

the model 2 relative to the lowest quintet state (5B2) calculated
with the strongly contracted (SC-NEVPT2) and the partially
contracted (PC-NEVPT2) approach for different values of the
number of renormalized block states m. CCSD(T) data are
presented from both our calculations and ref 75.
The relative energies computed with SC-NEVPT2 agree well

with the CCSD(T) results obtained with the same (ANO-
RCC-VDZP) basis set: the largest deviation from the
CCSD(T) results is 1.3 kcal/mol. Moreover, the variation of
the relative energies with m is even smaller (with the largest
deviation being below the chemical-accuracy threshold of 1
kcal/mol), providing further evidence that one may save
computational time by using relatively low m values (evaluation
of 4-RDM scales as m3)32 without significant loss of accuracy.
The difference of the SC-NEVPT2 relative energies obtained
with and without CD is less than 0.1 kcal/mol for the quintet−
triplet gap and about 0.3 kcal/mol for the quintet−singlet gap
and therefore comparable to the variation of the gaps with m.
Unlike SC-NEVPT2, the PC-NEVPT2 relative energies are

highly dependent on m. At m = 256, PC-NEVPT2 predicts a
qualitatively wrong spin-state ordering with the triplet state
34.1 kcal/mol below the quintet state. Only at m = 512, PC-
NEVPT2 yields the same spin-state ordering as CCSD(T) and

SC-NEVPT2. The faulty energies arise due to small
denominators in the PC-NEVPT2 energy expressions for
different subspaces, which is reflected by the norm of the PC-
NEVPT2 first-order wave function shown in Figure 2. The

norm for all states decrease by several orders of magnitude with
increasing m, reaching from values up to 2230 (m = 256, 5B2
state) down to 5 (m = 1024/256, 1A1). For comparison, SC-
NEVPT2 norms are in the range of 0.5−0.6, regardless of the m
value, which is comparable with wave function norms in non-
DMRG NEVPT2 calculations.28 Although calculations without
CD (m = 256* in Figure 2) show lower norms than those with
CD, the ordering of spin states and the relative energies are still
flawed. Hence, numerical errors leading to small denominators
are partially to blame on the Cholesky decomposition but to a
larger extent on the small m values. DMRG-PC-NEVPT2
therefore shows the problem of “false intruder states” similar to
that observed in NEVPT2 with cumulant approximations to
RDMs described by Zgid et al.35

In order to assess the behavior of the PC norms with
increasing m, we performed calculations with m = 1024 and in
case of the 1A1 state also for m = 2048 omitting the
contributions of Sr

(−1) and Si
(1) subspaces, requiring only the

three-body RDM. Despite the missing contributions, the norms
for m = 1024 do not improve compared to m = 512 except for
the 1A1 state. In contrast, at m = 2048, the calculation shows a
norm similar to that for m = 512, revealing that the apparent
convergence of the norm at m = 1024 is accidental rather than
systematic. Hence, we do not observe the convergence of the
PC norms to the values similar to the SC ones.
Concerning the dependence of PC- and SC-NEVPT2 on the

computational parameters, we recall that the speed-up of the
approach introduced in ref 71 and fully formalized in ref 30 is a
consequence of the choice of the CI solution within the CAS
space as the zeroth-order wave function. This allows one to
greatly simplify the formalism and to use the four-body RDMs
only (otherwise, also the five-body RDMs would be required).
Even at m = 2048, the maximum m value used in this work, the
zeroth-order DMRG wave function is far from numerical
convergence to the full CI wave function, as can, for example,
be seen on inspection of the absolute electronic energy in Table
S9, and therefore can produce numerical problems with a

Table 1. Electronic Energies of the Singlet and Triplet States
of the Model 2 Complexa

m

256* 256 512 512/256 1024/256

DMRG-SC-NEVPT2
3B1 3.4 3.4 3.1 2.6 1.9
1A1 32.8 33.1 33.8 32.8 31.8

DMRG-PC-NEVPT2
3B1 6.5 −34.1 4.1 −1.3 0.5
1A1 −6.0 3.3 31.8 28.7 31.0

CCSD(T)
b c d

3B1 3.1 3.7 −2.0
1A1 31.5 25.9 19.6

aIn kcal/mol, relative to the quintet 5B2 state.
bThis work, ANO-RCC-

VDZP basis set. ccc-pVTZ/cc-pVDZ basis set for Fe/other atoms (see
Ref. 75). dcc-pV∞Z extrapolation/cc-pVDZ basis set for Fe/other
atoms (see Ref. 75).

Figure 2. Squared norms of first-order wave functions of the model 2
complex calculated with DMRG-PC-NEVPT2 for different values of
m. Calculations for m = 1024 and 2048 were performed without the
contributions of Sr

(−1) and Si
(1) subspaces in the notation of ref 30.
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formulation assuming an exact full CI reference wave function.
We expect the situation to improve with even larger m values
where the zeroth-order wave function becomes a better
approximation to the full CI wave function. In those cases,
however, the three- and four-body RDM calculations become
computationally unfeasible. Furthermore, it is important to
stress that the “false intruder states” are related to this
inconsistency; i.e., they originate from the approximations in
the zeroth-order wave function and are unrelated to the
“standard” intruder states found, e.g., in the CASPT2 approach
which have their origin in the nature of the zeroth-order
Hamiltonian.
By considering that each denominator of SC is obtained by a

weighted average of a set of denominators in PC (the weights
being related to the interactions of the PC perturbers with the
zeroth-order wave function), it can be easily understood that
the PC approach is much more dependent on the quality of the
zeroth-order wave function (for instance, on the degree of CI
convergence), whereas SC is more robust and yields more
stable results for a lower-quality zeroth-order wave function.
Hence, large variations of the PC denominators for perturbers
with a small interaction with the zeroth-order wave function
(which can have important effects on the PC energy if the
denominators approach zero) have almost no effects on SC.
The discrepancy of our CCSD(T)/ANO-RCC-VDZP results

with the CCSD(T) results of Strickland and Harvey75 (Table
1) might point to a large basis set effect at first glance.
However, the discrepancy may also arise due to the
convergence of the single-reference wave function to a different
state. In our calculations, the guess orbitals for the reference
ROHF wave function for the quintet and triplet CCSD(T)
calculation were generated from state-averaged CASSCF
calculations for three quintet states and triplet states to ensure

the correct state character (and similarly for the NEVPT2
calculations). The CASSCF calculations show gaps of 2−6
kcal/mol between the lowest quintet or triplet states. A black-
box single-reference calculation may therefore well converge to
an adjacent state, which will affect the spin-state energetics.
This emphasizes the need for multireference methods even in
cases where single-reference methods appear to perform well,
as judged by multireference criteria such as the T1 norm in the
CC theory.

3.1.2. CD Accuracy: Absolute Energies. Figure 3 shows
deviations of the second-order energy corrections and the total
electronic CD-DMRG-SC-NEVPT2 and CD-DMRG-PC-
NEVPT2 energies calculated with different m values. Deviations
of the corresponding DMRG-SCF energies are also shown for
comparison. (The total electronic NEVPT2 and DMRG-SCF
energies are provided in Table S1.) The first point (m = 256*)
in each subplot is simply the difference between CD and non-
CD energies for m = 256. For SC-NEVPT2, the errors in the
second-order energy arising due to Cholesky decomposition are
on the order of 10−3 atomic units and are comparable to those
(and even slightly smaller) of DMRG-SCF. The total NEVPT2
energies show even smaller errors on average due to the
cancellation of DMRG-SCF and second-order energy errors. In
all cases, errors arising due to CD are smaller than errors due to
smaller m values in SC-NEVPT2, which justifies CD as an
approximation for (DMRG)-SC-NEVPT2 calculations. We
note that errors in both absolute and relative energies due to
CD are similar to those in the CD-CASPT2 method,61 and we
would expect a similar increase of accuracy with decreasing CD
threshold. For PC-NEVPT2, the CD errors are much larger and
reach 0.05 atomic units for the quintet state, because of the
numerical errors leading to “false intruder states” mentioned
earlier. However, errors associated with different m values are

Figure 3. Differences of second-order energy corrections (a, b) and total electronic energies (c, d) obtained with DMRG-SC-NEVPT2 and DMRG-
PC-NEVPT2 for various states for the model 2 complex for varying values of the number of renormalized block states m compared to the results
obtained with m = 256. DMRG-SCF energy differences are shown in (e).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00778
J. Chem. Theory Comput. 2017, 13, 451−459

455

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00778/suppl_file/ct6b00778_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.6b00778


also larger than for SC-NEVPT2, likely for the same reason.
Therefore, we conclude that PC-NEVPT2 is much more prone
to numerical problems arising from both Cholesky decom-
position and a DMRG-SCF reference wave function.
3.2. Cobalt Tropocoronand Complex. Tropocoronand

ligands (Figure 1b) with different lengths of the alkylidene
chain n provide a fine-tuned constrained coordination environ-
ment that varies with n, yielding metal complexes with
interesting geometric and electronic structures, especially if
coordinated with a noninnocent ligand80,81 such as NO.
[Co(TC-3,3)(NO)], the smallest member of a homologous
series of cobalt complexes with n = 3 to 5, was previously
reported to be paramagnetic, unlike its higher homologues and
other cobalt nitrosyl complexes,76,78 which contradicts a recent
DFT and experimental study.79 Metal-nitrosyl bonds are known
to show a large amount of static correlation (see, e.g., ref 86),
which cannot be reliably described by single-reference methods
such as DFT. Due to this fact and the controversy on the spin
state, we study with DMRG-SCF and CD-DMRG-NEVPT2
the electronic structure and spin-state energetics of [Co(TC-
3,3)(NO)].
3.2.1. Electronic Structure of the Complex. In metal nitrosyl

complexes, it is usually not trivial to unambiguously describe
the electronic structure of the metal and the NO ligand
separately by assigning them distinct electronic occupations:
hence, it is common to use the Enemark-Feltham notation98 to
describe their electronic structure. [Co(TC-3,3)(NO)] is a
{CoNO}8 complex, according to the notation, where 8 is the
total number of electrons in the metal d and NO π* orbitals.
To gain insights into the electronic structure of the complex,

we analyzed the DMRG-SCF wave functions of the spin states,
in particular the natural orbital occupation numbers of metal d
and NO π* orbitals, which are essential for the Co−NO bond
description. Since DFT results from ref 79 are ambiguous about
predicting the character of the lowest triplet state of the
complex and the DMRG-SCF optimization of an excited state
in QCMaquis may occasionally converge to a higher-lying state
due to the nature of the excited state optimization algorithm,95

we have calculated the two lowest triplet states. All results are
compiled in Figure 4.
Although the orbitals are delocalized and several occupation

numbers severely deviate from 2 or 0 (which is a sign of a
multireference character and significant static correlation typical
for metal nitrosyl complexes),86 we may approximately assign
electronic occupations to both metal and NO. The occupation
numbers in the lowest singlet state S0 most closely resemble the
following occupation pattern:

π π* *−d d d d d(3 ) (3 ) (3 ) (3 ) (3 ) ( ) ( )xz yz z xy x y y x
2 2 2 2 0

NO,
0

NO,
0

2 2 2

This may be interpreted as a d8 Co coupled to a NO+ cation,
although the occupation numbers of the 3dz2 and πNO,y* show a

significant admixture of a neutral NO and d7 Co. Analogously,
the T2 state may be characterized as d7 Co and neutral NO.
However, the T1 state shows occupation numbers of 3dyz and
πNO,y* orbitals close to 1.5 and 0.5, which represents a situation
exactly between Co d7 and d8 and neutral and cationic NO. The
state characters are in contrast to those found in the DFT study
by Hopmann et al.,79 where the T1 and T2 states are
characterized as d7 Co and neutral NO and as d6 Co and
anionic NO−, respectively. However, such discrepancies are not
surprising as the single-configuration nature of standard Kohn−
Sham DFT does not allow for an accurate description of states
with multireference character. It is well-known that spin
densities in metal nitrosyl complexes obtained with DFT and
multiconfigurational methods may differ significantly.83−85

3.2.2. Singlet−Triplet Gap. Having characterized the
electronic structure of [Co(TC-3,3)(NO)] with DMRG-SCF,
we calculated the singlet−triplet energy gap with CD-DMRG-
SC-NEVPT2, listed in Table 2. CD-DMRG-SC-NEVPT2

predicts S0 as the ground state of [Co(TC-3,3)(NO)], just as
DMRG-SCF and all DFT functionals do, which is consistent
with the diamagnetism of its ground state recently confirmed in
ref 79. However, the gap predicted by NEVPT2 is by at least 10
kcal/mol larger than those calculated with DFT. Notably, CD-
DMRG-SC-NEVPT2 predicts that T1 and T2 are close-lying,
with an energy gap of only 1.1 kcal/mol; a similar result (a
difference of 0.6 kcal/mol) is obtained with the PW91
functional in ref 79, although, as mentioned before, the
characters of the triplet states are different from those described
in this work.
In order to assess the error arising from the choice of the m

value (which was set to 512), similarly to the model 2 complex,
the singlet−triplet gaps were also calculated with a larger m
value of 1024 but excluding the contributions of Sr

(−1) and Si
(1)

subspaces. Table 3 collects these singlet−triplet gaps along with
analogous values for m = 512. The deviations of 1.1 and 0.4
kcal/mol for T1 and T2, respectively, are comparable with those
in model 2 calculations, indicating that m = 512 essentially offers
results of chemical accuracy, although the absolute electronic
energies (cf. Table S8) are still far from being converged.

Figure 4. Natural orbital occupation numbers for orbitals participating in the Co-nitrosyl bond in [Co(TC-3,3)(NO)] in different spin states.

Table 2. Singlet−Triplet Energy Gap (in kcal/mol) of
[Co(TC-3,3)(NO)] Calculated with CD-DMRG-SC-
NEVPT2 (Abbreviated as “SC-NEVPT2”) and Other
Methodsa

SC-NEVPT2 DMRG-SCF OLYP79 PW9179 B3LYP-D379

T1 35.0 38.6
T2 36.1 29.6 23.8 25.1 10.4

aDFT results from ref 79 are provided for the state of an equivalent
character.
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3.3. A Note on Computing Resources. Table 4 lists
computing time (CPU time) and hard disk usage for the

integral transformation step, which yielded by far the largest
computational savings in our calculations. Cholesky decom-
position speeds up the integral transformation by over 40 times
and requires more than 10 times less disk space for the integral
transformation in model 2 calculations. However, we should
note that in all cases the majority of the CPU time is spent
calculating the four-body RDM, where we currently resort to a
massively parallel implementation, which takes up to several
days on 800−1000 Intel(R) Xeon(R) E5-2697 v2 CPU cores
(independent of whether or not the Cholesky decomposition
was exploited). Hence, for the model 2 calculation, the total
speedup due to Cholesky decomposition is still very small.
Turning, however, to the larger CoTC calculation with 1147

basis functions, we estimate that such a calculation becomes
barely feasible if one employs conventional integrals. We did
not attempt to perform such a calculation, but even an
optimistic runtime estimation based on current runtimes,
assuming perfect K5 scaling, yields about 1 310 000 s or 15 days
of CPU time, not even counting the time required for input and
output operations (which will be ample, as a similar estimation
for the total disk space required for both AO and MO integral
storage yields approximately 25 TByte without any prescreen-
ing and would remain on the order of TBytes even if integrals
below a certain threshold are not stored on disk). For
comparison, the MO transformation for CoTC employing
CD requires “modest” 83 GByte of space and approximately 2.5
h of CPU time. Although the four-body RDM calculation
remains a bottleneck, the integral transformation bottleneck is
eliminated by CD.

4. CONCLUSIONS
In this work, we have presented an implementation of the
second-order N-electron valence state perturbation theory
(NEVPT2) employing a density-matrix renormalization group
(DMRG) reference wave function and Cholesky decomposi-
tion (CD) for the two-electron repulsion integrals dubbed as
CD-DMRG-NEVPT2 which is a parameter-free multireference
perturbation theory applicable to large systems.

A multireference perturbation theory faces two challenges
when applied to large systems. These are the calculation of the
higher-order reduced density matrix and the calculation of a
large number of integrals. In this work, we have considered a
solution to the second one, yielding a method that is capable of
dealing with systems containing more than 1000 basis
functions. We demonstrated the application of the method
on two examples of SCO complexes: a smaller heme model
(model 2) and a larger cobalt nitrosyl tropocoronand complex.
The strongly contracted (SC) variant of CD-DMRG-NEVPT2
describes the spin-state energetics with a similar accuracy as
CCSD(T) in the heme model and is very insensitive to the
number of renormalized block states m. The approximations
introduced by CD turn out to be negligible. Unlike the SC
variant, the partially contracted CD-DMRG-NEVPT2 is prone
to “false intruder states”35 due to numerical approximations
introduced by the DMRG and Cholesky decomposition.
Subsequently, we employed a large-scale DMRG-SCF and a

strongly contracted CD-DMRG-NEVPT2 calculation to
describe the electronic structure of a cobalt nitrosyl
tropocoronand complex. The electronic structure of the lowest
singlet and triplet states calculated with DMRG-SCF showed
significant static correlation. The NEVPT2 calculation con-
firmed the singlet ground state and with it the diamagnetism of
the complex shown experimentally in a recent study. Combined
with the recent advances to overcome the bottleneck of the
higher-order RDM evaluation35−39 (loc. cit.), we believe that
CD-DMRG-NEVPT2 will be a valuable tool in transition metal,
bioinorganic, and f-element99 chemistry for calculating energies
and properties of large molecular systems that are governed by
static electron correlation.
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J. Phys. Chem. Lett. 2016, 7, 4072−4078.
(45) Hedegård, E. D.; Knecht, S.; Kielberg, J. S.; Jensen, H. J. A.;
Reiher, M. J. Chem. Phys. 2015, 142, 224108.
(46) Costas, M.; Harvey, J. N. Nat. Chem. 2013, 5, 7−9.
(47) Swart, M.; Costas, M. Spin States in Biochemistry and Inorganic
Chemistry: Influence on Structure and Reactivity; John Wiley & Sons,
Ltd.: New York, 2015.
(48) Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009, 11,
10757−10816.
(49) Tsipis, A. C. Coord. Chem. Rev. 2014, 272, 1−29.
(50) Harvey, J. N. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2006,
102, 203−226.
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