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Abstract

Imputation of human leukocyte antigen (HLA) alleles from SNP-level data is attractive due

to importance of HLA alleles in human disease, widespread availability of genome-wide

association study (GWAS) data, and expertise required for HLA sequencing. However,

comprehensive evaluations of HLA imputations programs are limited. We compared HLA

imputation results of HIBAG, SNP2HLA, and HLA*IMP:02 to sequenced HLA alleles in

3,265 samples from BioVU, a de-identified electronic health record database coupled to a

DNA biorepository. We performed four-digit HLA sequencing for HLA-A, -B, -C, -DRB1,

-DPB1, and -DQB1 using long-read 454 FLX sequencing. All samples were genotyped

using both the Illumina HumanExome BeadChip platform and a GWAS platform. Call rates

and concordance rates were compared by platform, frequency of allele, and race/ethnicity.

Overall concordance rates were similar between programs in European Americans (EA)

(0.975 [SNP2HLA]; 0.939 [HLA*IMP:02]; 0.976 [HIBAG]). SNP2HLA provided a significant

advantage in terms of call rate and the number of alleles imputed. Concordance rates were

lower overall for African Americans (AAs). These observations were consistent when accu-

racy was compared across HLA loci. All imputation programs performed similarly for low fre-

quency HLA alleles. Higher concordance rates were observed when HLA alleles were

imputed from GWAS platforms versus the HumanExome BeadChip, suggesting that high

genomic coverage is preferred as input for HLA allelic imputation. These findings provide

guidance on the best use of HLA imputation methods and elucidate their limitations.

PLOS ONE | DOI:10.1371/journal.pone.0172444 February 16, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Karnes JH, Shaffer CM, Bastarache L,

Gaudieri S, Glazer AM, Steiner HE, et al. (2017)

Comparison of HLA allelic imputation programs.

PLoS ONE 12(2): e0172444. doi:10.1371/journal.

pone.0172444

Editor: Jianming Tang, University of Alabama at

Birmingham, UNITED STATES

Received: December 9, 2016

Accepted: February 3, 2017

Published: February 16, 2017

Copyright: © 2017 Karnes et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The dataset used in the analyses

described were obtained from Vanderbilt University

Medical Centers BioVU which is supported by

institutional funding and by the Vanderbilt CTSA

grant ULTR000445 from NCATS/NIH.

HumanExome BeadChip genotyping was

supported institutionally. Genome-wide genotyping

was funded by NIH grants RC2GM092618 from

NIGMS/OD, U01HG004603 from NHGRI/NIGMS,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172444&domain=pdf&date_stamp=2017-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172444&domain=pdf&date_stamp=2017-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172444&domain=pdf&date_stamp=2017-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172444&domain=pdf&date_stamp=2017-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172444&domain=pdf&date_stamp=2017-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172444&domain=pdf&date_stamp=2017-02-16
http://creativecommons.org/licenses/by/4.0/


Introduction

The major histocompatibility complex (MHC) and human leukocyte antigen (HLA) genes are

extensively studied due to their key role in immune response.[1] Human Leukocyte Antigen

(HLA) alleles have been implicated as risk factors for autoimmune diseases, infections, cancer,

and immune-mediated adverse drug reactions. The HLA region is characterized by high link-

age disequilibrium and a small number of single nucleotide polymorphisms (SNPs) can be

used to tag the majority of HLA alleles.[2] Consequently, HLA alleles are frequently imputed

from SNP-level data due to the widespread availability of genome-wide association study

(GWAS) data and the expense and expertise required to directly sequence HLA loci with four

digit resolution.[2] While HLA imputation programs have been applied successfully, notably

in disease immunopathology,[3,4,5] comparisons of the performance of commonly used pro-

grams are limited.[6] In addition, the performance of HLA imputation programs with respect

to the effect of genotyping platform, race/ethnicity, and frequency of HLA alleles is not well

studied.

Multiple approaches that impute HLA alleles from single nucleotide polymorphism (SNP)-

level data are available. Imputation methods include (1) HLA Genotype Imputation with Attri-

bute Bagging (HIBAG), which employs multiple expectation-maximization-based classifiers to

estimate the likelihood of HLA alleles;[7] (2) HLA�IMP:02 which uses a haplotype graph-

based approach based on SNP data from multiple populations that can accommodate haploty-

pic diversity;[8] and (3) SNP2HLA which uses the imputation software package BEAGLE to

impute both HLA alleles and the amino acid substitutions for those classical alleles.[9] These

programs are freely available and have been used in published reports.[3,4,5]

Although the accuracy of these HLA imputation programs has been compared to sequence

data, few previous studies have directly compared their relative accuracies.[6,10] These studies

report varying results, were conducted in small homogeneous populations, looked only at class

II alleles, and do not test the effect of SNP genotyping platform, race/ethnicity, and HLA allele

frequency on imputation accuracy.[5,11,12] The present study compares imputation accuracy

of three widely-used programs in a large population with both European and African ances-

tries. This comparison is necessary to guide the optimal application of these programs and elu-

cidate their limitations.

Materials and methods

Study population

The study population was identified in BioVU, the Vanderbilt DNA databank that links DNA

extracted from discarded blood samples to de-identified electronic health records (EMRs).[13]

BioVU patients were enrolled from the Vanderbilt University Medical Center in Nashville,

TN. The study population was selected from the Vanderbilt Electronic Systems for Pharmaco-

genomic Assessment (VESPA) cohort, which aims to analyze DNA samples from the BioVU

database and EMRs to investigate the genetic underpinning for disease and drug response.

[14,15] This study was approved by the Institutional Review Board at Vanderbilt University as

described previously.[13,15]

HLA typing

Sequence based typing on a deep sequencing platform is currently considered the gold stan-

dard for class I and II high resolution. HLA typing High resolution, four-digit HLA sequenc-

ing was performed for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DPB1, and HLA-DQB1 at

the Institute for Immunology and Infectious Diseases (IIID) at Murdoch University in Perth,
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Australia. The IIID is accredited by the American Society for Histocompatibility and Immuno-

genetics (ASHI) and the National Association of Testing Authorities (NATA) and the pipeline

described below has been used in multiple previous studies.[16,17] Specific HLA Loci were

PCR amplified using sample specific MID-tagged primers that amplify polymorphic exons

from class I (A, B, C exons 2 and 3) and class II (DQ, exons 2 and 3; DRB and DPB1, exon 1)

HLA loci. MID tagged primers have been optimized to minimize allele dropouts and primer

bias. Amplified DNA products from unique MID tagged products (up to 48 MIDs) were

pooled in equimolar ratios and subjected to library preparation, quantitation and emulsion

PCR suitable for entry into the 454 FLX sequencing pipeline for long read sequencing. Clonally

enriched beads were sequenced using 454 Titanium chemistry on a 454 FLX+ sequencer.

Sequences were separated by MID tags and alleles called using an in house accredited HLA

allele caller software pipeline that minimizes the influence of systematic sequencing errors in

454 data. Alleles were called using the latest IMGT HLA allele database as the allele reference

library. Sample to report integrity were tracked and checked using proprietary and accredited

Laboratory Information and Management System (LIMS) and HLA analysis reporting soft-

ware that performs comprehensive allele balance and contamination checks on the final data-

set. All samples that were successfully typed were included in the study population.

SNP-level genotyping

All samples included in this study population (n = 3,265) were genotyped using a genome-

wide platform, either the Illumina1 HumanOmni1-QUAD (n = 2,430 [74%]) or HumanOm-

ni5-QUAD BeadChip (n = 835 [26%]). The HumanOmni1-QUAD contains 11,675 SNPs in

the HLA region and the HumanOmni5-QUAD contains 26,952 SNPs in the HLA region

(GRCh37 chr6:28,477,797–33,448,354). In addition, 96% of the samples (n = 3,152) were also

typed using the Illumina1 HumanExome BeadChip, which contains putative functional

exonic variants and a small amount of non-exonic content including 2,061 HLA tagging SNPs.

SNP data from both the HumanExome BeadChip and GWAS platforms were cleaned using

the quality control (QC) pipeline developed by the eMERGE Genomics Working Group.

[18,19] Samples were classified as being of European or African descent (�90% European

ancestry for European decent and�80% African ancestry for African decent) using ancestry

informative markers (AIMs) from genome-wide platforms input into STRUCTURE using

Hapmap reference populations.[20] To further assess admixture, principal components analy-

sis (PCA) was also performed on GWAS data and compared to PCA generated using 1000

Genomes samples.

HLA allele imputation

Classical four digit HLA alleles were imputed from SNP data from HumanExome BeadChip

and GWAS platforms using HIBAG version 3,[7] HLA�IMP:02,[8] and SNP2HLA (8/7/2102).

[9] The Type 1 Diabetes Genetics Consortium (T1DGC) reference panel was used for

SNP2HLA and HIBAG whereas HLA�IMP:02 uses an internal reference panel. Individual dos-

ages for classical 4-digit alleles at HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 were imputed. A

posterior probability (PP) cutoff of 0.5 was implemented for imputed alleles based on previous

literature.[6,21] The three HLA imputation software programs were compared to sequenced

HLA alleles using the latest available version of each program. A sensitivity analysis was also

performed to account for imputed alleles with similar PPs. In our primary analysis, a given

sample could be assigned one imputed allele with a PP of 0.51 and another imputed allele with

a PP of 0.49, indicating minimal confidence of one imputed allele over the other. To exclude

HLA imputation comparison
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such imputations, the highest and second highest PP was used to calculate a posterior proba-

bility ratio and HLA allele calls were excluded if this ratio was less than 1.5.

Statistical analysis

The primary assessment metrics for each imputation program were concordance with

sequenced HLA type results and call rate. Call rate was defined as the number of imputed

alleles divided by the total number of individuals for which imputation was attempted. Con-

cordance was defined as the number of imputed four digit alleles matching sequenced alleles

divided by the total number of imputed alleles within the population. The calculation of con-

cordance thereby did not consider individuals for which alleles were not imputed. For

instance, if an imputation program did not impute an allele for an individual, this would not

affect the concordance rate, but the call rate would be decreased for that imputation program.

The total number of HLA alleles imputed by each program is also reported, which did not

require an individual within the population to possess that allele. We assessed the relative accu-

racy of the three imputation programs and the robustness of each program to differences in

race/ethnic group (European versus African ancestry), SNP genotyping platform (HumanEx-

ome BeadChip, HumanOmni1-QUAD, and HumanOmni5-QUAD), and frequency of HLA

allele (minor allele frequency less than 0.05 and 0.01).

Results

Our study population (n = 3,265) included 1,592 females (48.8%) and had an average age of

57.8 (standard deviation 20.8) years. Our population was comprised of 2,947 European Ameri-

cans (EAs) (90.2%) and 318 African Americans (AAs) by Structure-defined race. The average

percent European, African, and Asian ancestry for the European ancestry study population

was 98.2%, 1.0%, and 0.8% respectively and for the African ancestry study population, these

percentages were 17.7%, 79.1%, and 3.3%, respectively. Principal components analysis sug-

gested limited admixture in both the European and African ancestry study populations. (Fig 1)

SNP2HLA provided imputations for the largest overall number of HLA alleles at 210 com-

pared to HLA�IMP:02 (140 alleles) and HIBAG (175 alleles). (Table 1) The performance was

excellent in EAs with overall concordance greater than 93% for all three programs. However,

performance was poorer in AAs with reduced concordance rates (0.919 [SNP2HLA]; 0.619

[HLA�IMP:02]; 0.929 [HIBAG]). The overall concordance rate compared to HLA sequencing

was highest for HIBAG (97.6% in EAs and 92.9% in AAs) and SNP2HLA (97.5% in EAs and

91.9% in AAs) compared to HLA�IMP:02 (93.9% in EAs and 61.9% in AAs). The overall call

rate was highest for SNP2HLA. (Table 1)

The concordance rate by HLA loci imputed from GWAS platforms (HumanOmni1-QUAD

and HumanOmni5-QUAD) ranged from 98.8% for SNP2HLA and HIBAG in HLA-DQB1 in

EAs and 41.4% for HLA�IMP:02 in HLA-DRB1 in AAs. (Table 2) All programs had higher

concordance rates and call rates in EAs compared to AAs, although consistently higher call

rates were observed with SNP2HLA and consistently lower call and concordance rates were

observed with HLA�IMP:02. Class I and class II HLA alleles were imputed with similar accu-

racy by all programs in EAs. In the sensitivity analysis implementing a posterior probability

ratio cutoff of 1.5, we observed slightly increased concordance rates and slightly decreased call

rates for each imputation program overall and by HLA locus. (S1 File)

When divided by platform, HLA imputation for each program had the highest concordance

when the HumanOmni5-QUAD platform, which included the largest number of genotyped

SNPs and the most comprehensive coverage in the HLA region, was used as input versus

HumanOmni1-QUAD. (Table 3) Concordance rates were lower when HumanExome

HLA imputation comparison
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Fig 1. Principal components analysis of 1000 Genomes samples and study population. Eigenvectors 1 and 2 are plotted to

determine racial decent and admixture of European and African Americans in the BioVU population. EA indicates European

American (BioVU); AA, African American (BioVU); CEPH, 1000 Genomes Utah Residents; ASW, Americans of African Ancestry

in Southwestern USA; MKK, Maasai in Kinyawa, Kenya; CHB, Han Chinese in Bejing, China; JPT, Japanese in Tokyo, Japan;

LWK, Luhya in Webuye, Kenya; YRI, Yoruba in Ibadan, Nigeria.

doi:10.1371/journal.pone.0172444.g001

Table 1. HLA imputation programs evaluation for all HLA alleles.

Race/Ethnicity Imputation Program Concordance Rate Call Rate Predicted Alleles (n)

European Americans (n = 2,947)1 SNP2HLA 0.975 1.00 210

HLA*IMP:02 0.939 0.985 140

HIBAG 0.976 0.978 175

African Americans (n = 318)2 SNP2HLA 0.919 0.999 174

HLA*IMP:02 0.619 0.768 134

HIBAG 0.929 0.584 131

Concordance and call rates generated from imputed alleles with posterior probability>0.50 versus sequenced alleles after combining data for

HumanOmni1-QUAD and HumanOmni5-QUAD platforms by race/ethnicity.
1) Based on sequencing, 325 distinct four digit alleles were present in the European American population.
2) Based on sequencing, 219 distinct four digit alleles were present in the African American population.

doi:10.1371/journal.pone.0172444.t001

HLA imputation comparison
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BeadChip data was used as input. SNP2HLA and HIBAG maintained high concordance rates

despite the loss of genomic coverage associated with the HumanExome BeadChip, whereas

HLA�IMP:02 showed a greater decrease in concordance. These observations were consistent

in both EAs and AAs. All imputation programs performed well for low frequency alleles with

little differences in concordance rate for frequency<0.05 (0.981 [SNP2HLA]; 0.951

[HLA�IMP:02]; 0.975 [HIBAG]) and for frequency<0.01 (0.979 [SNP2HLA]; 0.945

[HLA�IMP:02]; 0.971 [HIBAG]). (Table 3)

Figs 2 and 3 show the frequency of imputed plotted against concordance rates by imputa-

tion program in EAs and AAs. These figures suggest that HLA�IMP:02 underperformed in

terms of accuracy versus the SNP2HLA and HIBAG in both EAs and AAs. Although the

majority of low frequency alleles had high concordance rates, alleles with poor concordance to

Table 2. Concordance rate and call rate for each imputation program.

European Americans African Americans

Allele Imputation Program Concordance Rate Call Rate Concordance Rate Call Rate

HLA-A SNP2HLA 0.983 0.999 0.969 0.995

HLA*IMP:02 0.963 0.997 0.675 0.855

HIBAG 0.986 0.996 0.960 0.796

HLA-B SNP2HLA 0.969 1.00 0.884 1.00

HLA*IMP:02 0.952 0.979 0.423 0.752

HIBAG 0.978 0.967 0.953 0.403

HLA-C SNP2HLA 0.987 1.00 0.884 1.00

HLA*IMP:02 0.984 0.994 0.792 0.741

HIBAG 0.987 0.992 0.957 0.619

HLA-DPB1 SNP2HLA 0.957 1.00 0.945 1.00

HLA*IMP:02 0.829 0.987 0.567 0.708

HIBAG 0.957 0.975 0.834 0.475

HLA-DQB1 SNP2HLA 0.988 1.00 0.907 1.00

HLA*IMP:02 0.983 0.993 0.845 0.761

HIBAG 0.988 0.990 0.904 0.654

HLA-DRB1 SNP2HLA 0.964 1.00 0.920 1.00

HLA*IMP:02 0.924 0.961 0.414 0.791

HIBAG 0.959 0.946 0.946 0.557

Concordance and call rates generated from imputed alleles with posterior probability>0.50 versus sequenced alleles after combining data for

HumanOmni1-QUAD and HumanOmni5-QUAD platforms by HLA locus and race/ethnicity.

doi:10.1371/journal.pone.0172444.t002

Table 3. Concordance rates and call rates for imputation programs for all HLA loci by platform and allele frequency in European Americans.

SNP2HLA HLA*IMP:02 HIBAG

Platform HumanExome BeadChip .969/.999 .892/.950 .976/.973

HumanOmni1-QUAD .975/1.00 .939/.985 .976/.978

HumanOmni5-QUAD .975/1.00 .938/.985 .975/.977

HumanOmni1-QUAD / HumanOmni5-QUAD .976/1.00 .942/.986 .979/.979

HLA allele Frequency1 Freq.<0.05 .981/- .951/- .975/-

Freq.<0.01 .979/- .945/- .971/-

Freq. indicates frequency cutoff; HLA, human leukocyte antigen.
1) Call rates not estimated when frequency cutoffs were implemented

doi:10.1371/journal.pone.0172444.t003

HLA imputation comparison
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sequence data were likely to be low frequency alleles. Concordance rates for individual alleles

are listed in the Supplemental Materials (S1 File). Table 4 compares concordance and call rates

of common HLA alleles previously associated with autoimmune disease and adverse drug

reactions. These disease-associated alleles had high concordance rates for all imputation pro-

grams in EAs, but a large decrease in accuracy was observed for disease-associated allele in

AAs.

Discussion

We provide a detailed evaluation and comparison of three commonly used HLA imputation

programs. Overall, the programs performed similarly in terms of concordance with sequence

data in EAs. We observed that HLA imputation accuracy was decreased in AAs and when

using genotyping platforms with lower HLA coverage as input. However, SNP2HLA was

observed to predict a greater number of HLA alleles with a higher call rate and was most robust

when using a platform with limited genomic coverage and when imputing alleles in AAs.

Overall, we observed similar concordance rates to sequence results when compared with

previous studies.[6,10,21] Our data are also consistent with previous studies which have shown

that imputation accuracy was decreased in non-Caucasian populations.[6,22] The decrease in

accuracy in AAs may have been due to a reduced linkage disequilibrium structure in this race

group. Reduced imputation accuracy in AAs may also have been due to the use of the T1DGC

as a reference panel, since the T1DGC consists primarily of patients of European descent and

previous studies have shown that HLA imputation accuracy is highly dependent on the racial

similarity between the test and reference populations.[6,10,21] If individuals in our population

Fig 2. Allele frequency versus concordance rates of HLA alleles by imputation program in European

Americans. Concordance rates were generated using OMNI1 and OMNI5 combined SNP-level data and

posterior probability >0.50 for each imputation program.

doi:10.1371/journal.pone.0172444.g002

HLA imputation comparison
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carry an HLA allele that is rare or absent from the individuals in the reference panel, the allele

would not be imputed. Comparisons of HLA imputation programs in admixed populations

are limited. For SNP2HLA, overall imputation accuracies for AAs in this study were high rela-

tive to other studies, possibly indicating high European admixture in the AA BioVU popula-

tion. This observation suggests that SNP2HLA is preferred when an admixed population

without a representative reference population is available.

We observed a higher HLA imputation accuracy for each program studied when input

genotype data had greater coverage in the HLA region. Our data suggest a preference for

genome-wide platforms with greater genomic coverage when imputing HLA alleles. However,

HLA imputation was still high when data from the HumanExome BeadChip, which has 2,061

HLA tags, was used as input, suggesting that valuable information can still be gained in the

absence of high coverage genome-wide platforms. Our results are consistent with a previous

report for HLA-DRB1 alleles in a Finnish population (n = 161) using HLA�IMP and

SNP2HLA, which reported that SNP coverage and quality did not markedly affect HLA impu-

tation results.[10] We found a slight but consistent increase in the accuracy of HLA imputation

for all programs when genomic coverage of the input platform was increased. We also

observed that SNP2HLA was the most robust program with respect to maintaining accuracy

despite a loss of genomic coverage.

Although each of the three HLA imputation programs evaluated performed similarly,

SNPHLA was observed to have the best accuracy call rates overall for most of the analyses per-

formed. SNP2HLA provided a significant advantage in the number of alleles imputed and out-

performed the other two programs in our AA population. The high number of alleles imputed

Fig 3. Allele frequency versus concordance rates of HLA alleles by imputation program in African

Americans. Concordance rates were generated using OMNI1 and OMNI5 combined SNP-level data and

posterior probability>0.50 for each imputation program.

doi:10.1371/journal.pone.0172444.g003

HLA imputation comparison
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with high accuracy offers advantages especially when uncommon alleles are included in analy-

ses. SNP2HLA was also observed to maintain imputation accuracy when genomic coverage

was decreased and when imputing alleles for AA individuals. These data suggest that

SNP2HLA should be used in preference to HLA�IMP:02 and HIBAG in similar populations

genotyped on similar platforms.

Since all programs tested had high concordance rates for most alleles in EAs, with the

HumanExome BeadChip as input, and in low frequency alleles, selection of HLA programs

based on other factors would be reasonable when HLA alleles are being imputed for a homoge-

neous EA population. Such factors might include data output, computing time, and availability

and flexibility of appropriate reference panels. Although all programs impute all the alleles

tested in this study, other alleles such as those in HLA-DPA1 are not imputed in all programs.

SNP2HLA also offers output which includes two digit HLA alleles, HLA amino acid changing

polymorphisms, and phased output files. However, SNP2HLA has a computational restriction

which may force sub-setting of data. In any case, imputation from SNP data may be useable in

research setting with large numbers of samples but not likely to have accuracy to justify use in

clinical practice.[23]

The strengths of our study include a large sample size relative to previous publications as

well as the inclusion of multiple platforms with varying HLA region coverage. Unlike previous

studies, we have performed an extensive set of comparisons within a single population, includ-

ing both class I and II HLA alleles and multiple race groups, including an admixed US

Table 4. Concordance rate and call rate for important disease-associated and adverse drug reaction-associated alleles.

HLA Allele Disease/ADR Imputation Program Concordance Rate (EAs)1 Concordance Rate (AAs)1

B*27:05 ankylosing spondylitis[24] SNP2HLA 0.948 0.667

HLA*IMP:02 0.936 0.250

HIBAG 0.933 1.000

B*57:01 abacavir HSN[17]; flucloxacillin DILI[25] SNP2HLA 0.996 1.000

HLA*IMP:02 0.978 0.118

HIBAG 0.975 1.000

B*58:01 allopurinol SJS/TEN[26] SNP2HLA 1.000 0.857

HLA*IMP:02 1.000 0.621

HIBAG 0.964 0.783

DQB1*02:01 Sjogren’s Syndrome[27] SNP2HLA 0.980 0.518

HLA*IMP:02 0.997 0.957

HIBAG 0.997 0.698

DRB1*03:02 Lupus erythematosus[28] SNP2HLA 0.750 1.000

HLA*IMP:02 - -

HIBAG 1.000 0.951

DRB1*08:01 primary biliary cirrhosis[29] SNP2HLA 0.978 1.000

HLA*IMP:02 0.882 0.154

HIBAG 0.951 -

DRB1*04:01 rheumatoid arthritis[30] SNP2HLA 0.951 0.889

HLA*IMP:02 0.856 0.179

HIBAG 0.927 0.158

Concordance rates were generated using HumanOmni1-QUAD and HumanOmni5-QUAD combined SNP-level data and posterior probability>0.50 for each

imputation program by HLA locus and race/ethnicity. HLA indicates human leukocyte antigen; EA, European American; AA, African American; HSN,

hypersensitivity; DILI, drug-induced liver injury; NA, not applicable; SJS, Stevens-Johnson Syndrome; TEN, toxic epidermal necrosis
1) “-”indicates that the imputation program did not impute the allele.

doi:10.1371/journal.pone.0172444.t004

HLA imputation comparison
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population. Our study has several limitations worthy of mention. A reference population spe-

cific to our AA population was not used and this likely contributed to reduced imputation

accuracy. However, SNP2HLA was robust in terms of concordance rates in AAs, suggesting

that the T1DGC reference population may be sufficient in an admixed US population of AAs.

Our approach underscores the limited availability of appropriate reference panels of HLA

alleles for non-Caucasian individuals. We also did not sequence HLA-DQA1 and–DPA1 alleles

and, thus, no comparison was possible for these alleles, although the variability within these

genes is known to be low. We also did not examine differences in strand concordance for HLA

alleles among the HLA imputation programs. Sequence based typing on a deep sequencing

platform is currently considered the gold standard for class I and II high resolution HLA typ-

ing, but it can be limited by the smaller number of laboratories that have this expertise and the

expense and turnaround time of typing. Since only successfully sequenced samples were

included, samples that might have been difficult to sequence were not reflected in our analysis.

Although we did compare imputation accuracy using the HumanOmni5-QUAD and Huma-

nOmni1-QUAD platforms as input, we did not genotype samples on both platforms and so

these platforms were compared in different subsets of patients. Finally, the racial makeup of

the BioVU population precluded an evaluation and comparison of HLA imputation methods

in other race/ethnic groups such as Asians or Hispanics.

In most scenarios tested, SNP imputation programs performed similarly in terms of con-

cordance. However, SNP2HLA typically had the highest concordance with robust call rates

and provided a significant advantage in the number of alleles imputed. All programs resulted

in better concordance in EAs versus AAs and performed similarly for low frequency alleles.

Our results suggest that high genomic coverage is preferred as input for HLA allelic imputa-

tion. These observations are useful to provide guidance on the best use of HLA imputation

methods and elucidate their limitations.
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