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Adult neurogenesis, the process of generating mature neu-
rons from neuronal progenitor cells, makes critical contribu-
tions to neural circuitry and brain function in both healthy and
disease states. Neurogenesis is a highly regulated process in
which diverse environmental and physiological stimuli are
relayed to resident neural stem cell populations to control the
transcription of genes involved in self-renewal and differentia-
tion. Understanding the molecular mechanisms governing neu-
rogenesis is necessary for the development of translational strat-
egies to harness this process for neuronal repair. Here we report
that the Ras-related GTPase RIT1 serves to control the sequen-
tial proliferation and differentiation of adult hippocampal
neural progenitor cells, with in vivo expression of active RIT1
driving robust adult neurogenesis. Gene expression profiling
analysis demonstrates increased expression of a specific set of
transcription factors known to govern adult neurogenesis in
response to active RIT1 expression in the hippocampus, includ-
ing sex-determining region Y-related HMG box 2 (Sox2), a well
established regulator of stem cell self-renewal and neurogen-
esis. In adult hippocampal neuronal precursor cells, RIT1 con-
trols an Akt-dependent signaling cascade, resulting in the stabi-
lization and transcriptional activation of phosphorylated Sox2.
This study supports a role for RIT1 in relaying niche-derived
signals to neural/stem progenitor cells to control transcription
of genes involved in self-renewal and differentiation.

The adult brain harbors germinal cell niches in the subven-
tricular zone of the lateral ventricles and the subgranular zone
in the dentate gyrus of the hippocampus (1–3). The activation
of these relatively quiescent neural progenitor cell (NPC)2 pop-
ulations and their capacity to differentiate into specialized cells
is under rigorous cellular control (4). Transduction of a variety

of extracellular niche stimuli results in the activation of intra-
cellular regulatory mechanisms within NPCs, signaling cas-
cades that include transcription factors, and epigenetic regula-
tors that serve to finely coordinate gene expression during
neurogenesis (5). The transcription factor sex-determining
region Y-related HMG box 2 (Sox2) is a member of the SOXB1
family of transcription factors with established roles in main-
taining stem cell/progenitor cell properties in diverse cellular
populations (6, 7). Genetic deletion of Sox2 causes neurodegen-
eration and impaired neurogenesis in the adult mouse brain,
whereas human Sox2 mutations are associated with anophthal-
mia, a disorder characterized by cognitive disabilities and de-
fects in hippocampal development (8, 9). Although the role of
Sox2 in stem cell maintenance within the neurogenic niche has
been described previously (10, 11), the molecular mechanisms
that control Sox2 activation in response to appropriate neuro-
genic cues remain poorly characterized.

ES cell self-renewal and pluripotency are regulated by a core
group of transcription factors, including Sox2 (12–14). Al-
though Sox2 is not highly expressed in ES cells, its protein levels
are under stringent control. For example, moderate increases in
Sox2 lead to differentiation of ES cells primarily into neural
ectodermal cells (15), whereas reduced levels of Sox2 trigger
differentiation toward the trophectoderm cell fate (16). Fur-
thermore, Sox2 has a critical role in lineage specification (17),
and Sox2 proteins levels are differentially regulated in distinct
cell lineages during early development. Although Sox2 expres-
sion is under rigid transcriptional control (14), additional post-
transcriptional mechanisms have recently been reported. In
embryonic stem cells, Sox2 stabilization and transcriptional
activation are controlled by a balance of site-specific methyla-
tion and phosphorylation (18, 19). However, it is unclear
whether a similar regulatory cascade operates in NPCs, and the
molecular mechanisms that regulate Sox2 activity in the neu-
rogenic niche remain to be identified.

RIT1 is member of the Ras-related family of small GTP-bind-
ing proteins, a group of structurally related and evolutionarily
conserved proteins that share the ability to undergo guanine
nucleotide-dependent conformational change (20, 21). Func-
tioning with their allied regulatory and effector protein net-
works, Ras-related GTPases serve as critical cellular biotimers,
coupling diverse cellular stimuli to the spatial and temporal
regulation of signal transduction pathways that contribute to
almost every aspect of cellular physiology. RIT1 is widely ex-
pressed, including throughout the human and mouse brain
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(22–24). At the molecular level, we have previously described
roles for RIT1 in the regulation of axonal and dendritic growth
(23), activation of Akt (25–27), and control of cAMP response
element-binding protein transcriptional activity (27). More
recently, we identified a role for RIT1 in the survival of adult-
born hippocampal neurons following traumatic brain injury
(28). Following cortical contusion, RIT1 deficiency resulted in a
significant delay in injury-induced hippocampal neurogenesis,
suggesting that RIT1 might be an integral component of a sig-
naling pathway involved in neural progenitor activation (28).
To generate a deeper understanding RIT1 function in the CNS,
we developed a conditional mouse model allowing doxycycline-
regulated expression of activated RIT1. Here we report that
active RIT1 expression drives robust hippocampal neurogen-
esis through activation of a pro-neural transcriptional program.
RIT1 signaling controls the transcriptional activity of Sox2 in
neural progenitor cells, supporting a key role for RIT1 in the
dynamic regulation of adult neurogenesis.

Results

RIT1 Is Expressed in the Dentate Gyrus—RIT1 loss sensitizes
immature hippocampal neurons to stress-dependent apoptosis
and blunts hippocampal neural progenitor cell activation fol-
lowing traumatic brain injury (23). Consistent with a role for
RIT1 in regulating adult neurogenesis, semiquantitative RT-
PCR analysis confirmed RIT1 expression in both neurogenic
niches of the CNS (Fig. 1A), the subgranular zone in the dentate

gyrus of the hippocampus, and the subventricular zone of the
lateral ventricles. This was validated using confocal laser-scan-
ning imaging of RIT1 protein expression in WT and RIT1�/�

subgranular zone neurospheres (Fig. 1B). To model RIT1 acti-
vation and examine its functional effect on neurogenesis, we
generated a line of constitutively active RIT1-overexpressing
transgenic mice using a neuron-specific binary tetracycline/
doxycycline (Dox)-regulated system in which double trans-
genic (DTG) mice express FLAG-tagged RIT1Q79L when Dox is
removed from the diet (29) (Fig. 1C). Western blotting con-
firmed Dox-regulated expression of the transgene (Fig. 1D).
Moderate in vivo overexpression of active RIT1 was observed
in the dentate gyrus of young adult DTG mice 3 weeks after
removal of the Dox diet (Fig. 1E).

RIT1 Signaling Induces Pro-neural Gene Expression—Cell
cycle regulators, transcription factors, and epigenetic control
proteins are key regulators of adult neurogenesis (30). Because
RIT1 is known to control a variety of transcription factors (21,
27, 31), we performed a pathway-focused PCR array analysis of
the dentate gyrus from DTG mice 3 weeks after removal of
doxycycline from the diet to investigate the expression of genes
known to regulate neurogenesis and neural stem cell differen-
tiation. As seen in Fig. 2A, active RIT1 expression stimulates the
expression of Sox2 (p � 0.05) along with a collection of pro-
neural genes, including Ngn2 (p � 0.01), Ascl1 (p � 0.05), and
NeuroD1 (p � 0.05). These results were independently verified

FIGURE 1. Generation of the conditional RIT1 mouse model. A, semiquantitative RT-PCR demonstrates RIT1 expression in the adult mouse subventricular
zone (SVZ) and DG (n � 4). B, representative confocal images of RIT1 protein expression in WT and RIT1�/� cultured neurospheres. C, schematic representing
the binary transgenic system regulated by Dox to inducibly overexpress RIT1. D, representative Western blotting analysis showing FLAG-RIT1Q79L protein
expression in brain extracts from 4-month-old DTG mice � Dox versus WT control. E, representative immunohistochemistry for FLAG-RIT1Q79L (yellow) in the
dentate gyrus of 4-month-old DTG mice on Dox (�) or 3 weeks after removal of the Dox diet (�). Arrowheads, FLAG-expressing cells. Nuclei (DAPI) are shown
in blue (magnification �20).
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using semiquantitative RT-PCR (Fig. 2, B and C). Because Sox2
has been shown to directly bind the promoters of NeuroD1 and
Ngn2 to enable activation of the neuronal differentiation pro-
gram in response to appropriate neurogenic stimuli (32), we
also examined the expression of more widely known targets of
Sox2 transcription, e.g. Sox21 and Gadd45b. As seen in Fig. 2C,
both Sox21 and Gadd45b levels increased in RIT1Q79L-overex-
pressing DTG mice. Taken together, these data suggest that
constitutively active RIT1 signaling leads to activation of Sox2
and expression of pro-neural genes in the dentate gyrus.

Active RIT1 Stabilizes Sox2 Protein Levels in Vivo and in
Vitro—To determine whether RIT1-dependent pro-neural
gene induction involves Sox2 activation, we next examined
whether RIT1 signaling regulates Sox2 protein levels in vivo
and in vitro. Immunohistochemical analysis using laser-scan-
ning confocal microscopy showed a prominent increase in Sox2
protein levels (p � 0.01) in the dentate gyrus of DTG mice
following Dox withdrawal (Fig. 3, A and D). This result was
confirmed by immunoblotting (Fig. 3C) Transient transfection
of primary hippocampal neural progenitor cells (HNPCs) with

a vector expressing active RIT1 also resulted in elevated Sox2
levels relative to empty vector (p � 0.05) (Fig. 3, B and E).
Together with the gene expression analysis, these data suggest
that RIT1 regulates Sox2 function in the hippocampus.

Active RIT1 Promotes HNPC Expansion—Sox2 plays impor-
tant roles in maintaining neural stem cell/progenitor cell prop-
erties, including their capacity to proliferate and self-renewal
(10, 11). Because RIT1 signaling was capable of directing a pro-
neural transcriptional program, including Sox2 activation, we
reasoned that it might also regulate HNPC proliferation. We
performed immunostaining to identify proliferating (Nestin�/
Ki67�) hippocampal neuronal stem cells. As seen in Fig. 4, A
and C, expression of activated RIT1 leads to robust amplifica-
tion of Nestin�/Ki67� cells within the dentate gyrus. These
results were further confirmed by transfecting HNPCs with a
vector expressing active RIT1 and resulted in increased prolif-
eration, as monitored by the number of Nestin�/Ki67� cells
(Fig. 4, B, and D; p � 0.05). RIT1-dependent HNPC expansion
was accompanied by increased Sox2 transcriptional activity,
monitored using a luciferase reporter assay in transfected

FIGURE 2. Pro-neural gene expression profile associated with RIT1 expression. A, total RNA prepared from the dentate gyrus of DTG mice � Dox diet was
subjected to PCR array analysis for neurogenic transcription factors, and the data were plotted as a heat map. B, semiquantitative RT-PCR validation of the array
data and downstream targets of Sox2 (Sox21 and Gadd45b). C, quantification of RT-PCR data. Results are presented as mean � S.E. calculated from three
separate experiments. *, p � 0.05.
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HNPCs (Fig. 4E, p � 0.01). Cumulatively, these data demon-
strate that RIT1 regulates HNPC proliferation in parallel with
Sox2 transcriptional activation.

RIT1-Sox2 Signaling Regulates Adult Hippocampal Neuro-
genesis—To examine the in vivo effect of active RIT1 expression
on hippocampal neurogenesis, 3-month-old DTG mice were
shifted to a Dox-free diet for 3 weeks, and the number of imma-
ture doublecortin-positive (DCX�) neuroblasts was assessed by
immunostaining. As seen in Fig. 5A, expression of activated
RIT1 results in a marked increase in DCX� neuroblasts com-
pared with DTG mice under Dox suppression (p � 0.01) (Fig. 5,
A and B). Consistent with an ability of Rit to promote adult
hippocampal neurogenesis, there were significant increases in
both Tbr2� (Fig. 5C, p � 0.05) and NeuroD1� intermediate
neural progenitors (Fig. 5, D and E; p � 0.05) in DTG mice
following Dox withdrawal. These data strongly suggest that
RIT1 signaling regulates hippocampal neurogenesis with an
accompanying expansion of immediate neural precursor cells.

RIT1-mediated Sox2 Activation Involves Akt Signaling—Our
previous studies have shown that RIT1 activates a p38/
mTORC2/Akt signaling cascade to promote cell survival in
response to oxidative stress (26). Because Akt is known to phos-
phorylate Sox2 at Thr118, increasing both protein stability and
transcriptional activity (18), we next asked whether RIT1 con-
trols an Akt/Sox2 signaling cascade in HNPCs. Expression of
activated RIT1 increased the number of HNPCs expressing
activated Akt (p � 0.01), monitored by anti-phospho-Akt
Ser473 immunostaining (Fig. 6, A and B). In agreement with the
increase in active Akt, there was an 8-fold increase in the num-
ber of phospho-Sox2-Thr118� nuclei in HNPCs transfected
with active RIT1 compared with empty vector (EV) controls
(Fig. 7, A and C; p � 0.01). Pharmacological inhibitor studies
suggest that RIT1-dependent Sox2 activation requires Akt sig-
naling because treatment with the Akt inhibitor triciribine
resulted in a marked decrease in the number of phospho-Sox2-
Thr118� nuclei in RIT1Q79L-overexpressing HNPCs (Fig. 7, A

FIGURE 3. RIT1 overexpression increases Sox2. A, immunofluorescence for Sox2 in white (white arrowheads, magnification �20), showing that protein
expression is greatly increased in the DG of DTG mice after Dox removal (n � 6/group). Nuclei are shown in blue. B, immunofluorescence of Sox2 (red) in HNPCs
following transfection with FLAG-RIT1Q79L (CA) or EV control. Nuclei are shown in blue (n � 3). C, immunoblot analysis of endogenous Sox2 in the DG of DTG
mice before and after Dox removal (n � 3/group). Note that Sox2 levels increase upon expression of active RIT1. D and E, quantitation of Sox2 expression and
Sox2-expressing cells. Results are presented as mean � S.E. calculated from three separate experiments. *, p � 0.05.
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and C). Moreover, Akt inhibition blocked the RIT1Q79L-medi-
ated increase in Tuj1-immunoreactive neurons in transfected
HNPCs (Fig. 7, B and D; p � 0.05). Taken together, these data
suggest that the RIT1-mediated increase in hippocampal neu-
rogenesis requires Akt-dependent Sox2 activation.

Discussion

NSC proliferation and differentiation are regulated by a vari-
ety of extracellular niche signals (33). Transcriptional cascades
play fundamental roles in NSC regulation and are dynamically
regulated by a large number of synergistic and antagonistic
niche signals to ensure a ready supply of progenitors to meet the
demand for new neurons, oligodendrocytes, and astrocytes
(34). Although the core transcription factor Sox2 is a master
regulator of neural stem cell biology (7), playing a critical role in
neurogenesis within the adult brain (32), the molecular mech-
anisms that control Sox2-dependent neuronal differentiation
remain incompletely characterized.

Here, using a conditional mouse overexpression model
(DTG mice), we identify a role for the RIT1 GTPase in Sox2
regulation and the control of neural progenitor/stem cells. We
observed prominent expression of a set of pro-neural transcrip-
tion factors, including Sox2, in the dentate gyrus of mice
expressing active RIT1 (Fig. 2). Because Sox2 has recently been
shown to bind to the promoters of poised pro-neural genes in
NPCs to enable an appropriate neuronal differentiation (32, 35)
program, including the neurogenic genes Ngn2 and NeuroD1,
we reasoned that RIT1-dependent neurogenic gene expression
might rely on Sox2 activation. Indeed, active RIT1 expression
both increases Sox2 protein levels (Fig. 3) and stimulates Sox2
transcriptional activation (Fig. 4). Presumably, RIT1-depen-
dent Sox2 regulation provides a novel molecular mechanism
for the control of hippocampal neurogenesis in response to
select neurogenic stimuli. In keeping with this hypothesis,
active RIT1 expression drives robust NPC expansion within the
dentate gyrus (Fig. 4). Moreover, although RIT1 deficiency

FIGURE 4. Neuronal RIT1 expression increases HNPC proliferation and Sox2 transcriptional activity. A and C, representative immunofluorescent images
(A) and quantification (C) of the DG from DTG mice immunostained for Nestin (green) and Ki67 (red) to label proliferating neuronal stem cells. Nuclei (DAPI) are
shown in blue. B, HNPCs were transfected with Myc-tagged RIT1Q79L (CA) or EV, and proliferation was assessed by immunohistochemical detection of Nestin
(green) and Ki67 (red) co-labeled cells. D, quantification of HNPC proliferation (Nestin�/Ki67�) as mean � S.E. from three independent experiments. E, HNPCs
were transfected as in A in the presence of a Sox2 luciferase reporter construct. Luciferase activity was evaluated 48 h post-transfection as described under
“Experimental Procedures.” Results are presented as mean � S.E. for three independent experiments repeated in triplicate. *, p � 0.05.
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permits normal levels of basal neurogenesis, we have previ-
ously noted significant defects in hippocampal neurogenesis
following traumatic brain injury (28). Sox2-deficient HNPCs
display increased cell death during neuronal differentiation
(32), and Sox2-null mice have deficits in hippocampal neuro-
genesis and augmented neurodegeneration (36, 37), suggesting
that RIT1 may be needed for injury-mediated Sox2 activation.
Studies are underway to test this hypothesis.

In embryonic stem cells, Sox2 is regulated by competing
posttranslational modifications (18, 19). Site-specific methyla-
tion promotes Sox2 ubiquitination and degradation. In con-
trast, Akt phosphorylates Sox2 at Thr118 (18, 38), antagonizing
methylation, to stabilize Sox2 levels and induce transcription.
As RIT1 was shown to regulate an mTORC2-Akt signaling cas-

cade to promote cellular oxidative stress survival (26), we
explored whether RIT1-mediated Sox 2 activation might
involve Akt signaling. Active RIT1 signaling results in Akt acti-
vation in HNPCs (Fig. 6) and increased levels of total and Sox2-
Thr118p� nuclei (Fig. 7), suggesting that RIT1 controls an Akt-
Sox2 cascade to promote neurogenesis. In support of this
mechanism, pharmacological Akt inhibition blocked active
RIT1-dependent Sox2-Thr118 phosphorylation and the gener-
ation of Tuj1� neurons in transfected HNPCs (Fig. 7).

The self-renewal and pluripotency of embryonic stem cells is
regulated by a core set of transcription factors, including Oct3/
Oct4, Sox2, and Nanog (12–14). Recent advances in cell repro-
gramming have fueled intense interest in the regulation of Sox2
and its role in neural fate determination. Expression of Sox2

FIGURE 5. RIT1 induces hippocampal neurogenesis. A, immunofluorescence detection of DCX (green) expression in the DG of DTG mice (n � 6/group). B,
quantification of DCX� neuroblasts presented as mean � S.E. *, p � 0.05. C, quantification of Trb2� intermediate neural precursors in the DG of DTG � Dox diet
mice for 3 weeks (n � 6/group). *, p � 0.05. D, immunofluorescence detection of NeuroD1 (red, arrowheads), showing that expression is greatly increased in the
DG of DTG mice 3 weeks after removal from the Dox diet (n � 6/group) compared with littermates remaining under Dox suppression. Nuclei are shown in blue
(magnification �20). E, quantification of NeuroD1� neuroblasts (n � 6/treatment group) as mean � S.E. *, p � 0.05.
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alone or as part of a core set of transcription factors has been
shown to drive somatic cell reprogramming (39 – 44). In the
adult CNS, retroviral delivery of Sox2 has been found to directly
or indirectly reprogram resident astrocytes into induced neu-
rons in the injured adult cerebral cortex (45– 47). Importantly,
there is a cellular progression for Sox2-mediated conversion of
adult astrocytes to neurons, involving the neural commitment
of progenitors (46). These induced adult neuroblasts are capa-
ble of in vivo proliferation and generate mature neurons when
supplied with neurotrophic factors or following small-molecule
treatment (46, 47), which may provide a novel strategy for neu-
ronal regenerative therapy. Because RIT1 controls neurogen-
esis and stimulates a Sox2/pro-neurogenic transcriptional pro-
gram, it will be important in future to examine whether active
RIT1 might be used for resident astroglial cell reprogramming.

In summary, these studies extend our understanding of Sox2
regulation, identifying RIT1-Akt-Sox2 cascade signaling as a
mechanism governing NPC proliferation and neurogenesis.
Because RIT1 is known to couple diverse neuronal mitogens
and cellular stress stimuli to transcriptional activation, an
intriguing possibility is that RIT1-mediated Sox2 activation
plays a role in neurogenic niche sensing, serving to link select
environmental or physiological stimuli to neural stem cell self-
renewal and differentiation. Growing literature indicates that
Sox2-dependent reprogramming strategies allow the conver-
sion of glial cells into neurons, allowing the possibility of regen-
erative cell therapy for repair of the damaged brain (45– 49).
Identification of the cellular stimuli that activate RIT1 or induc-
ible delivery of active RIT1 (50) might provide a novel thera-
peutic repair strategy, especially during states of crisis such as
the aftermath of traumatic brain injury.

Experimental Procedures

Materials—The following materials were used: DMEM and
F12 nutrient mixture (Gibco), triciribine (Millipore), Jetprime
transfection reagent with buffer (Polyplus), doxycycline, fetal
bovine serum (Gibco), N2 supplement (Thermo Fisher), B27
supplement (Thermo Fisher), RT-PCR buffer, RT Aid enzyme
and ribonuclease inhibitor (Thermo Fisher), RT2 Profiler neu-
rogenesis PCR array system (SA Biosciences), and SYBR Green
with reference control (Bio-Rad).

Animals—All experimental procedures were approved by
the University of Kentucky Institutional Animal Care and Use
Committee in accordance with guidelines established by the
National Institutes of Health in the Guide for the Care and
Use of Laboratory Animals. Animals were housed up to 5 mice/
cage in the University of Kentucky Medical Center vivarium
with a 14:10-h light/dark photoperiod and were provided food
and water ad libitum. DTG mice were produced by transgen-
esis to overexpress RIT1Q79L in a subset of CNS cells using a
regulated binary system based on the tetracycline transactiva-
tor protein and the Tet operator (pBI Tet responder, Clontech).
Active RIT1 was engineered to contain three copies of the
FLAG tag peptide at the N terminus so that it could be distin-
guished from the endogenous protein. A fragment from the
pBI-FLAG-RIT1Q79L vector was released and microinjected
into the pronuclei of oocytes (University of Cincinnati Gene
Targeting Core, Cincinnati, OH) from C57BL/6 mice. Mice
expressing the tTA gene under the control of the Ca2�-cal-
modulin-dependent kinase II � promoter, CaMKII-tTA (Tet-
Off), were obtained from The Jackson Laboratory (003010)
(51), permitting co-expression of LacZ and FLAG-tagged
RIT1Q79L within the CNS, including the dentate gyrus (29).
From the prenatal period to the time of study initiation, DTG

FIGURE 6. RIT1 regulates Akt in HNPCs. A, HNPCs were transfected with either EV or FLAG-tagged RIT1Q97L (CA), and immunohistochemistry was used to
detect Nestin (red) and active Akt (green, phospho-Akt (Ser473)) (magnification �20). B, quantification of HNPC proliferation as mean � S.E. from three
independent experiments. *, p � 0.05.
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transgenic mice (and their dams) were given dietary supple-
mentation of Dox, an analog of tetracycline, in their chow (200
mg/kg) to suppress FLAG-tagged RIT1Q79L expression. tTA lit-
termates also received Dox-supplemented food. Selective neu-
ronal FLAG-RIT1 expression was achieved by switching mice
to a normal chow diet (�Dox) for 3 weeks.

Isolation and Passage of HNPCs—HNPCs were isolated from
wild-type mice as described previously (52). Briefly, mice were
euthanized and immediately sterilized using 70% ethanol. The
brain was quickly dissected and immersed in dissection buffer
(HBSS (1�) with no Ca2� or Mg2� and 1� antibiotic solution
(1� antibiotic-antimycotic, Gibco)). Using a stereomicroscope,
the dentate gyrus (DG) was dissected and placed in dissection
buffer on ice. Typically, four to five hippocampi were pooled.
After several washes with HBSS (1�), the tissue was incubated
with enzymatic digestion solution (0.25% trypsin in 1� HBSS
with activated papain) at 37 °C for 30 – 45 min with frequent
shaking. Following digestion, trypsin activity was quenched by
repeated washing with 5–10 ml of DMEM, and prewarmed cul-
ture medium (N2 containing DMEM/F12 (1:1) with antibiotics,
EGF (20 ng/ml), and FGF2 (10 ng/ml)) was added. The tissues
were triturated using fire polished Pasteur pipettes three to four
times to release hippocampal NPCs. Approximately, 50 � 104

cells were plated in 12-well plates for 4 –5 days. Neurospheres

are evident from day 3 onward. For passaging purposes, the
neurospheres from the respective groups were pooled and
mechanically dissociated before replating for further culture.
All cells used in this study were passaged at least twice. Neuro-
spheres were counted using a grid on a microscope.

Cell Transfections and Treatments—For HNPC transfec-
tions, fresh neurospheres were passaged, and �105 cells were
plated on poly-D-lysine-coated 12/18-mm coverglasses after
appropriate sterilization using nitric acid and repeated auto-
claving (53). Cells were transfected 72 h using Jetprime trans-
fection reagent after the initial plating, which is necessary for
HNPCs to regain contact. All DNA constructs used in this
study have been described previously (27, 28, 54, 55). Jetprime
transfection reagent has been shown previously to mediate effi-
cient transfection of murine neuronal stem cells (53). Briefly,
pCMV10-Myc RIT1Q79L or empty pCMV10 (1 �g) vector was
mixed with 2 �l/�g Jetprime reagent according to the protocol
of the manufacturer. For transfection, 200 �l of culture
medium was collected and mixed with the transfection mixture
and distributed in a dropwise method with frequent stirring.
The cells were incubated for 6 –7 h and washed with Dulbecco’s
phosphate-buffered saline (1�, Corning), and fresh complete
medium was added. Cells were allowed to recover for 48 h. To
monitor the transfection efficiency, we performed RT-PCR for

FIGURE 7. RIT1-mediated Sox2 activation requires Akt. A, HNPCs were transfected with either EV or activated RIT1 (CA) and treated with or without Akt
inhibitor (triciribine, 10 �M) for 12 h, and immunofluorescence was used to detect Nestin (red) and cellular levels of Sox2-Thr118 phosphorylation (green). B,
HNPCs expressing FLAG-tagged RIT1Q79L were treated with Akt inhibitor and grown in complete neuronal differentiation medium for 6 days. Neuronal
differentiation was assessed by immunofluorescence detection of Tuj1� neurons (magnification �20). C and D, quantification of phospho-Sox2� and Tuji1�

neurons, respectively, as mean � S.E. from three independent experiments. *, p � 0.05.

RIT1 Controls Neurogenesis

FEBRUARY 10, 2017 • VOLUME 292 • NUMBER 6 JOURNAL OF BIOLOGICAL CHEMISTRY 2061



RIT1 and confocal laser-scanning microscopy for the tag pro-
tein Myc in these cultures. We could always get 	75% transfec-
tion efficiency in our experiments. For neuronal differentiation
assays, cells after treatments were differentiated by addition of
1% FBS and retinoic acid (1 �M) for 4 – 6 days.

Tissue Collection and Processing—Animals received an over-
dose of Fatal-plus (65 mg/kg intraperitoneal sodium pentobar-
bital) and were perfused with 0.98% saline followed by 4% para-
formaldehyde (56). Brains were removed from the skull
immediately and post-fixed in 4% paraformaldehyde at 4 °C for
2 days. Brains were then washed extensively to remove the
excess paraformaldehyde and incubated in increasing concen-
trations of 10 –30% sucrose solution overnight for 3 days at
room temperature. Finally, fully immersed brains were cryosec-
tioned. The tissue blocks were embedded in optimal cutting
compound (OCT) and snap-frozen. All blocks were allowed to
stand at �80 °C for at least 2 days before sectioning using a
cryostat.

Immunohistochemistry—Coronal brain sections, 15 and 40
�m, were cut and mounted on positive fixed microfrosted glass
slides (Fisher Scientific). General antigen retrieval was per-
formed in citrate buffer (pH 6) (57). BrdU antigen retrieval was
performed using warm trypsin (0.25%) containing 2 N HCl. Sec-
tions were washed in PBS and incubated in blocking and per-
meabilizing buffer (1% serum (matching the host of the second-
ary antibody that was used) and 1% Triton X-100 in PBS) for 10
min at room temperature, followed by extensive washing (in
PBS (pH 7.4)). Primary antibodies against RIT1 (14G7) (Santa
Cruz Biotechnology), FLAG, Ki67 (rabbit), BrdU (Sigma), Dou-
blecortin (DCX) (Millipore), Sox2 (Abcam), NeuroD1 (donkey)
(Santa Cruz), Nestin (Covance), Akt, phospho-AktS473, �III
tubulin, ERK1/2, anti-phospho-ERK1/2 (Cell Signaling), and
phospho-Sox2T118 (ECM Biosciences) were diluted in blocking
serum, incubated overnight with sections at 4 °C, followed by
extensive washing with 1� PBS (room temperature). Then, sec-
ondary antibodies, either conjugated with Alexa 488, Alexa 568,
Alexa 594, or phycoerythrin, were applied to the sections for 2 h
in the dark, followed by extensive washing with 1� PBS (room
temperature). The sections were air-dried, mounted with
DAPI-containing medium, and imaged 2–3 days later for cov-
erslips to settle. For immunocytochemistry, cells were fixed in
4% paraformaldehyde for 15 min at room temperature and per-
meabilized and blocked as described for tissue sections. Imag-
ing was performed using either a Nikon A1 or C2 confocal
microscope. All images were acquired using the NIS Elements
software package.

PCR Array—The mouse neurogenesis RT2 Profiler PCR array
(Qiagen) was used for neurogenesis-specific transcription fac-
tor screening. Briefly, mice were sacrificed, and total RNA was
prepared (Promega SV total RNA kit) from the dentate gyrus of
DTG mice (lifetime doxycycline diet (control) or 3 weeks after
removal of the Dox diet (�Dox)) and immediately frozen at
�70 °C. Aliquots of RNA (500 ng from each group) were re-
verse-transcribed using a Bio-Rad RT kit. The cDNA was di-
luted 1:3 in ultrapure water for the final PCR. The cDNA was
mixed with SYBR Green into the array plates, and cycling was
performed according to the instructions of the manufacturer. A
melt curve analysis was performed to check for product integ-

rity. The values were obtained using the 
CT method and plot-
ted as heat maps.

Semiquantitative Real-time PCR—Briefly, total RNA was
prepared from the dissected hippocampi and subventricular
zones separately under aseptic conditions from each mouse
(56) using a Promega SV total RNA isolation kit. RNA was
stored immediately at �70 °C in aliquots. RNA (100 ng/sample)
was reverse-transcribed using the iScript first strand synthesis
kit (Bio-Rad) with the following gene-specific primers: Sox2,
5�AAGCCATGAATGCAGAGGAGGACT3� (forward) and
5�AGCTGCAGG CAGCCGGCGACC3� (reverse); Ascl1, 5�
CCCCCAACTACTCCAACGAC3� (forward) and 5�GTCCA-
GCAGCTCTTGTTCCT3� (reverse); Sox215, �CTCATCCTT-
CCTCCCTCCCG3� (forward) and 5�CCAAGCCAGCGGAC-
TCAGAGAC3� (reverse); Gadd45b, 5�CCTGGCCATAGAC-
GAAGAAG3� (forward) and 5�AGCCTCTGCATGCCTGAT-
AC3� (reverse); BDNF, NeuroD1, 5�AAGCCATGAATGCAG
AGGAGGACT3� (forward) and 5�AGCTGCAGGCAGCCG-
GCGACC3� (reverse); Neurog2, 5�TCACGAAG ATCGAGAC-
GCTG3� (forward) and 5�CTCCAGGAGGAAGGTGGAGA3�
(reverse); and GAPDH, 5�TGCACCACCAACTGCTTAGC3�
(forward) and 5�GGCATGGACTGTGGTCATGAG3� (re-
verse). PCR products were amplified using DreamTaq Green
(Thermo Fisher), resolved on 1–2% agarose gels, and imaged
with Gel Logic 112 (Fisher Biotech).

Luciferase Gene Reporter Assays—The Cignal Sox2 reporter
(Qiagen, CCS-0038L) contains repeats of the Sox2 promoter
and Sox2 binding sites driving firefly luciferase expression.
HNPCs were allowed to adhere for 72 h after replating and then
transfected with EV or RIT1 Q79L (RIT1 CA). Approximately
72 h post-transfection, cells were washed with PBS and lysed for
30 min in passive lysis buffer (Promega luciferase kit). The
lysate was centrifuged at 12,000 � g for 30 s at room tempera-
ture and put on ice for immediate use or frozen at �80 °C. A 10-
to 15-�l aliquot of the lysis supernatant was mixed with 100 �l
of detection reagent, and luminescence was recorded using a
luminometer with a 10-s time interval. The readings were noted
and averaged for statistical purposes.

Statistical Analysis—All data are represented as mean � S.E.
Statistical analysis was carried out by either non-parametric
unpaired one-tailed t test or one-way analysis of variance com-
bined with post hoc analysis using Tukey-Kramer multiple
comparisons. Comparisons with p � 0.05 were considered
significant.
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