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Genetic models for studying localized cell suicide that halt the
spread of pathogen infection and immune response activation in
plants include Arabidopsis accelerated-cell-death 11 mutant
(acd11). In this mutant, sphingolipid homeostasis is disrupted
via depletion of ACD11, a lipid transfer protein that is specific
for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding
site in ACD11 and in human ceramide-1-phosphate transfer pro-
tein (CPTP) is surrounded by cationic residues. Here, we investi-
gated the functional regulation of ACD11 and CPTP by anionic
phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phospha-
tidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (<15
mol %) in C1P source vesicles depressed C1P intermembrane
transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phos-
phatidylserine stimulated C1P transfer by ACD11 and CPTP.
Notably, “soluble” phosphatidylserine (dihexanoyl-phosphatidyl-
serine) failed to stimulate C1P transfer. Also, none of the anionic
phosphoglycerides affected transfer action by human glycolipid
lipid transfer protein (GLTP), which is glycolipid-specific and
has few cationic residues near its glycolipid binding site. These
findings provide the first evidence for a potential phosphoglyc-
eride headgroup-specific regulatory interaction site(s) existing
on the surface of any GLTP-fold and delineate new differences
between GLTP superfamily members that are specific for C1P
versus glycolipid.

Sphingolipids (SLs)4 regulate key physiological processes,
including cell mitogenesis, growth, migration, and differentia-
tion as well as stress-induced programmed cell death responses
(autophagy and apoptosis) (1– 4). Because SL synthesis occurs
at distinct sites in cells, SL distribution and localization to var-
ious membrane organelles involves vesicle- and non-vesicule-
mediated transport processes. When ceramide is initially gly-
cosylated in the Golgi, nonvesicular transfer can occur via
proteins characterized by a glycolipid transfer protein fold
(GLTP-fold) (5–7). The GLTP-fold consists of multiple �-heli-
ces arranged in a two-layer “sandwich” topology to form a single
sphingolipid binding site (8 –12). A newly discovered family
within the GLTP superfamily uses a modified GLTP-fold to
selectively transfer ceramide 1-phosphate (C1P) rather than
glycosphingolipids between membranes (12–14). Human C1P
transfer protein (CPTP; 214 amino acids) is encoded by a three-
exon transcript from the single-copy CPTP gene5 on chromo-
some 1 (locus 1p36.33). By contrast, human GLTP (209 amino
acids) originates from a five-exon transcript from single-copy
GLTP on chromosome 12 (locus 12q24.11) (15). The shared
folding topology (but with different SL specificity generated
from the limited sequence homologies of CPTP and GLTP)
serves as a striking example of evolutionary convergence and
emphasizes the structural premium placed on GLTP-fold con-
servation by eukaryotes.

CPTPs, like GLTPs, occur almost ubiquitously in eukaryotes
but play key roles in controlling inflammation and programmed
cell death processes (12–14). Arabidopsis thaliana contains a
CPTP orthologue known as ACD11 that functions as a lipid
transfer protein for C1P and phyto-C1P (13). The ACD11 name
originates from the accelerated cell death (acd) phenotype
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observed upon disruption of the acd11 gene (16). In the Arabi-
dopsis acd11 mutant, altered sphingolipid homeostasis mani-
fests as moderately increased C1P and highly increased cer-
amide that help drive a programmed cell death response (13).
Arabidopsis acd mutants provide genetic models for studying
localized cell suicide that can halt the spread of pathogen infec-
tion and immune response activation in plants (2, 17, 18).

ACD11, CPTP, and GLTP are considered to be amphitropic
proteins because their functionality involves translocation
on/off membranes to bind and release the sphingolipid cargo
(19 –21). Amphitropic proteins often contain so-called lipid
binding domains (LBDs) that bind specific phosphoglyceride
headgroups within membranes to help target and tether to
select cell membrane destinations (22–27). LBDs, such as the
C1, C2, PH, PX, and FYVE domains, differ structurally from the
GLTP-fold. In the case of ACD11, CPTP, and GLTP, the pro-
tein region surrounding the sphingolipid binding site contains
differing numbers of tryptophans, tyrosines, lysines, and argin-
ines, residues known to be concentrated in the membrane
interaction regions of proteins (28 –32). Clusters of positively
charged Arg and Lys residues occur near the SL binding site in
ACD11 and CPTP, but not in GLTP (12, 13). This raises the
issue of whether the cationic residue clusters of ACD11 and
CPTP might be topologically organized to engage specific
phosphoglyceride headgroups during membrane interaction.

Herein, we report the discovery of stimulation of C1P trans-
fer by ACD11 when phosphatidylcholine (PC) bilayer vesicles
contain both phosphatidylserine (PS) and C1P. A PS stimula-
tory effect also was observed on human CPTP transfer of C1P.
By contrast, slowdowns in the C1P transfer rate were observed
in the presence of other anionic phosphoglycerides (phospha-

tidic acid, phosphatidylglycerol). Inclusion of PS had no effect
on glycolipid transfer by human GLTP. Our findings suggest
the presence of a potential PS-specific headgroup interaction
site on the surface of C1P-specific ACD11 and CPTP.

Results

X-ray crystallography of ACD11 and CPTP previously
revealed a sphingolipid headgroup recognition site containing a
positively charged Arg/Lys triad that binds C1P in “transfer-
viable” fashion (13, 14). Co-crystallization with other phos-
phate headgroup lipids showed altered non-transfer-viable
interactions involving the same binding site. We initially deter-
mined whether fluorescence emission of the intrinsic Trp resi-
dues in ACD11 serves as an indicator of transfer-viable
protein�lipid complex formation. The two Trp residues in
ACD11 are located on the protein surface (Fig. 1a). Trp-145 in
helix-6 is at a highly conserved location in the membrane inter-
action region of the GLTP-fold (12, 13) and is 16 –19 Å from the
bound C1P headgroup. Trp-206, which forms the C terminus,
is closer to the bound C1P headgroup (7–9 Å) and is more
favorably positioned for detecting environmentally induced
fluorescence emission changes associated with C1P binding.
Fig. 1b illustrates a typical Trp emission response for ACD11
upon titrating with C1P. The Trp emission �max undergoes pro-
gressive blue-shifting (i.e. 347 to 342 nm), whereas the fluores-
cence intensity decreases in response to stepwise additions of
N-octanoyl C1P dissolved in ethanol (titration increments �10
mol % total ACD11). A saturation response is eventually
achieved, as �max blue-shifts to �342 nm and the total Trp
emission intensity declines by �20 –30%. A similar but stron-
ger response occurs during glycolipid uptake by GLTP and
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FIGURE 1. C1P binding to ACD11 in solution. a, structure of ACD11 (13) showing the location of intrinsic Trp (W145 and W206) with respect to bound C1P
(Protein Data Bank entry 4NTI). b, ACD11 Trp emission change induced by C1P uptake. N-Octanoyl-C1P was added stepwise (C1P step concentration � 0.08 �M

in EtOH (1 �l)) to ACD11 (1 �M) stirring in buffer (sodium phosphate (pH 6.6) containing 150 mM NaCl) with 5-min incubation times between injections. The
vertical arrow indicates response to increasing C1P concentration. Increments beyond the sixth addition (�0.48 �M C1P) induce little change in Trp emission
intensity or wavelength maximum (�max blue shift), yielding a saturable binding response. c, same as b, but lipid titrant is sphingosine 1-phosphate; d, same as
b, but lipid titrant is phosphatidic acid; e, same as b, but lipid titrant is ceramide; f, same as b, but lipid titrant is sphingomyelin.
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related orthologs that differ from ACD11 by having a Trp resi-
due within the glycolipid binding site (33–35). Titration of
ACD11 with sphingosine 1-phosphate or phosphatidic acid,
which contain phosphate headgroups but are not transferred
(13), induced no significant change in Trp emission �max (Fig. 1,
c and d). Other sphingolipids, such as ceramide, which is not
transferred (13), elicited almost no change (Fig. 1e), whereas
sphingomyelin, which is transferred slowly (36), elicited a weak
response (Fig. 1f).

Formation of the ACD11�C1P complex indicated by the
intrinsic Trp emission changes was verified by electrospray ion-
ization mass spectrometry (ESI-MS). Fig. 2a shows the raw
spectra obtained by direct infusion of ACD11�C1P complex
solution under nondenaturing conditions. Deconvolution
reveals that the positive ions (�8 and �9) correspond to mono-
meric complex (ACD11 � N-octanoyl C1P; 23,186 Da) plus
small amounts of monomeric, C1P-free ACD11 (22,681 Da)
(Fig. 2b). Compared with ESI-MS analyses of human GLTP and
HET-C2 fungal GLTP binding of monohexosylceramide (33,
34), ACD11 showed stronger complexation based on the
energy needed to disrupt the complex. This could reflect
involvement of the positively charged Arg/Lys triad in binding
the negatively charged phosphate of the C1P headgroup. No
complexation could be detected with sphingomyelin, which is
transferred slowly by ACD11 (36).

The X-ray structures for ACD11 and human CPTP (13, 14)
also show the sphingolipid binding sites surrounded by posi-
tively charged residue clusters that are absent in human GLTP
(supplemental Fig. 1, a– c). This raised the issue of whether
anionic membrane phospholipids influence the function of
ACD11 and CPTP more strongly than GLTP because the mem-
brane interaction region of the GLTP-fold encompasses the
sphingolipid headgroup recognition site (12). To evaluate this
possibility, we tested the effect of the negatively charged phos-
pholipids PG, PS, and PA on sphingolipid departure rates from
1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) ves-
icles by ACD11, CPTP, and GLTP. A well established approach
(Fig. 2c) based on loss of fluorescence resonance energy transfer
(FRET) was used to obtain real-time kinetic insights into lipid
intermembrane transfer (13, 14, 37– 40). In the assay, fluores-
cent anthrylvinyl (AV)-sphingolipid (energy donor) and
3-perylenoyl (Per)-PC (energy acceptor) are both incorporated
into POPC vesicles either lacking or containing negatively
charged phosphoglyceride. Fig. 2d illustrates the FRET
response observed by excitation of AV-sphingolipid (AV-SL) at
370 nm, resulting in minimal AV emission (400 – 450 nm) and
strong Per-PC emission (460 –560 nm). The addition of protein
plus excess POPC receiver vesicles (containing no lipid fluoro-
phores) triggers a sudden, time-dependent loss of FRET as
AV-SL departs while the nontransferable Per-PC remains in
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the SL source vesicles, consistent with AV-SL intermembrane
transfer. With ACD11 or CPTP, the resulting increase in
AV-C1P emission (Fig. 2d) enables monitoring of the AV-SL
intermembrane transfer rate. If no transfer protein is added,
almost no increase in AV emission is observed, confirming very
slow spontaneous migration of AV-C1P to POPC receiver ves-
icles (41– 43). If POPC receiver vesicles are omitted and protein
amounts are increased by 20 –30-fold, then only slight increases
in AV-SL emission are observed, showing that AV-C1P binding
to ACD11 does not account for FRET loss (e.g. see Ref. 14).
With catalytic protein amounts, the “shuttle-like” protein
action keeps AV-C1P transferring from the outer surfaces of
the SL source vesicles to the receiver vesicles until dynamic
equilibrium is reached (�10 min).

The in vitro assay design is intended to reflect certain aspects
of the physiological situation. In mammals, C1P is initially pro-
duced by ceramide kinase at select sites, such as the cytosolic
face of the trans-Golgi, and is then transported to certain intra-
cellular membranes. For this reason, C1P is localized initially
only in the donor vesicles rather than in both the donor and
acceptor vesicles. Anionic phosphoglycerides also often local-
ize to intracellular membrane cytosolic faces (72), where they
can encounter CPTP. Our experimental set-up takes these
physiological factors into account.

C1P Transfer by ACD11 and CPTP Is Slowed by PA and PG
but Accelerated by PS—Studies of the regulation of GLTP and
its homologs by anionic phosphoglycerides previously focused
on mammalian GLTP (38, 44, 45), the fungal HET-C2 GLTP
(46), and the GLTPH domain of FAPP2 (35). With GLTP,
including anionic phosphoglycerides, such as PA, PG, PS, and
PI, in sphingolipid source vesicles impedes GalCer intermem-
brane transfer at low ionic strength due to enhanced membrane
association by GLTP (i.e. Ka). However, adding salt to raise the
ionic strength to physiologic or higher levels abrogates the
enhanced membrane partitioning and restores GLTP transfer
to rates similar to those observed when sphingolipid source
vesicles lack negatively charged phosphoglycerides. The earlier
studies involved GLTP purified from bovine brain (38). Here,
ACD11 and CPTP functional regulation by anionic phospho-
glycerides at physiologic ionic strength was studied using
human GLTP expressed in Escherichia coli as a control (Fig. 3,
a–i). AV-C1P kinetic transfer rates decreased nonlinearly in
response to increasing 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphate (POPA) and 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-(1�-rac-glycerol) (POPG) concentrations ranging
from 2 to 15 mol % in the sphingolipid source vesicles for both
ACD11 (Fig. 3, a and d) and CPTP (Fig. 3, b and e). C1P transfer
by both transfer proteins became maximally suppressed when
POPA reached �4 mol %, whereas inclusion of only 2 mol %
POPG resulted in C1P transfer reduction that remained low at
the higher POPG molar fractions. Fig. 3, c and f, shows that
increasing POPA and POPG concentrations (from 2 to 15
mol %) produced virtually no slowdown in the AV-GalCer
transfer rate by human GLTP at physiologic ionic strength.

The responses of ACD11 and CPTP to 1-palmitoyl-2-oleoyl-
sn-glycero-3-phospho-L-serine (POPS) sharply contrasted to
those elicited by POPA and POPG. Increasing the POPS in
sphingolipid source vesicles over the same range (2–15 mol %)

strongly stimulated C1P transfer rates (Fig. 3, g and h). With
ACD11, the transfer rate more than doubled when POPS con-
centrations reached 10 mol % (Fig. 3j). With CPTP, the rate
increases were slightly less at equivalent POPS molar fractions
(Fig. 3k). By contrast, with human GLTP, no increase in the
AV-GalCer transfer rate was observed over the same POPS
concentration range (2–15 mol %) in the sphingolipid source
vesicles (Fig. 3i). Neither calcium nor other divalent cations
were needed to elicit the POPS stimulatory effect. Notably,
however, when the POPC receiver (acceptor) vesicles con-
tained the POPS instead of the C1P source (donor) vesicles, the
increase in C1P was not observed for either ACD11 or CPTP
(Fig. 4, a and b). To explain our findings, we hypothesized that
the membrane interaction regions of ACD11 and CPTP possess
a PS-specific headgroup interaction site but with no associated
hydrophobic pocket for accommodating the PS acyl chains.
Such an arrangement would enable the PS acyl chains to remain
embedded in the membrane while the PS headgroup acts as a
selective tethering/activation site for ACD11 and CPTP. To test
this idea, we assessed ACD11 and CPTP for their ability to
transfer AV-PS between vesicles, but none was observed (Fig.
4c). This lack of PS transfer is noteworthy because other lipid
transfer proteins exist that can transfer more than one lipid
type. Yeast Sec 14 phosphatidylinositol transfer protein con-
tains overlapping binding/transfer sites for either phosphatidy-
linositol or phosphatidylcholine (47). Also, certain oxysterol-
binding protein family members that originally were thought to
bind/transfer only sterol derivatives have since been shown to
also bind/transfer of PS and phosphatidylinositol 4-phosphate
(48 –53).

Membrane Partitioning of ACD11—We initially evaluated
using surface plasmon resonance at physiological ionic
strength. After adsorbing vesicles of differing lipid composition
to the lipophilic sensor chip, protein was introduced into the
flow cell. Fig. 5a shows the enhanced partitioning to POPC/C1P
(85:5) vesicles containing 10 mol % POPS or POPG by ACD11
compared with either POPC/C1P (95:5) or POPC vesicles.
Using FRET, we further assessed ACD11 interaction with
membranes of differing phosphoglyceride composition. Fig. 5
(b, c, and d) shows the spectral responses observed when
ACD11 was titrated with increasing amounts of POPC/AV-PC
(98:2) vesicles. Membrane interaction by ACD11 resulted in a
nonlinear decline in the Trp emission intensity with increasing
POPC/AV-PC vesicles in saturation-like fashion due to the
spectral overlap of the intrinsic Trp emission of ACD11 (energy
donor) and the AV excitation signal associated with PC (energy
acceptor). Comparison of the interaction curves (Fig. 5d) shows
that having POPS (10 mol %) in the PC membrane interface
slightly enhanced FRET compared with the diminished FRET
elicited by POPG. A similar outcome was observed when
AV-C1P replaced the AC-PC in the POPC vesicles (data not
shown).

No C1P Transfer Acceleration by “Soluble” PS—To test
whether POPS stimulates C1P transfer by ACD11 and CPTP by
helping to optimally orient the C1P binding site of CPTP during
membrane interaction, we investigated whether soluble PS
with short acyl chains (dihexanoyl-PS) stimulates C1P transfer
by ACD11 and CPTP. We reasoned that little or no activation
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by soluble PS should occur because its high aqueous solubility
(critical micelle concentration �0.7 mM; see Ref. 54) is expected
to lower its ability to remain embedded in the POPC bilayer
vesicle compared with POPS. We found that replacing POPS
with di-1,2-dihexanoyl-sn-glycero-3-phospho-L-serine (di-6:0
PS) in the sphingolipid source vesicles decreased C1P transfer
rates by ACD11 (Fig. 6a) and CPTP (Fig. 6b), whereas relatively
little effect was exerted on GalCer transfer by GLTP (data not
shown). We also tested whether buffer containing di-6:0 PS
affects fluorescent C1P transfer from sphingolipid donor POPC
vesicles containing no POPS. Fig. 6 (c and d) shows that the C1P
transfer rate by ACD11 and CPTP was neither decreased nor
stimulated by stepwise increases in soluble PS that reached 100
�M, which represents a 100 –120-fold increase over the 10
mol % POPS in POPC vesicles. Similarly, di-6:0 PS produced
no enhancement of AV-GalCer transfer by GLTP (data not

shown). Altogether, our findings are consistent with weak embed-
ding of soluble PS in POPC membranes, thus rendering it ineffec-
tive for enhancing the oriented protein-membrane interaction
needed to stimulate C1P uptake by ACD11 and CPTP.

Discussion

Our investigation provides the first evidence for the exist-
ence of a phosphoglyceride regulatory interaction site(s) on the
GLTP-fold surface of a GLTP superfamily member. The GLTP-
fold is a structural motif that uses an all �-helical, two-layer
“sandwich” topology to form a single, distinct sphingolipid
binding site (8, 11–14). Our data indicate that PS stimulates the
sphingolipid transfer activity of C1P-specific GLTP-folds (i.e.
plant ACD11 and human CPTP). This stimulation by PS is a
special feature of the C1P-specific GLTP-fold and is not dupli-
cated by the glycolipid-specific GLTP-fold (i.e. human GLTP).
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Other negatively charged phosphoglycerides (e.g. PA and PG)
exert an opposing effect on ACD11 and CPTP function and
slow the C1P transfer rate from sphingolipid source vesicles at
physiological ionic strength. These same phosphoglycerides
show no inhibitory effect on recombinant, glycolipid-specific
human GLTP, consistent with earlier studies of GLTP purified
from bovine brain (38). The findings indicate that potential
post-translational processing differences are not responsible
for the lack of response by GLTP to anionic phosphoglycerides.
Previously, the essential role of FAPP2 in glycosphingolipid
biosynthesis in the Golgi was shown to involve its C-terminal,
glycolipid-specific GLTP homology domain (5–7, 35). How-
ever, the regulatory features controlling the membrane
interaction of FAPP2 focused only on its N-terminal pleck-
strin homology domain that interacts with phosphatidyli-
nositol 4-phosphate without attention to the GLTP domain.

We expected that negatively charged phosphoglycerides
embedded in PC membranes would down-regulate ACD11 and
CPTP transfer activity by increasing protein affinity for the SL
source vesicles because of the high density of positively charged

residues in the membrane interaction regions surrounding the
C1P recognition centers (13, 14). Indeed, surface plasmon res-
onance indicates enhanced partitioning of ACD11 to POPC
vesicles containing either POPG or POPS compared with
POPC or POPC/C1P (95:5) vesicles. However, ACD11 Trp-to-
AV-PC FRET shows a diminished response when POPC vesi-
cles contain POPG but a slightly enhanced response by POPC
vesicles containing POPS compared with POPC vesicles. In this
regard, it worth remembering that the FRET efficiency is
affected by both distance and orientation of the fluorophores.
The two Trp residues in ACD11 are located adjacent to the C1P
binding site. We conclude that the enhanced partitioning
driven by POPG leaves ACD11 in an orientation on the mem-
brane that slows C1P uptake/transfer. By contrast, a more
favorable orientation that helps enhance C1P uptake/transfer
(and increases FRET efficiency) is elicited by PS.

Regarding POPA, a possibility also considered for the dimin-
ished C1P transfer induced is competition for the C1P binding
site that impairs C1P uptake. Both PA and C1P have phosphate
as a headgroup. Our earlier X-ray studies revealed distorted
interaction of PA (compared with C1P) with the CPTP sphin-
golipid binding site, resulting in no PA transfer (14). We
detected no AV-PA transfer by ACD11 or CPTP in control
experiments (not shown), in agreement with our earlier find-
ings (13, 14). Weak competition by PA for the C1P binding site
cannot be absolutely ruled out, given the slowdown in AV-C1P
transfer evident at higher POPA concentrations.

When evaluating lipid transfer processes, factors pertaining
to the membrane also need consideration besides the protein
structural features and simple charge-charge effects. The mem-
brane serves as a matrix for both the “substrate” C1P and the
“effector” anionic phosphoglycerides. In bilayer vesicles, the
C1P located in the bilayer outer leaflet represents the sphingo-
lipid pool that is accessible to the transfer protein. Spontaneous
C1P transbilayer migration is expected to be highly restricted
due to the unfavorable energetics of moving the phosphate
polar headgroup through the nonpolar hydrocarbon matrix.
The interactions of GLTP homologs with membranes occur in
a nonperturbing and weakly penetrating manner that leaves the
sphingolipid pool in the inner leaflet of the vesicle bilayer undis-
turbed and inaccessible to protein (14, 37, 44, 55). However, a
condition known to influence the initial sphingolipid transbi-
layer distributions and expected to impact the C1P pool size in
the bilayer outer leaflet is the lipid composition during forma-
tion of high curvature, small unilamellar vesicles (e.g. see Refs.
56 and 57). When the sphingolipid source vesicles are POPC,
the observed 35% C1P transfer equilibrium value suggests that
35% of C1P localizes in the vesicle outer leaflet. This value is
similar to that of GalCer (39, 56). When anionic phosphoglyc-
erides are added to the mix, their influence also needs consid-
eration. Because PA shares the same small phosphate head-
group as C1P (58), minimal alteration of the C1P transbilayer
distribution and the outer leaflet pool size is expected com-
pared with C1P source vesicles lacking PA. By contrast, the PG
headgroup volume is significantly larger than that of C1P and
only slightly smaller than that of PC (59). Thus, the PG trans-
bilayer distribution, like that of PC, tends to remain mass-dis-
tributed with �65% in the outer leaflet of the donor vesicle
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bilayer (60). Compared with C1P source vesicles lacking POPG,
relatively more of the small headgroup C1P is expected to be
inaccessible to ACD11 and CPTP by virtue of C1P localization
to the inner leaflet of the vesicles. The sudden and dramatic
drop in the AV-C1P rate produced by low POPG concentra-
tions in the donor vesicles seems consistent with this reasoning.
These factors that influence C1P pool size and transbilayer
distribution are noteworthy because the sphingolipid concentra-
tion in the membrane surface is known to influence the sphingo-
lipid intermembrane transfer rate and transfer protein parti-
tioning affinity for the membrane surface (38, 39, 44, 61).

The surprising and large stimulation in C1P transfer activity
by anionic PS raises the question of what makes PS such a spe-
cial regulator. This led us to look beyond simple positive charge
density in the surface region near the C1P binding sites of
ACD11 and CPTP and consider the existence of a PS head-
group-specific surface binding site. We reasoned that such an
interaction site might function analogously to LBDs. Such
domains (e.g. C1, C2, PH, PX, and FYVE) exist as modular
structural elements within multidomain proteins. LBDs bind
only the phosphoglyceride headgroup because there is no
hydrophobic pocket for enveloping the lipid aliphatic chains.
This arrangement keeps the lipid chains embedded in the mem-
brane while the protein interacts with the phosphoglyceride
headgroup. LBDs help target and tether various peripheral
amphitropic proteins to select intracellular membrane sites
(22–27). Our experimental data support the idea of POPS func-

tioning as a membrane tethering site that helps orient ACD11
and CPTP in ways that optimize function. It is clear that neither
ACD11 nor CPTP can transfer PS between membranes, indi-
cating that the interaction mode is not “transfer-compatible”
for PS. By contrast, C1P interaction with CPTP and ACD11
involves recognition of the phosphate-amide headgroup region
via a mechanism that triggers uptake of the nonpolar aliphatic
chains into a hydrophobic pocket, thus shielding much of the
sphingolipid cargo from the aqueous milieu (13, 14). The lack of
PS transfer by ACD11 or CPTP is consistent with the phospho-
serine polar headgroup being the interaction focal point while
the PS acyl chains remain embedded in the membrane matrix.

Notably, replacement of POPS with soluble PS (dihexanoyl-
PS) results in no stimulation of C1P transfer by ACD11 and
CPTP. Also, simply including soluble PS in the buffer of the
transfer reaction at up to 1000-fold excess compared with pro-
tein, rather than as a component of the SL source vesicles, fails
to stimulate C1P transfer activity. Thus, stimulation of C1P
transfer activity requires that the phosphoserine headgroup
remain firmly associated with the C1P source membrane. It also
is noteworthy that inclusion of POPS in the receiver membrane
vesicles does not enhance the C1P transfer rate by ACD11 or
CPTP. Taken together, the findings suggest the presence of a
PS-specific site on the ACD11 and CPTP surface that targets
the phosphoserine headgroup and imply that the PS site could
help optimize orientation of ACD11 or CPTP for C1P uptake
during membrane interaction. Thus, we predict that the mem-
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brane interaction region surrounding the C1P binding site find-
ings contains a PS headgroup binding site, as depicted in Fig. 7.
Future studies will be needed to test this idea by structural
approaches involving X-ray diffraction, NMR, or modeling cou-
pled with functional analyses via point mutation. It will also be
interesting to learn whether the interaction of ACD11 or CPTP
with long-chain PS embedded in C1P-containing membranes
facilitates protein conformational changes to enhance C1P uptake.

From the physiological perspective, the discovery of PS-in-
duced enhancement of C1P-specific GLTP homolog action
provides insights into how ACD11 and CPTP might be targeted
and site-specifically stimulated by certain membranes in plant
and animal cells, respectively. PS plays important roles in cells.
Exofacial PS exposure in activated blood platelets induces bind-
ing and activation of clotting factors, including factors V, VIII,
and X and prothrombin (62). Intracellularly, PS occurs in the
cytosol-facing surfaces of the plasma membrane, endosomes,
and lysosomes, enabling docking and activation by important
cytoplasmic signaling and fusogenic proteins with specific PS-
binding domains (63, 64). Such proteins include the E3 ubiqui-
tin-protein ligase NEDD4, various protein kinase C isoforms,
several phospholipase C and D isoforms, phosphatidylinositol
3,4,5-trisphosphate phosphatase (PTEN), spectrin, and dysfer-
lin (important in muscle repair) as well as certain synaptotag-
min isoforms that participate in vesicular trafficking and fusion.
ACD11, which regulates accelerated cell death in plants, and
human CPTP, a regulator of pro-inflammatory eicosanoid pro-
duction, can now be added to this growing list of proteins. It is
noteworthy that CPTP intracellular enrichment occurs not

only at the trans-Golgi but also on the cytoplasmic surfaces of
endosomes and the plasma membrane, sites where PS also is
enriched (14, 73).

Conclusions

C1P-specific lipid transfer proteins are known regulators of
inflammation and programmed cell death, but mechanisms by
which these proteins can be regulated have remained unknown
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until now. In the present study, significant stimulation of two
C1P-specific lipid transfer proteins, at physiological ionic
strength and in the absence of calcium, has been discovered
when POPS, but not POPA or POPG, is embedded in POPC
vesicles along with C1P. Notably, soluble PS that does not
remain firmly embedded in the bilayer matrix produces no
stimulatory effect on C1P transfer. By contrast, glycolipid-spe-
cific human GLTP activity is unaffected by all three anionic
phosphoglycerides. The existence of a specific PS headgroup
interaction site on the ACD11 surface is suggested where the
long acyl chains of PS remain embedded in the bilayer during
membrane interaction (Fig. 7). In this way, POPS could help
orient and tether ACD11 and CPTP on the membrane surface
to enhance interaction with C1P with PS-enriched membrane
sites serving as ACD11 and CPTP activity “hot spots” in cells.

Experimental Procedures

Materials—POPC, POPS, 6:0 PS, POPA, and POPG were
purchased from Avanti Polar Lipids and used without further
purification. Lipids containing Per or AV fluorophore (e.g. Per-
PC, AV-C1P, AV-GalCer, and AV-PS) were synthesized by
lyso-lipid reacylation with �-labeled 9-(3-perylenoyl)-non-
anoyl or (11E)-12-(9-anthryl)-11-dodecenoyl chains and then
purified (65– 67).

Recombinant Protein Purification—Cloning, expression, and
purification of ACD11, CPTP, and GLTP have been described
previously (13, 14, 68 –70). Briefly, Arabidopsis acd11 (NCBI
NP_181016.1) and human CPTP (GenBankTM JN542538 and
NP_077792.2) open reading frames were ligated into pET-
SUMO vector (Invitrogen). Transformation of BL21 (DE3)-
pLysS or -Star cells enabled expression of proteins N-termi-
nally tagged with His6-SUMO (13, 14). Human GLTP ORF
(GenBankTM AF209704) that was ligated into pET-30 Xa/LIC
expression vector (Novagen) was used to transform BL21 cells
for expression of GLTP N-terminally tagged with His6-S-pep-
tide. Transformed cells were grown in Luria-Bertani medium at
37 °C for 6 h, induced with 0.1 mM isopropyl 1-thio-�-D-galac-
topyranoside, and then incubated for 16 –20 h at 15 °C. Affinity
protein purification from soluble lysate was accomplished by
nickel-nitrilotriacetic acid affinity chromatography. Cleavage
of the N-terminal His6-SUMO tag was carried out with SUMO
protease, Ulp1, overnight at 4 °C, whereas the His6-S-tag was
removed from GLTP by factor Xa. Affinity repurification by
nickel-nitrilotriacetic acid chromatography followed by FPLC
gel filtration chromatography (HiLoad 16/60 Superdex-75 prep
grade column; GE Healthcare), equilibrated in 25 mM Tris-HCl
(pH 8.0) containing 100 mM NaCl and 1 mM DTT, yielded pro-
teins with native sequences. Pooled peak fractions were con-
centrated by centrifugal concentrators (Vivaspin; 10 kDa cut-
off). Protein purity was confirmed by SDS-PAGE (69, 71) before
flash-freezing the pure proteins in buffer containing 15% glyc-
erol and storing at �80 °C.

Sphingolipid Binding Specificity Assessment by Trp Emission
Changes of ACD11—SL titrations were performed by adding
aliquots (1-�l increments; C1P step concentration of 0.08 �M)
dissolved in ethanol to ACD11 (1 �M, 2.5 ml) in sodium phos-
phate (pH 6.6) containing 150 mM NaCl with constant stirring
as described previously (33). Measurements were performed

using a SPEX FluoroLog-3 spectrofluorimeter (Horiba Scien-
tific). Band passes for excitation and emission were 2 nm. The
cuvette was temperature-controlled to �0.1 °C (NesLab RTE-
111, ThermoFisher). Emission spectra (305–500 nm) were cor-
rected by subtraction of buffer and vesicle blanks. Inner filter
effects were avoided by using low protein concentration (opti-
cal density at 295 nm �0.1). Excitation at 295 nm also elimi-
nated fluorescence contributions from residues other than Trp.

Mass Spectrometry—The ACD11�C1P complex was prepared
using the titration approach described above and concentrated
by centrifugation (Vivaspin; 10 kDa cut-off). WT ACD11 and
ACD11�C1P complex (10 �M) were analyzed using an Agilent
6210 LC/MS-TOF mass spectrometer in 5 mM NH4 acetate plus
5% methanol and infusing directly into the electrospray source,
as described earlier for GLTP and HET-C2 (33, 34). Spectra
were collected in positive mode over a 500 –5000 m/z range
using parameters optimized for complex stability (e.g. capillary,
3000 V; fragmentor, 300 V; skimmer, 60 V; octopole radio fre-
quency, 300 V; octopole direct current, 32 V). Raw data were
transformed into relative molecular masses using Agilent
Time-of-Flight Protein BioConfirm software.

Protein-mediated Sphingolipid Intermembrane Transfer—
To monitor sphingolipid intervesicular transfer, we used an
established FRET approach (37). Sphingolipid source vesicles
composed of POPC and containing 1 mol % AV-lipid (acyl
chain �-labeled with anthrylvinyl fluorophore, ((11E)-12-(9-
anthryl)-11-dodecenoyl)) and 1 mol % 1-acyl-2-[9-(3-peryle-
noyl)-nonanoyl]-3-sn-glycero-3-phosphocholine (Per-PC) were
prepared by rapid ethanol injection, as described previously
(37, 38). When AV is excited at 370 nm, Per-PC (energy accep-
tor) emits because of energy transfer, whereas AV emission
(energy donor) is minimal. Sonicated POPC vesicles that
receive the transferred AV-sphingolipid are added to the stirred
cuvette to establish the “no protein” baseline response in buffer
consisting of 10 mM potassium phosphate (pH 6.6), 150 mM

NaCl, and 0.2% EDTA. The addition of C1P transfer protein
results in time-dependent FRET loss between AV and Per and
results in an exponential increase in AV emission intensity as
the protein transports AV-C1P away from the sphingolipid
source vesicles and delivers to the POPC receiver vesicles pres-
ent at 10-fold excess. The AV emission increase at �415 nm,
relative to baseline fluorescence produced without protein,
yields the AV-C1P transfer kinetics. The addition of Tween 20
detergent late in the kinetic time course provides the maximum
AV intensity achievable upon “infinite” separation from
3-perylenoyl fluorophore. Maximum transfer, 	F, represents
the difference in emission intensity in the absence and presence
of C1P late in the kinetic time course (
15 min). The initial
lipid transfer rate, �0, is obtained by nonlinear regression anal-
yses (Origin version 7.0, OriginLab, Northampton, MA). The
S.D. values are calculated at 95% confidence intervals, and R2

values are 
0.96.
Protein Partitioning to Phosphoglyceride Membranes—Mem-

brane partitioning by the sphingolipid transfer proteins was
assessed by FRET and surface plasmon resonance. FRET from
intrinsic Trp of ACD11 and CPTP (0.5 �M) to AV-PC (2 mol %)
in POPC vesicles was measured before and after the addition of
the AV-PC/POPC vesicles lacking or containing the indicated
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amounts of anionic phospholipid. Trp residues were selectively
excited at 295 nm, and fluorescence spectral emission (304 –
525 nm) was monitored at 25 °C. Surface plasmon resonance
was performed using a Biacore T200 system. Lipid vesicles of
specified composition (0.5 mM), prepared by extrusion using 30
nm pore size membranes (33), were captured to a final surface
density of 4000 –7000 response units on a Sensor Chip L1 to
establish the baseline prior to protein addition. Injections of
increasing protein amounts or buffer were performed at 2
�l/min flow rates.
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