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Abstract

Motivation—Model simulation exchange has been standardized with the Simulation Experiment 

Description Markup Language (SED-ML), but specialized software is needed to generate 

simulations in this format. Text-based languages allow researchers to create and modify 

experimental protocols quickly and easily, and export them to a common machine-readable 

format.

Results—phraSED-ML language allows modelers to use simple text commands to encode 

various elements of SED-ML (models, tasks, simulations, and results) in a format easy to read and 

modify. The library can translate this script to SED-ML for use in other softwares.

Availability—phraSED-ML language specification, libphrasedml library, and source code are 

available under BSD license from http://phrasedml.sourceforge.net/.
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1. Introduction

Reproducibility is a cornerstone of scientific research. In systems biology, the ability to 

losslessly encode and share computational models of biological systems is enabled with the 

development of Systems Biology Markup Language (SBML)1 and CellML.2 More recently, 

the Simulation Experiment Description Markup Language (SED-ML) was released.3 This 

new markup language expanded the field of computer-exchangeable modeling from the 

models to the experiments performed on those models. The first version of SED-ML (Level 

1 version 1) included the ability to encode uniform time course experiments only. Version 2 

expanded SED-ML’s capabilities to include ‘repeated tasks’, which allow more complicated 

experiments such as parameter scans. SED-ML defines five basic classes: the Model 

references a particular XML-based model (usually in SBML or CellML), or a modified 

version of the same; the Simulation defines a particular algorithm; the Task relates an 

algorithm to a model; and an Output defines how the results of a Task are to be conveyed to 
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the user, either as a plot or a report. The RepeatedTask introduced in Version 2 of the 

specification is a more specialized version of a Task that defines how to repeat another Task 

over a specified range. Elements inside referenced models are referred to the use of XML 

Path Language (XPath) strings,4 and algorithms and their parameters are referenced by their 

Kinetic Simulation Algorithm Ontology (KiSAO) ids.5

There are several programs that support SED-ML by importing and performing simulation 

described in a SED-ML file. Our own Tellurium (tellurium.analogma-chine.org) translates 

SED-ML to Python code that utilizes Roadrunner’s Python bindings.6 Other simulators 

include the SBW Simulation Tool7 and the Systems Biology Simulation Core Library.8 

Apart from generic XML editors, some others let you edit or create SED-ML. SED-ML 

Script9 defines a script-based language that is closely tied to SED-ML itself: each script 

function adds a particular SED-ML element to a document, with the arguments of that 

function setting all of the particular attributes and child elements of that root element. 

However, no particular attempt is made to hide the complexity or to error-check: all 

arguments to the script functions are passed as-is to the SED-ML creator, including XPath 

strings. While simpler than editing the XML directly, this approach leaves a burden on the 

user to comprehend the details of raw SED-ML.

On the other end of the complexity spectrum, Frank Bergmann created a SED-ML creator 

‘wizard’ (http://sysbioapps.dyndns.org/SED-ML/Web/Tools/) which creates a ‘standard’ 

SED-ML file from an uploaded SBML file with few basic options. Another GUI-based 

SED-ML creator is SED-ED,10 which lets the user build up a SED-ML file element by 

element, with error-checking along the way, while providing a graphical overview of the 

relationships between the elements. It also provides automated methods for creating XPath 

strings and labeled fields for the necessary SED-ML attributes.

Another tool that allows the creation of SED-ML files is ‘Copasi2SEDML’, which allows 

conversion of a COPASI file11 with a time course simulation to the equivalent SED-ML. 

Similarly, CellDesigner12 allows both import and export of SED-ML.

Here, we provide phraSED-ML as a balance between these options, occupying a niche 

similar to that inhabited by Antimony,13 which is a text-based language to define the models 

themselves. We distribute libraries for the language to integrate it with any other simulation 

software that can understand SED-ML, providing the users with a new option for SED-ML 

creation and exploration. Python bindings provide a unified scripting environment that can 

both execute and export their simulation experiment.

2. Features

2.1. Simple abstractions

The phraSED-ML language is designed to be easily readable and writable without the need 

to reference the documentation at each turn. The format of each line is declarative, and 

because the subject of SED-ML is the act of simulation, all keywords are verbs. Model 

objects are declared with the keyword ‘model’, simulations with the keyword ‘simulate’, 

tasks with the keyword ‘run’, repeated tasks with the keyword ‘repeat’, and output with the 
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keyword ‘plot’ and ‘report’. The DataGenerator object is abstracted away entirely — objects 

are created as needed according to user directives parsed in the requested outputs. The 

following illustrates a typical phraSED-ML code.

mod1 = model “sbml_model.xml”

sim1 = simulate uniform(0,10,100)

task1 = run sim1 on mod1

plot time vs S1

XPath expressions are avoided on the user end by allowing model elements to be referenced 

by ID alone (e.g. ‘S1’), which the libphrasedml library translates to an appropriate XPath 

string. Element attribute values are similarly translated behind the scenes, made possible by 

the use of libsbml library to parse the referenced model to determine which element 

attribute must be used. This restricts the scope of phraSED-ML somewhat from the broader 

abilities of SED-ML, which can perform arbitrary XML transformations. However, this 

restriction was not deemed too onerous, particularly in light of the simplification it offered.

2.2. Allowed complexity

Some of the more advanced features of SED-ML may still be accessed with phraSED-ML. 

KiSAO terms are not necessary, but if the user wishes to use backward differentiation 

formula for solving ordinary differential equation (ODE), for example, they may use the 

‘bdf’ keyword:

sim1.algorithm = bdf

which will be translated to SED-ML as KiSAO id 288. The KiSAO id may also be used 

directly:

sim1.algorithm = kisao.288

which is useful for algorithms for which there are no built-in keywords. Similarly, algorithm 

parameters may be defined either by keyword or KiSAO id. Here, the relative tolerance 

(KiSAO id 209) is set:

sim1.algorithm.relative_tolerance = 0.001

sim1.algorithm.209 = 0.001

SED-ML ‘repeated tasks’ also have phraSED-ML equivalents:

task2 = repeat task1 for S1 in [1, 10, 15]

task3 = repeat task1 for S2 in uniform(0,10,100)
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which set up tasks looping S1 through a vector of values, and S2 through a ‘uniformRange’ 

of evenly spaced values.

3. Implementation and Distribution

The cross-platform library is written in Bison (https://www.gnu.org/software/bison) and C+

+, with a simple C API, along with Python bindings. It uses lib-SEDML (https://github.com/

fbergmann/libSEDML) to parse and create SED-ML files, and libSBML14 to parse the 

SBML files to which the SED-ML documents refer. It also uses the check library (http://

libcheck.github.io/check/) for unit tests. A standalone command-line tool (phrasedml-

convert) is provided for easy conversion between phraSED-ML and SED-ML. Source code, 

executables, libraries, and documentation are available at http://phrasedml.sf.net.

4. Integration into Tellurium

Additionally, Python bindings for libphrasedml have been incorporated into Tellurium, a 

Python-based environment for systems and synthetic biology modeling. Tellurium users can 

define a simulation experiment in phraSED-ML, and have it executed directly via 

libRoadRunner.6 Tellurium provides wrapper functions for handling of phraSED-ML code 

through the experiment module. The experiment module takes lists of models in 

Antimony and simulation setups in phraSED-ML string, which can be simulated through the 

execute function. Conversion between phraSED-ML and SED-ML code is straightforward 

as the library provides a function that accepts both phraSED-ML and SED-ML and 

translates to the other. Because Tellurium can translate SED-ML to Python scripts, users can 

define simulation setups in phraSED-ML and execute them directly.

5. Examples

Several examples of application involving phraSED-ML are demonstrated below. We use the 

Mitogen-Activated Protein (MAP) kinase cascade model15 as the model of interest for most 

of the examples.

5.1. Simple time course simulation

The simplest example illustrating the use of phraSED-ML is a simple time course 

simulation. The code below performs a time course simulation on the model from 0 to 4000 

with 1000 time points, and plots time versus MAP kinase, phosphorylated MAP kinase, and 

double phosphorylated MAP kinase as the output.

The output of the phraSED-ML string is shown in Fig. 1. The Python translation which is 

used internally by Tellurium to execute the setup is also provided in the Supplementary 

Material as a reference.

5.2. Phase portrait

The following example shows how it is possible to specify a simple phase portrait. In this 

case we run a simulation of the Lorenz attractor16 which under certain parameter values 

exhibits chaotic behavior. In Fig. 2, we plot the variable z versus x.
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5.3. 1-dimensional parameter scan—Running parameter scan is simple and intuitive 

using phraSED-ML by using ‘repeat’. The example below runs a 1-Dimensional parameter 

scan on parameter ‘J1_KK2’ with values 1, 10, and 100, while resetting the model back to 

initial condition every time. The output is shown in Fig. 3.

5.4. Multi-dimensional parameter scan

Expanding from 1-Dimensional parameter scan, parameter scan on two different parameters 

can be achieved through repeats of ‘repeat’. The code above illustrates 2-Dimensional 

parameter scan where parameter ‘J1_KK1’ is varied as before while parameter ‘J4_KK5’ is 

changed from 0 to 100 in 10 uniform steps. The output is plotted in Fig. 4.

5.5. Repeated stochastic simulations

Another application of phraSED-ML shows how to run a repeated stochastic simulations on 

models. The following phraSED-ML string demonstrates the differences between stochastic 

simulations with and without a given seed. Typical output of the simulation setup is shown 

in Fig. 5.

6. Future Developments

SED-ML continues to be developed by the community (http://sed-ml.org/) and changes to 

phraSED-ML will follow this development. Of particular interest are planned changes to 

SED-ML that will allow a richer set of symbols to be specified when generating output, i.e. 

eigenvalues or sensitivity coefficients. These new symbols will be added to phraSED-ML 

once the new SED-ML specification has been approved.
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Fig. 1. 
Output of a simple time course simulation. Blue line represents MAP kinase, red line 

represents phosphorylated MAP kinase, and green line represents double phosphorylated 

MAP kinase.
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Fig. 2. 
Phase plot of Lorenz attractor resulted from running the phraSED-ML code in Listing 2.
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Fig. 3. 
Typical output of phraSED-ML string running 1-dimensional parameter scan. The blue lines 

represent MAP kinase kinase and red lines represent phosphorylated MAP kinase kinase.
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Fig. 4. 
Typical output of phraSED-ML string running 2-dimensional parameter scan. The blue lines 

represent MAP kinase kinase and red lines represent phosphorylated MAP kinase kinase.
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Fig. 5. 
The same plot as Fig. 3 but using the stochastic Gillespie algorithm. The blue lines represent 

MAP kinase kinase and red lines represent phosphorylated MAP kinase kinase. The left 

panel shows stochastic simulations with a single seed. The right panel shows stochastic 

simulations with varying seeds.
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Listing 1. 
Simple time course, see Fig. 1.
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Listing 2. 
Lorenz attractor phase plot, see Fig. 2.
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Listing 3. 
1-Dimensional parameter scan, see Fig. 3.
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Listing 4. 
Multi-dimensional parameter scan, see Fig. 4.
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Listing 5. 
Repeated stochastic simulations, see Fig. 5.
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