Skip to main content
. 2017 Jan 4;23(1):59–72. doi: 10.1007/s12298-016-0410-y

Table 1.

Chlorophyll fluorescence in Vigna unguiculata plants splayed with EBR and exposed to water deficit

Water condition EBR (nM) ΦPSII QP NPQ ETR (µmol m−2 s−1) EXC (µmol m−2 s−1) ETR/P N
Control 0 0.40 ± 0.03Ba 0.79 ± 0.06Ba 0.82 ± 0.07Ab 59.0 ± 5.1Ba 0.47 ± 0.03Ab 3.81 ± 0.29Ab
Control 50 0.42 ± 0.01Ba 0.86 ± 0.05Ba 0.79 ± 0.07Ab 62.3 ± 3.4Ba 0.46 ± 0.03Ab 3.65 ± 0.16Ab
Control 100 0.46 ± 0.02Aa 0.97 ± 0.04Aa 0.78 ± 0.06Ab 68.7 ± 2.2Aa 0.44 ± 0.02Ab 3.57 ± 0.14Ab
Water deficit 0 0.19 ± 0.01Cb 0.25 ± 0.04Cb 1.51 ± 0.11Aa 28.5 ± 0.8Cb 0.68 ± 0.01Aa 5.45 ± 0.18Aa
Water deficit 50 0.27 ± 0.01Bb 0.37 ± 0.06Bb 1.09 ± 0.05Ba 39.9 ± 1.6Bb 0.61 ± 0.03Ba 4.98 ± 0.21Ba
Water deficit 100 0.33 ± 0.02Ab 0.53 ± 0.06Ab 1.06 ± 0.04Ba 49.0 ± 3.0Ab 0.55 ± 0.03Ca 4.81 ± 0.24Ba

Φ PSII Effective quantum yield of PSII photochemistry; q P Photochemical quenching coefficient; NPQ Nonphotochemical quenching; ETR Electron transport rate; EXC Relative energy excess at the PSII level; ETR/P N Ratio between the electron transport rate and net photosynthetic rate. Columns with different uppercase letters between EBR levels (0, 50 and 100 nM EBR under equal water condition) and lowercase letters between water conditions (control and water deficit under equal EBR concentration) indicate significant differences from the Scott–Knott test (P < 0.05). Values described corresponding to means from five repetitions and standard deviations