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Abstract
Bone defects may impede normal biomechanics and 
the structural stability of bone as an organ. In many 
cases, the correction of bone defects requires extensive 
surgical intervention involving the use of bone-grafting 
techniques and other procedures in which healing is slow, 
there is a high risk of infection and considerable pain is 
provoked - with no guarantee of complete correction of 
the defect. Therefore, the search for surgical alternatives 
continues to present a major challenge in orthopaedic 
traumatology. The reamer-irrigator-aspirator (RIA) system, 
which was devised to avoid the problems that can arise 
with autograft harvesting from the iliac crest, consists of 
collecting the product of the femoral canal after reaming. 
The RIA technique improves osteogenic differentiation 
of mesenchymal stem cells, compared to bone marrow 
aspiration or cancellous bone harvesting from the iliac 
crest using a spoon. Another approach, the Masquelet 
technique, consists of reconstructing a long bone defect 
by means of an induced membrane grown onto an acrylic 
cement rod inserted to fill the defect; in a second surgical 
step, once the membrane is constituted, the cement 
rod is removed and cancellous autograft is used to fill 
the defect. Both in RIA and in the Masquelet technique, 
osteosynthesis is usually needed. Bone transportation 
by compression-distraction lengthening principles is 
commonly implemented for the treatment of large bone 
loss. However, complications are frequently encountered 
with these techniques. Among new techniques that 
have been proposed to address the problem of large 
bone loss, the application of stem cells in conjunction 
with tissue engineering techniques is very promising, 
as is the creation of personalised medicine (or precision 
medicine), in which molecular profiling technologies are 
used to tailor the therapeutic strategy, to ensure the right 
method is applied for the right person at the right time, 
after determining the predisposition to disease among 
the general population. All of the above techniques for 
addressing bone defects are discussed in this paper.
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Core tip: This paper discusses the problems created 
by large bone loss, especially after major trauma, and 
considers current alternatives to autograft or allograft, 
such as the reamer-irrigator-aspirator system, the Mas
quelet technique, bone transportation, or the combin
ation of stem cell therapy and tissue engineering. Future 
Directions addressed mainly concern the new concepts of 
personalised medicine and precise medicine.
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INTRODUCTION
High-speed traffic accidents and injuries in the work
place continue to present major orthopaedic trauma 
challenges, often requiring tissue reconstruction. World
wide, more than 4.5 million reconstructive surgical 
procedures are performed annually, in response to 
accidents, cancer surgery or cosmetic needs. In many 
countries, too, victims of war or civil conflict must receive 
complex reconstructive surgery to overcome large tissue 
losses[1]. Although progress has been made to reduce the 
incidence of such events (for example, through legislation 
and improved road safety), orthopaedic procedures for 
the treatment of large bone loss have not achieved such 
tangible improvements.

Bone defects can be classified into two different 
groups: Cavity defects, when the loss does not affect 
limb biomechanics but nevertheless interferes with 
osteosynthesis or arthroplasty implantation; and seg
mental defects, when normal biomechanics are impeded 
and the structural stability of the bone as an organ 
may be endangered[2,3]. Reparative surgery is still the 
treatment of choice for these lesions, and autologous 
bone grafting is considered the gold standard approach 
in the clinical setting, in order to harness bone’s natural 
regenerative capacity when a bone defect occurs. Large 
bone losses, however, are best treated by allograft, 
despite its less osteogenic nature. In many cases, the 
correction of bone defects requires extensive surgical 
intervention using bone-grafting techniques. Numerous 
surgical procedures may be needed, involving long 
healing times. These fairly aggressive surgical techniques 
can produce a high risk of infection; moreover, they 
provoke substantial pain and do not guarantee complete 
correction of the defect. The emotional impact on the 

patient and financial burdens on the healthcare system 
are further problematic issues. Moreover, substantial 
donor-site morbidity and limitations on the quantity of 
bone that can be harvested proscribe its application when 
large bone loss occurs. In view of these considerations, 
alternatives to autograft for reconstructive surgery in 
large bone defects continue to be sought in orthopaedic 
traumatology. 

Cavity defects can be resolved by the application of 
bone autograft, morselized allograft or bone substitutes. 
When cavity defects are not too large, they can be 
treated relatively straightforwardly, and alternative 
approaches such as combining cavity filling with implants 
are usually possible. On the other hand, cavity defects - 
and segmental bone defects in particular - can present 
major problems. This kind of lesion is often provoked by 
high-energy trauma, as a result of which the soft tissues 
are severely affected. Segmental defects may provoke 
major functional disability and even require amputation. 
The pelvis is often affected in patients with long-term 
arthroplasty loosening and also after bone tumour re
section, whereas the femur and the tibia are commonly 
injured by severe trauma. In addition, the long bones 
of the upper limbs are frequently affected in serious 
accidents.

In this respect, many surgical techniques have been 
proposed, and some success has been obtained in treating 
relatively minor injuries. However, they have proved less 
effectiveness against large tissue lesions following high-
energy trauma. When a large bone defect is experienced, 
the treatment challenge is twofold. On the one hand, 
since bone cannot remain uncovered, by skin or muscle, 
the absence of soft tissue cover will provoke necrosis 
and the non-viability of any therapeutic attempt; this is 
very commonly the case with injuries affecting the tibia, 
when anterior muscle cover is absent or insufficient. 
Furthermore, even well-covered bone will also need 
suitable vascularisation of an appropriately-sized, strong 
graft; otherwise, bone healing will never take place. Apart 
from these soft tissue and bone problems, function can 
be severely affected by lesions to tendons and nerves. 
Therefore, graft size and the vascularisation of bone 
implantation are of crucial importance for tissue viability, 
tendon function and nerve physiology.

Current therapies in this field have been developed 
over many years. The reimplantation of extruded bone 
segments is uncommon, due to worries about infection 
and unclear guidelines regarding timing, stabilisation and 
sterilisation techniques, which have led this procedure to 
be rejected by the majority of surgeons. The few papers 
that have been published in this respect have encountered 
great difficulties in reaching useful conclusions[4]. Another 
approach is that of autograft harvested from the iliac 
crest, followed by vascularised autograft - however, the 
thin shape of this autograft makes it less useful in cases of 
large bone loss. Bone transportation procedures have also 
been suggested, together with the induced membrane 
Masquelet technique, with the creation of an artificial in-
situ chamber, after inserting a temporary cement spacer 
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which will eventually be surrounded by a periostium-
like layer. These therapies have been complemented 
by growth factors - including platelet-derived growth 
factors and bone morphogenetic proteins (BMPs) - and 
cell therapies. Synthetic bone has also been included in 
compound approaches, in a quasi-random combination 
involving chance as much as science[5].

All of these research lines have sought to focus on 
the keystone of bone synthesis: Matrix-forming cells. 
However, although the results of these new therapies 
are always said to be “promising”, they still cannot be 
managed precisely or combined appropriately with 
osteosynthesis fixation.

At present, achieving a biomechanically strong, well-
vascularised and physiologically-functional bone from 
the treatment of segmental bone defects continues to 
pose a major challenge.

Tissue engineering (TE) is a promising technology for 
secondary reconstruction after severe trauma. TE is an 
interdisciplinary science combining cellular, engineering, 
biochemical and physicochemical factors to improve or 
replace biological functions[6-8], either in combination 
with, or independently of, an osteosynthesis technique. 
Different types of cells and bioactive factors have been 
shown to play an important role during this regeneration. 
The ideal biomaterial is currently believed to comprise a 
porous three-dimensional scaffold with patterned substrates, 
offering vascularisation and regeneration properties[9]. 
However, the biochemical mediators of this process are 
imperfectly understood, and their biochemical properties 
and the sequence in which they act remain to be 
clarified.

In any case, creating tissue is an unavoidable ne
cessity, as large bone loss cannot be repaired by an in 
vivo physiological mechanism. Whether TE will eventually 
be capable of replacing normal biological mechanisms 
has yet to be determined.

BMPs are known to promote cell multiplication and 
differentiation, but not sufficiently as to provide an 
alternative to currently-available therapies. Moreover, the 
sequence pathways of the different molecules remain 
unknown. Cell therapy, as currently applied, involves 
three sequential steps: In vivo extraction, ex vivo 
manipulation and in vivo implantation. After this long 
and complex procedure, the outcome is still uncertain, 
especially for large bone defects. 

In view of these considerations, the following tech
niques have been proposed, incorporating the knowledge 
accumulated from cell therapy principles.

REAMER-IRRIGATOR-ASPIRATOR
The reamer-irrigator-aspirator (RIA) technique is desi
gned to avoid the problems that arise with autograft 
harvesting from the iliac crest, and consists of collecting 
the product of the femoral canal after reaming[10-13]. 
The cells thus collected and cultured present the same 
properties as those from the iliac crest[14-17]. Studies have 
shown there are no phenotypical differences between 

mesenchymal stem cells (MSCs) collected from the pelvic 
bone and RIA, and that the gene expression alteration 
found in RIA can be owned to the isolation technique 
employed[18]. Cell characterisation is similar for adipose-
MSCs, bone marrow-MSCs and RIA-MSCs, and the 
osteogenic potential is similar with in vitro and in vivo 
approaches[19,20].

The RIA technique enhances the osteogenic diff
erentiation of MSCs, in comparison with bone marrow 
aspiration or cancellous bone harvesting with a spoon 
from the iliac crest[17,18]. A recent study[18] compared 
harvesting by RIA with iliac crest aspiration and collection 
with a spoon, and reported that a greater concentration 
of colony-forming unit-fibroblasts of MSCs was obtained 
by RIA. Better results were also obtained by RIA for 
calcium tissue fixation as well as the gene expression 
of BMP2, SMAD5, runt-related transcription factor 2, 
osteocalcin and collagen type I alpha 1. Calcium fixation 
and osteogenic gene expression diminished considerably 
with higher passage numbers, in every specimen. 
The authors concluded that the harvesting procedure 
is critical for MSC differentiation in vitro. On the other 
hand, the CD271 selection of MSCs in RIA also produces 
a significant rise in MSC pureness and an increase 
expression of the transcripts implicated in bone synthesis, 
vessels formation and chemical attraction[20].

Revascularisation takes place within three months of 
reaming, and bone thickness restoration of the cortex 
appears normal after 14 mo, allowing the opportunity 
for further reaming[21].

Although RIA has achieved very promising results 
with respect to cavity defects, this technique is less 
useful for segmental ones, for which osteosynthesis 
supplementation is required. Furthermore, complications 
can arise in relation to the learning curve, to over-
reaming and, in some patients, to cardiac problems 
produced by rapid blood loss; the latter complication is 
closely related to previous cardiopathy[22,23]. 

RIA produces less pressure than intramedullary 
reaming and nailing, and a lower incidence of micro
embolism, according to studies of animals[24,25] and of 
humans[26]. However, one clinical study reported different 
findings from those obtained in animal experimentation, 
observing no differences in healing complications between 
intramedullary reaming and RIA, although there was a 
statistically non-significant tendency for the RIA group to 
present more complications[27].

Both in conventional reaming for intramedullary nailing 
and in RIA, the coagulation and fybrinolytic response 
consists of higher cytokine levels, together with increased 
IL-6 levels, particularly in intramedullary reaming[28]. 
However, other authors found no differences between 
these groups in relation to complications and IL-6 levels[29]. 
In a biomechanical study of cadavers, under ideal con
ditions, it was found that RIA did not greatly reduce 
femoral cortical strength but that careful attention was 
needed to avoid the catastrophic failure that can occur 
using this eccentric reamer[30]. In fact, femoral fracture can 
occur[31], and complications have been reported to affect 
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31% of cases, including postoperative pain, bone defects, 
lung embolism, myocardial infarction and iatrogenic 
fracture[32].

RIA has similar outcomes among all human races[13], 
and can be performed either antegradely or retro
gradely[33,34].

MASQUELET TECHNIQUE
In the original Masquelet technique, a long bone defect 
is reconstructed by an induced membrane grown onto 
an acrylic cement rod inserted to fill the defect; in a 
second surgical step, once the membrane is constituted, 
the cement rod is withdrawn and the gap is filled with 
cancellous autograft[35]. In a modification of this technique 
for tibial fractures, new surgical steps were added, such as 
the transfer of the soleus muscle island flap, vascularised 
with retrograde flow on the posterior tibial artery[36]. 
Further research, on large animals, has shown that the 
membrane compartmentalises the bone defect, protecting 
it from the humoral and cellular environment of the 
muscular layer[37]. The Masquelet technique has become 
increasingly popular in recent years for the treatment of 
large bone defects[38]. Good results have been achieved 
in a large-scale study of bone defects in which autograft 
harvesting from the iliac crest was replaced by RIA[39], with 
reduced morbidity in the second step of graft collection. 

New research into the Masquelet technique has been 
conducted in animal studies, but the cell biology of animals 
is radically different from that of humans[40-43]. In this 
respect, the paper by Aho et al[44] is particularly significant 
because these authors histologically characterised the 
induced membrane in humans, finding that greatest 
vascularisation took place in 30 d old specimens, and that 
levels diminished by sixty per cent during the following 
ninety days. Thirty day-old membranes presented the 
highest expression of vascular endothelial growth 
factor, interleukin 6 and collagen 1, while sixty day-old 
membranes expressed less than 40% of these levels. 
Specific alkaline phosphatase activity, the production 
of aminoterminal propeptide of type-Ⅰ procollagen 
and calcium concentration all increased in co-cultures 
in the presence of a membrane sample. Furthermore, 
in thirty day-old cultures membranes, the formation of 
aminoterminal propeptide of type-Ⅰ procollagen was 
more than twice as high, and calcium fixation was four 
hundred per cent greater, than in cultures of sixty day-
old membranes. The authors concluded that induced 
membranes present osteogenesis-improving competences 
but that outcomes gradually worsen, and that the ideal 
period for carrying out the second step operation is before 
the second month following the implantation of foreign 
material[44]. 

Although many studies have been conducted since 
the Masquelet technique was first presented in 2000, it 
is still difficult to predict the outcome of this approach to 
bone defect reconstruction, as complications are likely 
among most patients; at the outset, the surgical field is 
not optimal and the course of reconstruction is long and 

difficult[45]. 
Refinements of the Masquelet technique have re

cently been published by the original authors[46], and 
further research has been carried out on the basic science 
for human patients, with multicentre recruitment[47]. It 
has been shown that effective osseous formation via 
the Masquelet technique only incompletely emulates 
the cytokine expression of normal biological bone 
regeneration[47]. Abundant expressions of insulin-like growth 
factor 1 are associated with successful Masquelet therapy, 
whereas transforming growth factor β appears to have low 
contribution. Consequently, the appropriate examination 
of a successful non-union treatment and of cytokine 
expression can be made even with a lesser number of 
cases. Therefore, further research in this field should be 
aimed at finding a method, based on a small population 
of patients, for predicting the success or otherwise of 
treatments for bone loss defects, including the Masquelet 
technique.

BONE TRANSPORTATION
In 1969, a paper appeared in MEDLINE on the Ilizarov 
technique aimed to treat “long tubular bones defects by 
means of one of their fragments”[48]. However, it was 
published only in Russian and had little impact in Western 
orthopaedic science. Four years later, an Australian 
nursing journal published a paper by another Russian 
author on the Ilizarov technique[49], and during the 1970s 
more papers appeared on the biomechanics of the 
Ilizarov apparatus[50]. However, it did not become known 
worldwide until the 1980s, when Italian authors gave 
it major prominence[51,52]. The approach described by 
Ilizarov was more than a single apparatus or technique; 
it became a new paradigm of the cell biology of bone 
regeneration, and was amply referred to as such in 
Russian publications during this decade[53]. By creating 
a fracture only in the bone cortex (“bone corticotomy”), 
thus minimising surgical trauma, a callus consolidation 
process is triggered, and then maintained by means of 
immobilisation for 7-10 d. Thereafter, continuous slight 
distraction of less than 1 mm/d is exerted, and over time 
the gap becomes filled in.

Since its introduction, the Ilizarov technique, with its 
associated compression-distraction lengthening principles 
for the treatment of large bone loss, has been applied 
worldwide, and is now known as bone transportation. 
It has been shown that during this bone lengthening, 
the soft tissues also undergo stretching and subsequent 
physiological metaplasia[54]. 

However, from the outset it has been apparent that the 
results obtained with the Ilizarov technique are excellent 
in some cases, good in others, and only fair in many. 
Consequences such as persistent infection, deformity, 
limb shortening, resultant limping, impacts on other joints 
(for example, equinus), dystrophy and severe pain have 
led some patients to request amputation. The duration 
of this treatment and its many negative consequences 
discourage many therapists from considering bone 
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transportation in patients with severe osseous loss, and 
these complex cases are often referred to specialised 
centres[55]. Outcomes are also compromised by variables 
such as age older than 20 years, a larger gap magnitude, 
and diaphyseal rather than metaphyseal loss location[56].

More is now known about the biology underlying 
Ilizarov bone transportation, and greater experience and 
better fixators have enabled surgeons to better apply this 
technique. In addition, new approaches have been tested, 
mainly in animal experimentation, combining Ilizarov’s 
principles with TE[57-63]. Nevertheless, the technique is still 
subject to complications and cannot systematically ensure 
a satisfactory outcome following large bone loss.

COMBINED STEM CELL THERAPY AND 
TE
Along the last decade, the combined treatment with 
immature MSCs and growth factors has been considered 
another promising therapy for bone synthesis. Nonetheless 
several terminally-differentiated cell lines (keratinocytes, 
osteoblasts, fibroblasts, osteocytes, chondrocytes and 
hepatocytes) cannot be used for artificial tissue constructs. 
Stem cell candidates to build artificial tissues comprise 
embryonic stem cells (ESCs), induced pluripotent stem 
cells (iPSCs) and postnatal adult stem cells[64,65]. There 
are still some limitations to the practical use of ESCs and 
iPSCs, including the cytogenetic regulation of teratoma 
development, ethical issues, immune uncertainties 
in relation to ESCs, and the requirements for genetic 
manipulation of iPSCs. Multipotent MSCs derived from 
postnatal adult stem cells (Wharton’s jelly cells, adipose 
tissue, bone marrow and dental pulp) are potentially 
useful because of their immunocompatibility and the 
absence of ethical concerns. Bone marrow (BM) and 
adipose tissue are also good sources of stem cells for 
clinical use[66,67]. MSCs are cells of mesodermal derivation 
- different from the hematopoietic linage- existing in 
various infant and adult organs and conjunctive tissues. 
Pluripotent MSCs in the BM stromal tissue are capable of 
differentiating to multiple mesenchymal lines, including 
osseous and chondral cells. Therefore, it follows that 
these MSCs could be employed in the restoration of large 
bone loss caused by traumatisms, surgical procedures or 
maladies. MSCs from tissue sources such as human dental 
pulp, exfoliated deciduous teeth (SHED) and periodontal 
ligaments have similar characteristics to BM-MSCs but are 
commonly liable to problems such as a short collection of 
cells and a reduced quantity of collected tissues[68,69]. Other 
significant drawbacks to the use of MSC in tissue repair 
include, firstly, the ache and problems associated with BM 
collection and, secondly, the low income (1 MSC/104-106 
stromal cells), which makes ex vivo amplification a 
necessity[70-72]. 

The adipose compartment appears to have a rich 
population of stem cells and, like BM, has a large cellular 
stroma, constituted of fibroblastic-like cells (the stromal 
vascular fraction - SVF). This cell segment, obtained from 

human aspiration of fat, in turn has cells with multiline 
capabilities, called adipose stem cells (ASCs), which 
experience adipogenesis, osteogenesis, chondrogenesis 
and myogenesis in vitro. Some experiments have started 
to study the osteogenic potential of ASCs in vivo, in 
amalgamation with a great diversity of scaffolding 
materials[73]. The use of human ASCs (hASCs) in scaffolds 
for osseous TE has been indicated as the alternative 
approach of the current century to substitute or repair 
the normal physiology of traumatised, injured or lost 
bone. The biological relationship between osteoblasts and 
adipocytes is reflected in their common MSC origin. The 
accumulation of marrow adipocytes in bone loss may 
be caused by a shift in the commitment of MSCs from 
the osteogenic to the adipogenic pathway. hASCs have 
several characteristics that make them compatible with 
currently-available strategies for creating new tissue, 
including cell transfer, induction and the generation of 
tissue constructs. The MSCs located within adipose tissue 
are effortlessly harvested in wide amounts, with slight 
donor site injury or general alterations. Furthermore, 
human adipose tissue is ubiquitous. Subcutaneous fat 
tissue fragments can commonly be obtained without 
general or regional anaesthesia. Present techniques for 
extracting ASCs are based on collagenase proteolysis 
after which centrifugal isolation of the SVF from primary 
adipocytes[74] is performed. Among other features, 
ASCs present a fibroblast-like phenotype and lack the 
intercellular lipid precipitations observed in adipocytes[75]. 

The proliferation capability of ASCs appears to be 
superior than that of BM-derived MSCs. Studies have 
revealed that the doubling times of ASCs along the 
logarithmic phase of growth range between 40 to 120 
h, and it changes according to donor age, the nature of 
fat tissue (white or brown), its placement (subcutaneous 
or visceral), the harvesting procedure employed, the 
culture circumstances, the plating concentration and 
media preparations[76]. Younger donors, have superior 
proliferation and cell adhesiveness of the ASCs. Cells 
progressively miss their multiplication capability with 
passaging. According to the b-galactosidase action, 
senescence in ASCs is comparable to that seen in 
BM-derived MSCs. The multiplication of ASCs can be 
encouraged by a solitary growth factor such as fibroblast 
growth factors (FGF)-2, EGF, insulin-like growth factor 
(IGF)-1 or tumor necrosis factor (TNF)-α. FGF-2, in 
particular, is an effective growth-stimulating factor that is 
needed for the long-term proliferation and self-renewal 
of ASCs via the extracellular signal-related kinase (ERK) 
1/2 signalling pathway[77]. The multiplication of ASCs can 
likewise be activated by platelet-derived growth factor 
via c-Jun amino-terminal kinase (JNK) activation and by 
oncostatin M via activation of the microtubule-associated 
protein kinase/ERK and the JAK3/STAT1 pathways. ASC 
multiplication has also been published to be enhanced 
by numerous growth factors, which can contain any 
of the particular growth factors formerly mentioned, 
complemented by thrombin-activated platelet-rich 
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plasma, human platelet lysate and human thrombin[78].
ASCs have the capability to differentiate toward a 

diversity of cell lines, both in vitro and in vivo. Though 
ASCs are of mesodermal origin, it is now well known 
that they can commit themselves into ectoderm and 
endoderm, as well as mesoderm, lineage cells[79]. Con
cerning differentiation into cells of the mesodermal line 
and the regeneration of mesodermal tissues, ASCs may 
differentiate into adipogenic, osteogenic, chondrogenic, 
myogenic, cardiomyogenic, angiogenic, tenogenic and 
periodontogenic lineages. Very little is known about how 
cell differentiation is affected by aging. 

When used combined with a carrying scaffold, the 
directed osteogenesis of hASCs confirms that adipose 
tissue is a hopeful autologous font of osteoblastic cells 
for bone production. This approach provides support for 
hASC colonisation, migration, growth and differentiation. 
Few descriptions have been made of purified hASCs 
in bone engineering, and varying degrees of success 
have been reported[80-87]. It has not been reported 
whether cellular free scaffold controls immersed in an 
osteogenic medium are also capable of achieving bone 
healing, to any degree[88,89]. Nevertheless, the use of 
autologous hASCs, managed in the absence of animal-
derived materials, following appropriate work in standard 
unpolluted places, has shown that these cells can be 
considered safe for uses in tissue engineering, according 
to European Union standards for clinical cell therapy 
safety.

Current limitations of hASC for bone TE include the 
following issues: (1) transitioning from preclinical in vivo 
models to the clinical setting signifies a foremost stride; 
(2) appropriate serum-free media for these cells must be 
developed, as foetal bovine serum (FBS) is not suggested 
for clinical treatments, ought to contamination and in
fection risk; (3) the ex vivo multiplication of cells for 
two or three weeks renders them vulnerable to possible 
genomic unpredictability in culture; and (4) appliances 
that would allow sole-step recruitment, manipulation and 
grafting are consequently required, to avoid the necessity 
for cell culture and the associated hazards of utilizing 
FBS. 

Among the challenges to be addressed in hASC bone 
tissue-engineering for clinical applications, it should be 
emphasised that the main aim of the ASC TE strategy 
is to define the real osteogenic capability of ASCs in
dependently of their association with growth factors. 
Further key challenges to be addressed include the 
standardising of techniques for recruitment, separating, 
cultivating and managing hASCs and the publication of 
procedures for the correct utilisation of carrier materials. 
Moreover, prospective randomised clinical trials should 
be conducted to categorize appropriate suggestions for 
hASC therapies and to validate the clinical results thereby 
achieved. Finally, ethical and security worries must be 
determined previous to human use, as the first step in 
new scaffold usage[90].

As yet, there is little consensus regarding the efficacy 
of cell-based therapies in skeletal regeneration, or the 

most effective cell origin type, number, combination or 
method of delivery[91]. However, better regeneration 
results have been observed when cells are administered 
intravenously, subcutaneously or directly to the defect[92-96]. 
Bone cell progenitors provide bone with its distinctive 
capacity for repair and regeneration[97], and so their 
inclusion within a carrier is favoured by most surgeons. 
Nevertheless, the results obtained in this respect 
during the last 20 years have been only “promising”. 
Experimental delayed-injection models utilising BM 
stromal cells have been shown to enhance the repair of 
injured tissue in relation to “time-of-trauma” cell uses. 
Time is allowed to elapse between the lesion/bone loss 
and the injection in order to avoid the early stages of 
tissue lesions, when the release of cytomodulatory 
peptides - including TNF-α, interleukins and interferons 
- and increased concentrations of acute-phase protein 
in serum appear to diminish the efficacy of stem and 
precursor populations. Although studies based on 
experimental spatiotemporal manipulation of cell delivery 
after the acute inflammatory response have achieved 
promising results in the field of segmental osseous tissue 
production[92], it remains apparent that the media and 
moment of cell delivery significantly influence therapy 
effectiveness[98].

FUTURE DIRECTIONS
The following main principles of tissue-engineering ap
plication in humans are generally accepted: (1) The 
manipulation of human stem cells for clinical treatment has 
to be carried out rendering upright laboratory techniques 
and the guidelines of the Food and Drugs Administration 
(in United States) or the European Medicines Agency[99]. 
In this respect, the standardisation of separation and 
culture processes might raise quality regulations; (2) TE 
constructs must be considered as medicinal products and 
their intended use for clinical investigation purposes are 
subject to European regulations for clinical trials of medical 
devices and advanced therapies[100]; and (3) Engineered 
tissue must be structurally and functionally comparable to 
natural tissue, be of the required size and shape, be able 
to continue developing after implantation into the body 
and be able to achieve full integration with the host.

Three components are usually necessary in TE: Cells, 
extracellular matrices and growth factors to provide 
molecular signals. The extracellular matrix-scaffold con
struction is a crucial aspect of bone defect repairing. 
Recent advances in TE have made available a large 
number of materials suitable for healing of bone defects 
and lost bone. Both in vitro and in vivo formation of bone 
tissue, using MSCs and 3D scaffolds has been shown[101]. 
Several scaffolds such as HA/chitosan composites, 
chitosan or gelatin/TCP constructs, electrospun collagen 
nanofibres, honeycomb collagen scaffolds and titanium 
meshes have been used with MSCs. Newly designed 
scaffolds, resembling the effect of growth factors on 
adhesion-based mechanisms, need to be further imple
mented by analyses of the specific “pro-osteogenic” signal 
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transduction pathways. Osteogenic differentiation relays 
on cell adhesion and the substrate interaction, which 
are under the control of integrin complexes interactions. 
Integrin-matrix interactions can induce numerous sig
nalling pathways, including the MAPK cascade. Although 
few studies with hASCs have been published, their 
results show that alternative methods for growth factor 
stimulation may be fostered to induce hASCs to make and 
heal bone[102,103].

Regarding signalling systems, it has been suggested 
that soluble factors produced by ASCs (secretome) 
are the responsible for the potential clinical impact on 
different organs/tissues instead of the differentiation 
capability of hASCs[104]. Analyses from primary hASCs 
cultures have shown the release of a large series of 
soluble factors including growth factors such as HGF, 
VEGF, β-TGF, IGF-1, bFGF, GM-CSF, TNF-α, interleukins 
(6, 7, 8 and 11), adiponectin, angiotensin, cathepsin 
D, pentraxin, pregnancy zone protein, retinol-binding 
protein and CXCL12)[105]. Indeed, HGF expression is 
increased after the cells have been exposed to bFGF, 
EGF or ascorbic acid, reinforcing the idea that soluble 
factors secreted by ASCs can be modulated by exposure 
to different agents. Thus, transplanted hASCs into 
inflammatory or ischaemic regions, actively secrete 
these growth factors, becomes a relevant strategy to 
promote wound healing and tissue repair. As mentioned 
previously, the increased bone formation attributed to 
BMP2-treated ASCs is derived from the osteoconductive 
and osteoinductive effects of BMP2 or from the ASCs 
themselves, although this remains to be demonstrated 
by means of appropriate controls.

Improving the ability of hASCs to generate large 
quantities of bone to repair bone defect without growth 
factors represents a major challenge. For that reason 
signal transduction pathways in adult ASCs need to 
be explored. Osteogenesis induced by hASCs might 
employ an alternate signalling pathway for adipogenic 
and osteogenic fates. Moreover, directed manipulation 
of downstream signalling paths rather upstream growth 
factors might be also responsible for stem cell-directed 
bone regeneration. In this respect, ERK pathways and 
MAPK signalling in ASC proliferation, migration and apo
ptosis have been analysed. Bone regeneration has been 
observed in rabbits with implants of MSCs transduced 
with Sonic Hedgehog (Shh)-a key protein involved in bone 
morphogenesis. Furthermore, BMP signalling in ASCs can 
be modulated by downregulating noggin, using rat ASCs 
transduced with noggin shRNA, and thus to enhance the 
differentiation of cells to a osteogenic terminal linage. This 
noggin suppression + BMP-2 strategy has been confirmed 
in 3D in vitro experiments using complex scaffolds (con
sisting of chitosan, chondroitin sulphate and an apatite 
layer) designed to slowly release BMP-2. Wnt signalling 
pathways are involved in regulation of embryologic 
patterning, mesenchymal differentiation and stem cell 
fate[106]. The association of LRP5 gene mutation and the 
osteoporosis-pseudoglioma syndrome strongly suggests 
the participation of Wnt signalling in bone formation. 

Wnt3a induced signalling has been associated with the 
in vitro and in vivo inhibition of bone formation[107]. In 
contrast, increased bone regeneration in bone defects has 
been observed in MSCs from bone tissues overexpressing 
Wnt4. This effect may be due to a specific increase in p38 
MAPK phosphorylation, which mediates the promotion of 
bone formation.

TE is considered an advanced therapy medicine 
product (ATMP), the characterisation of which requires 
its characteristics (identity, potency, purity and safety) to 
be defined and measured during product development. 
ATMP manufacturing activities are mainly focused on the 
following areas; Pre-Production Activities (patient and 
donor selection, biopsy procurement, cell/tissue extraction, 
testing, storage and distribution to Good Manufacturing 
Practice-GMP-laboratories for production); Production 
Activities (manufacturing, packaging, labelling, testing, 
storage and distribution); and Post-Production Activities 
(testing, storage and administration/implantation of the 
manufactured product). In the European Union, these 
activities are mainly regulated by Directive 2004/23EC of 
the European Parliament[108] which sets quality and safety 
standards for the main process involved in TE intended for 
human use (donation, procurement, testing, processing, 
preservation, storage and distribution of human tissues 
and cells). Other applicable legislation includes Directive 
2006/17/EC, Directive 2006/86/EC, Directive 2012/39/
EU, Commission Directives (EU) 2015/566 and 2015/565, 
Regulation (EC) 1394/2007, Directive 2009/120/EC 
and Directive 95/46/EC[109-116], in addition to EuroGTP 
guidelines[117].

In ATMPs, preclinical safety/toxicology assays are 
mandatory for sterility, mycoplasma contamination, 
endotoxins, aerobic/anaerobic micro-organisms, tumoro
genecity and genetic stability. Their design requires 
specific pre-GMP laboratory activities for the selection and 
recruitment of stem cell donors and patients. In addition, 
there are specific regulations for stem cell donors[117]. The 
clinical problem to be solved with ATMP has two related 
aspects: On the one hand is the question of individual 
genetic susceptibility to DNA single nucleotide variants 
(SNV) related to several pathological conditions, especially 
tumorigenesis, neoangiogenesis, lymphangiogenesis 
and cell capacities such as cell adhesion and migration. 
On the other hand, account must be taken of the gene 
instability of the cultured and manipulated MSCs used in 
manufacturing ATMP products.

Among other current limitations to this technique, 
the potential risk of genomic instability of cells is 
clearly a main limitation for clinical purposes. This risk 
appears to increase when ex vivo expansion of cells 
are maintained for more than three weeks. Therefore, 
much remains to be done to standardise methods and 
techniques for preparing hASCs for clinical applications 
and this also must be carried out following GMP, FDA 
and EMA regulations[118,119]. Indeed, procedures for 
cells expansion in culture must be according to GMP 
guidelines for cell manipulation, and their standardisation 
will facilitate the quality controls, comparative studies, 
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maximising the reliability and reproducibility of results. 
In fact, discrepancies have been observed from different 
studies and from different laboratories, due to variability 
of the methods and quality of hASC isolation and of 
the composition of the initial cell culture. hASCs are 
generally stable (normal diploid karyotype) in long-term 
cultures, even when they have undergone more than 100 
population doublings[120]. However a single report suggests 
malignant transformation of hASCs cultured for more than 
four months[121]. Yet, this spontaneous transformation 
of MSCs may also be due to cross-contamination with 
malignant cell lines (fibrosarcoma and osteosarcoma)[122]. 
This controversy on spontaneous hASC transformation 
requires further experiments and discussion, bearing 
in mind the needs for a careful manipulation of hASCs, 
together with long-term follow-up of patients.

As most cells intended for engineering tissues have 
been subjected to mechanical or enzymatic dissociation, 
and to rapid proliferation in culture with growth factors 
and media, among other operations, there is always the 
possibility that some kind of alteration might be generated 
within the genetic burden of the cell. Any alteration of 
these genes could result in tissue dysfunction and a loss of 
function of the affected tissue.

In this context, the quality control of cell/tissue-
engineering should be focused on histomorphology 
patterns, 3D perfusion seeding, cellular assessments 
of cell sterility and endotoxins, in vitro cellular toxicity, 
proliferation, adhesion in constructs, genetic quality 
control for DNA and gene expression and the rheological 
analysis of scaffolds and new cell/TE. At present, the 
analysis of tumorogenecity and genetic stability, with 
respect to chromosomal integrity and mutations of 
tumour-related genes, is mainly achieved by means 
of genetic and epigenetic quality controls, to verify at 
DNA level the absence of any alteration that could lead 
to malignant transformation, and to ensure that gene 
expression levels correspond to the functions of native 
tissues, via gene expression analysis of mRNA and 
proteins.

TE is a novel, complex and specific technology with 
unexpected risks to public health and to patients. There 
are three main types of risks to be considered.

Risks to patients arising from the quality of the ATMP 
product, in particular its components, stability, activity 
and purity (regarding non-physiological proteins). In the 
characterisation of a final ATMP product, genetic stability 
testing is of crucial importance to avoid the risk of clinical 
side effects due to tumorogenecity, inadequate cell 
adhesion and/or the increased cell migration capability of 
expanded/differentiated MSCs seeded onto scaffolds. 

Risks derived from the interaction between the 
ATMP product and the effects on molecular systems of 
the patient. In this sense it is important to know the 
immunogenicity, the risks related to genetic modification 
of cells driving the apoptosis, any change of function, 
modification of growth and/or differentiation and 
malignancy. Early and late consequences of homing, 
grafting, differentiation, migration and proliferation need 

also to be explored.
Risks related to persistence of the ATMP product in 

the patient responsible for late complications, such as 
cancer and autoimmune disorders. 

EU legislation requires the genetic analysis of cells 
to ensure the absence of chromosomal instability and 
mutations, deletions or translocations in all tissues 
generated by TE and intended for clinical use.

Personalised medicine/precision medicine (PM) uses 
molecular profiling technologies to tailor therapeutic 
strategies, ensuring the right one is delivered to the 
right person at the right time, and determining the 
predisposition to disease among the population. Now 
days, next-generation sequencing (NGS) technologies 
are more accessible by cost, analytic validity and 
rapidity. Whole exome sequencing (WES) together with 
bioinformatics allows the analysis of single nucleotide 
variants of 85% of coding protein genes (20000 genes, 
180000 exons, 1% of the whole genome)[123]. WES 
sensitivity for known mutations and benign variants 
reach up to 98.3% and its main clinical use is for the 
diagnosis of genetic disorders, however, WES also allows 
phenotype expansion and makes it possible to identify 
newly mutated genes, undetectable by other techniques. 

Taking into account the genetic instability risk of 
the ex vivo expansion of MSCs, we suggest that the 
standardisation of pre-implant testing of tumorogenic 
burden, neoangiogenesis and cell adhesion and migration 
capacities, by means of NGS analysis throughout the 
differentiation culturing of hASCs, would improve the 
quality control of artificial bone tissues used for bone repair 
and help achieve a valid prognosis of full integration within 
the host of ex vivo differentiated hASCs.

Joint exome and transcriptome analysis will help 
identify a panel of genes involved in hASC proliferation, 
differentiation, adhesion, migration, and also telomere 
length control, among other questions, thus constituting a 
standard genetic stability cell analysis for tissue-engineered 
bone. This analysis will reinforce the clinical criteria applied 
in selecting participants for clinical trials with TE, and 
hence reduce the risk of adverse effects arising from an 
accumulation of tumour-related gene mutations.

In summary, the clinical reconstruction of large bone 
defects is a highly challenging procedure, and will probably 
remain so for the foreseeable future.
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