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Metabolomic Profiling of Human Urine as a Screen
for Multiple Inborn Errors of Metabolism

Adam D. Kennedy,1 Marcus J. Miller,2 Kirk Beebe,1 Jacob E. Wulff,1 Anne M. Evans,1

Luke A.D. Miller,1 V. Reid Sutton,2 Qin Sun,2 and Sarah H. Elsea2

Aims: We wished to determine the efficacy of using urine as an analyte to screen for a broad range of metabolic
products associated with multiple different types of inborn errors of metabolism (IEMs), using an automated
mass spectrometry-based assay. Urine was compared with plasma samples from a similar cohort analyzed using
the same assay. Specimens were analyzed using two different commonly utilized urine normalization methods
based on creatinine and osmolality, respectively. Methods: Biochemical profiles for each sample (from both
affected and unaffected subjects) were obtained using a mass spectrometry-based platform and population-based
statistical analyses. Results: We identified over 1200 biochemicals from among 100 clinical urine samples and
identified clear biochemical signatures for 16 of 18 IEM diseases tested. The two diseases that did not result in
clear signatures, X-linked creatine transporter deficiency and ornithine transcarbamylase deficiency, were from
individuals under treatment, which masked biomarker signatures. Overall the process variability and coefficient
of variation for isolating and identifying biochemicals by running technical replicates of each urine sample was
10%. Conclusions: A single urine sample analyzed with our integrated metabolomic platform can identify
signatures of IEMs that are traditionally identified using many different assays and multiple sample types.
Creatinine and osmolality-normalized data were robust to the detection of the disorders and samples tested here.

Introduction

Metabolomics is the unbiased study of metabolic
processes, in which a single sample is used to detect a

broad range of small molecules (i.e., metabolites and bio-
chemicals between 50 and 1500 Da). Through measuring
these small molecules, metabolomics comprehensively char-
acterizes phenotypes that can (Atwal et al., 2015; Miller et al.,
2015) result from enzyme dysfunction either by abnormal
protein structure or altered protein expression. This enzyme
dysfunction results in a blocked pathway or use of an ancillary
pathway, and the accumulation of metabolic intermediates or
by-products in biological fluids and tissues. Diagnosis of in-
born errors of metabolism (IEMs) often requires testing mul-
tiple types of samples (e.g., urine, plasma, cerebrospinal fluid),
sometimes requiring multiple clinical tests. The potential
power of metabolomics is in the ability to detect these in-
termediates and by-products from any array of conditions and
biochemical families simultaneously from a single sample.

Urine contains numerous metabolites from different bio-
chemical families with diverse chemical structures. Urine can
be collected in a noninvasive manner compared to other bio-
logical sample types, and many biochemicals accumulate in

urine due to their absorption from the circulation in the
kidney and excretion through the urinary tract. The analysis
of the quantity of these biochemicals can provide evidence
for perturbations in various physiological processes and
thereby serve as biomarkers of disease. Profiling of urine
samples for IEMs has been characterized previously using
urine organic acid tests, but these methods utilized a single
chromatographic separation (Kuhara, 2005), or a relatively
limited biochemical library ( Janeckova et al., 2015).

IEMs are a heterogeneous set of diseases that can result in
profound physiologic, cognitive, and physical abnormalities.
Diagnosing these ailments in an efficient manner is para-
mount to timely initiating the appropriate treatment. Meta-
bolomics offers the ability to screen a wide array of biochemicals
representing diverse biochemical classes and metabolic path-
ways in a single sample rather than running multiple diagnostic
tests that target a single class of molecules. As a result, using
our metabolomic approach, many more molecules per assay
are measured in a single clinical sample than can be detected
using traditional IEM screens.

We recently demonstrated the utility of metabolomics
to identify disease signatures in plasma for over 20 IEMs
(Miller et al., 2015). Urine samples are indispensable for the
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diagnosis of some IEMs, for example, lysinuric protein in-
tolerance (Sebastio et al., 2011). In addition to conditions
traditionally diagnosed with urine-based assays, metabolomics
of urine may also be useful to identify conditions typically
detected using other sample types such as plasma, blood
spots, or cerebrospinal fluid.

To evaluate the feasibility of urine metabolomics for de-
tecting IEMs, we analyzed 100 urine samples with our me-
tabolomic platform as follows: 34 samples from individuals
diagnosed with an IEM, for which the operators were blinded
to the diagnosis, and 66 samples from individuals not diag-
nosed with an IEM. The resulting data were analyzed for
biochemical signatures of IEMs to identify the specific dis-
eases and enriched biochemical signatures of each disease
using two different normalizations, osmolality or creatinine.

Methods

Sample collection

All procedures were in accordance with the ethical stan-
dards of the U.S. Department of Health and Human Services
and were approved by the Baylor College of Medicine In-
stitutional Review Board. This study was approved with a
waiver of informed consent.

Specimens used for metabolomics were collected from
residual clinical samples in the clinical biochemical genet-
ics laboratory. All plasma and urine samples were stored in
-20�C for 1–9 months before metabolomic analysis. The
plasma cohort was recently described (Miller et al., 2015).
We examined the following 100 urine samples: 34 samples
obtained from subjects diagnosed with an IEM and 66 ob-
tained from subjects not diagnosed with an IEM. Thirty-six
samples were from female patients (15 diagnosed with an
IEM and 21 not diagnosed with an IEM) and 64 samples from
male patients (19 diagnosed with an IEM and 45 not diag-
nosed with an IEM). The average age of all patients was 4.3
years of age. For females, the average age was 5.1 years with
a range from 0 to 34. For males, the average age was 3.8 years
with a range of 0–16 years of age.

Specimens were selected based on existing clinical sam-
ples in the Baylor College of Medicine Biochemical Genetics
Laboratory with the goal of maximizing the diversity of di-
agnoses in our sample set. Clinical diagnoses were previously
confirmed by standard clinical biochemical IEM assays and/
or molecular genetic analyses in all cases; nearly all patients
were undergoing clinical management for their disorder
at the time of sampling. The undiagnosed/control patient
specimens were obtained from retrospectively analyzed, dis-
carded clinical samples sent for other testing performed in

Table 1. List of Samples and Disorders Examined in This Study

Disorder No. of samples Identifier Age (years) Sex

3-Methylcrotonyl-CoA carboxylase deficiency 1 U326 0 M
Adenosine deaminase deficiency 1 U314 1 F
Adenylosuccinate lyase deficiency 2 U311 1 M

U336 1 F
Citrullinemia 3 U301 4 F

U324 34 F
U335 34 F

Dihydropyrimidine dehydrogenase deficiency 1 U313 2 F
Glutaric aciduria 1 U328 0 M
Guanidinoacetate methyltransferase deficiency 4 U310 5 M

U323 11 F
U333 14 F
U334 6 M

Holocarboxylase deficiency 3 U302 4 M
U303 4 M
U305 5 M

Isovaleric acidemia 1 U307 1 M
Lesch-Nyhan or xanthinuria 1 U330 8 M
Lysinuric protein intolerance 1 U325 6 M
Medium chain acyl-CoA dehydrogenase deficiency 2 U304 2 M

U306 1 F
Methylmalonic acidemia 2 U315 0 F

U317 0 F
Molybdenum cofactor deficiency 1 U322 3 F
Ornithine transcarbamylase deficiency 2 U318 1 M

U327 1 M
Succinic semialdehyde dehydrogenase deficiency 1 U316 2 F
Tyrosinemia type 1 2 U308 9 F

U309 9 F
X-linked creatine transporter deficiency 5 U332 2 M

U312 9 M
U329 7 M
U320 8 M
U319 2 M

No metabolic disease 66 All others Range 0–17 21F, 45M
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the biochemical genetics laboratory and were normal in that
testing (e.g., amino acids, urine organic acids, disorders of
creatine metabolism, and others). These samples were pre-
screened to remove individuals with any biochemical find-
ings from clinical testing that were interpreted as evidence of
an IEM or of total parenteral nutrition at the time of sampling.

Metabolomic analysis

Metabolomics was performed as described previously
(Evans et al., 2009, 2014; Miller et al., 2015). Small mole-
cules were extracted in an 80% methanol solution containing
four standards (tridecanoic acid, 4-Cl-phenylalanine, 2-fluro-
phenylglycine, and d6-cholesterol) used to monitor extraction
efficiency. Clarified supernatant was split into five aliquots
and dried under N2. For one aliquot, analytes were deriva-
tized using bistrimethyl-silyl-trifluoroacetamide and ana-
lyzed on a Trace DSQ fast-scanning single–quadruple mass
spectrometer (Thermo-Finnigan). Another aliquot was re-
constituted in 50 mL of 6.5 mM ammonium bicarbonate, pH
8, for liquid chromatography mass spectrometry (LC/MS)
analysis in negative ion mode (LCneg); another aliquot was
reconstituted in 50 mL of 0.1% formic acid in water for LC/
MS analysis in positive ion mode (LCpos); another aliquot
was reconstituted in 100mL 85/15 acetonitrile/water in
10 mM ammonium formate, pH 10.8 for LC/MS analysis in
negative ion mode (LCpol) (Robinson et al., ‘‘A high pH
HILIC method for high throughput profiling of polar meta-

bolites,’’ unpublished data); the fifth aliquot was kept as a
spare if needed. All reconstitution buffers contained instru-
ment internal isotopic standards used to monitor performance
and serve as retention time/index markers. Standards for
negative ion mode analyses included d7-glucose, d3-
methionine, d3-leucine, d8-phenylalanine, d5-tryptophan,
Cl-phenylalanine, Br-phenylalanine, d15-octanoic acid, d19-
decanoic acid, d27-tetradecanoic acid, and d35-octadecanoic
acid. Standards for positive ion mode analyses included d7-
glucose, fluorophenylglycine, d3-methionine, d4-tyrosine,
d3-leucine, d8-phenylalanine, d5-tryptophan, d5-hippuric
acid, Cl-phenylalanine, Br-phenylalanine, d5-indole acetate,
d9-progesterone, and d4-dioctylpthalate. Standards for the
polar method include d35-octadecanoic acid, d5-indole ace-
tate, Br-phenylalanine, d5-tryptophan, d4-tyrosine, d3-
serine, d3-aspartic acid, d7-ornithine, and d4-lysine. Internal
standards were chosen based on their broad chemical struc-
tures, biological variety, and their elution spectrum on each of
the arms of the platform. Chromatographic separation was
completed using an ACQUITY UPLC (Waters) equipped
with a Waters BEH C18 or HILIC column, followed by
analysis with a Q-Exactive high-resolution mass spectrome-
ter (Thermo-Finnigan) (Evans et al., 2014). Metabolites were
identified by matching the ion chromatographic retention
index, accurate mass, and mass spectral fragmentation sig-
natures, with reference library consisting of more than 4000
entries created from authentic standard metabolites under the
identical analytical procedure as the experimental samples

FIG. 1. Dot plot analysis for individual biochemicals for all subjects diagnosed with an IEM and compared to the control
population. The graph to the right depicts all biochemicals detected across the study and graphed as a function of Z scores for each of
the clinical samples. Each biochemical is grouped into their respective family designations (e.g., amino acids, carbohydrates, and
lipids) Z scores increase for each of the biochemicals as you proceed to the right. The graphs on the left show increased resolution for
the amino acid and nucleotide families, respectively, and indicate the diseases, which could be identified by increased Z scores of the
respective biochemicals. Urea cycle disorders (e.g., citrullinemia) can be identified by multiple groups of biochemicals given the
relationship of different biological pathways (urea cycle and pyrimidine metabolism). IEMs, inborn errors of metabolism.
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(DeHaven et al., 2010). For ions that were not covered by
the standards, additional library entries were added based
on their unique ion signatures (chromatographic and mass
spectral). After this, these ions could be routinely detected
and quantified. These molecules are interrogated further
to elucidate their structure and confirm their structures
versus purified standards. At the time this article was
written, none of the structurally unknown biochemicals had
been elucidated.

To monitor quality control and the coefficient of variation
for the performance of each batch, the median relative stan-

dard deviation was calculated for all spiked standards using
median-scaled values. The median relative standard devia-
tions were 4% and 10% for urine and plasma for the internal
standards and endogenous biochemicals.

Creatinine and osmolality kit measurements

For osmolality measurement, 20mL of urine was moni-
tored using a Fiske 210 Osmometer (Advanced Instruments)
according to the manufacturer’s instructions. Osmolality was
measured in a range from 0 to 2000 mOsm. If samples were

FIG. 2. Biomarkers of
IEMs in urine identified
through global biochemical
profiling. For each disease
and biochemical listed, blue
triangles represent each of
the undiagnosed controls and
red bars indicate the affected
individuals diagnosed with
that disease. The dotted lines
represent the -2 and 2
Z-score cutoff for establish-
ing relevance.
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outside that range, they were diluted appropriately to be in
that range before data acquisition.

For targeted creatinine assessments, urine samples were
acidified, and protein was precipitated using a 1% picric acid
solution. Using a standard curve, creatinine quantitation was
performed according to the manufacturer’s instructions
(Cayman Chemical Company, Cat No. 10005314).

Data analysis and statistics

Raw biochemical values from mass spectrometry analysis
were first median scaled. Next, missing values were imputed
with a value based on the minimum detected value, and fi-
nally, the data were natural log transformed. Imputation was
based on a random uniform variable with range between 0.99
and 1.00 times the observed minimum. Urine values were
normalized to creatinine or osmolality before median scaling.
Z scores were calculated by comparing biochemical log-
transformed, median-scaled values to the associated mean
and standard deviation found in the undiagnosed population.
All correlations given used the Pearson method.

Results

Overview of analyte findings of metabolomic
profiling of urine samples

In total, we collected 34 specimens from patients with a
confirmed IEM, as well as 66 specimens from patients tested
for IEMs, but with normal results (Table 1). The sample set
consisted of 18 different IEMs representing disorders of ar-
omatic amino acid metabolism, branch-chain amino acid
metabolism, fatty acid catabolism, nucleotide degradation,
nitrogen homeostasis, and neurotransmitter metabolism.
Disorders were represented by at least one unique sample or
individual. Small-molecule analytes ranging in size from 50
to 1500 Da were extracted from urine and subjected to four
separate chromatographic and mass spectrometry analyses.
We detected 1201 biochemicals across these 100 urine
samples (Supplementary Table S1; Supplementary Data are
available online at www.liebertpub.com/gtmb).

Biochemical signatures of inborn errors of metabolism

All 18 disorders included in this study have established
urine-based assays that can be used to diagnose the associated
inborn error of metabolism, but these methods are assays that
interrogate single biochemical or chemical families (e.g.,
amino acids, acylcarnitines). To evaluate our metabolomic
method, all samples were normalized to their respective os-
molality measurements for Z-score analysis (Fig. 1 and
Supplementary Table S1). As with the previous analysis of
plasma samples (Miller et al., 2015), biochemicals were
declared clinically relevant if their Z scores were >2 or <-2.
Using this criterion, several disorders were successfully de-
tected with our metabolomic method. Specific cases are de-
scribed below.

Using this scoring metric, analyte perturbations within the
pathway affected by the respective enzyme deficiency could
be identified for several clinical cases (Fig. 2). The number of
significantly altered analytes related to the diagnosis ranged
from one metabolite in patients with X-linked creatine
transporter deficiency, that is, increased creatine, to as many
as 20 significant analyte perturbations that could be mapped

directly up/downstream of the enzymatic defect in patients
with holocarboxylase synthetase deficiency (Fig. 2). As with
the analysis of plasma samples, groups of molecules, affected
in the same pathway, revealed potential disease identities.
Some individuals not diagnosed with an IEM did have mol-
ecules outside the -2 and 2 boundaries, but these did not show
any specific groupings. It is also important to note that some
of these molecules can be affected by processes such as cir-
cadian rhythm (Dallmann et al., 2012; Eckel-Mahan et al.,
2012; Patel et al., 2012).

Not all samples from individuals diagnosed with an IEM
showed elevated levels of characteristic biochemicals. For
these individuals, treatment of the disease ameliorated dis-
ease signatures. For example, no subject diagnosed with or-
nithine transcarbamylase deficiency showed elevated levels
of ornithine due to phenylbutyrate treatment. In addition,
subjects diagnosed with X-linked creatine deficiency showed
elevated signatures of creatine due to creatine supplementa-
tion therapy.

In addition to molecules representing disease signatures,
treatment signatures could be identified in some of the sub-
jects. For example, benzoate and 4-phenylbutyrate, com-
pounds given to subjects with urea cycle defects to help
reduce ammonia levels in the bloodstream and tissues, were
detected in four samples as follows: U318, U324, U327, and
U335. Samples U324 and U335 were collected from the same
subject diagnosed with citrullinemia and samples U318 and
U327 were collected from two subjects diagnosed with or-
nithine transcarbamylase deficiency. In cases where benzoate
or phenylbutyrate itself did not indicate treatment, treatment
could still be detected through metabolites of these two
molecules. For example, U335 contained high levels of
phenylacetylglutamine and other biochemicals such as hip-
purate that can be formed through a different mechanism
linked to the metabolism of benzoate (Fig. 3). Treatment

FIG. 3. Biomarkers of citrullinemia and phenylbutyrate
treatment. Biomarkers of disease (urea cycle and pyrimidine
metabolism) and disease treatment (phenylbutyrate inter-
vention) could be identified in a single urine sample.
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through medicinal or nutritional means will decrease molec-
ular signatures of disease such as with the above-listed cases.

IEM signatures in urine as a surrogate
to plasma—intrasubject comparisons

Traditionally, one must use multiple sample types (e.g.,
analyze blood and urine) to gain confidence in identifying
disease signatures. A metabolomic assay of a single sample
could greatly simplify IEM screening, where multiple sample
types and assays are the current diagnostic testing paradigm.
The above results suggest that many IEMs typically assayed
with multiple urine-based assays can be screened with the
metabolomic method. We next sought to determine if we
could use urine samples and this metabolomic assay to detect
conditions normally screened with plasma-based assays. We
compared biomarker analyses from urine and plasma samples
obtained from the same subject and analyzed each sample for
signatures of IEMs. Specific cases are described below.

Holocarboxylase synthetase deficiency is a disorder in
which biotin-utilizing enzymes do not function properly.
Four enzymes, acetyl-CoA carboxylase, methylcrotonyl-
CoA carboxylase, propionyl-CoA carboxylase, and pyruvate
carboxylase, require biotin for proper function. The inability
of this enzyme to function properly affects fatty acid syn-
thesis (acetyl-CoA carboxylase), branched-chain amino
acid (leucine specific) catabolism (methylcrotonyl-CoA
carboxylase), odd-chain fatty acid and sterol metabolism
(propionyl-CoA carboxylase), and gluconeogenesis (pyru-
vate carboxylase). One subject diagnosed with holocarboxy-
lase synthetase deficiency had a plasma sample and two
urine samples analyzed through this analysis. The plasma
sample contained eight molecules with Z scores >2 or <-2
consistent with the pathway perturbations associated with the
genetic defect. The urine samples from that same individual
identified 20 molecules (Table 2) associated with the defect.
A potential explanation for the difference in biochemical
signatures between the samples is that urine was acquired for
the initial diagnosis, while the plasma sample was collected
from the subject after the initiation of treatment, which likely
dampened some signature biochemicals of the disease. In
addition, a concentration effect could result in the accumu-
lation of biochemicals/increased biochemical levels in urine
versus plasma.

Another subject was diagnosed with lysinuric protein in-
tolerance. Lysinuric protein intolerance is a disorder that
causes an inability to transport lysine, arginine, and ornithine,
thereby affecting their metabolism. Cells and tissues accu-
mulate these molecules and are unable to effectively degrade
them for energy production. Analyses of both plasma and
urine identified eleven total molecules with significantly al-
tered levels consistent with the affected genetic mutation
(Table 3). In urine, three of these molecules showed in-
creased levels compared to unaffected individuals, whereas

Table 3. Comparison of Biomarkers

of Lysinuric Protein Intolerance

from Urine (Osmolality Normalized)

and Plasma Samples from the Same Subject

Biomarker

Urine
Z score
(U325)

Plasma
Z score

(135190)

N6-acetyllysine 2.90a 3.76a

N2-acetyllysine 2.62a ND
2-Aminoheptanoate 2.23a 1.82b

5-(Galactosylhydroxy)-l-lysine -1.70c ND
3-Methylglutarylcarnitine -1.90c NS
N6-trimethyllysine -2.85d -3.09d

Glutarylcarnitine -3.86d -4.96d

Glutamine NS 2.91a

Arginine NS -3.47d

Ornithine NS -3.83d

Lysine NS -5.68d

NS, Biochemical was detected in that specific matrix but was not
statistically significant, Z score was -1.5 < Z < 1.5.

aZ score ‡2.
b1.5 < Z < 2.
c-2 < Z < -1.5.
dZ £ -2.
ND, not detected.

Table 2. Comparison of Biomarkers

of Holocarboxylase Deficiency from Urine

(Osmolality Normalized) and Plasma

Samples from the Same Subject

Biomarker

Urine
Z score
(U302)

Plasma
Z score
(158)

b-Hydroxyisovalerate 7.4a 5.6a

3-Methylcrotonylglycine 6.3a NS
3-Hydroxypropanoate 5.5a 5.3a

b-Hydroxyisovaleroylcarnitine 5.5a 6.8a

2-Methylcitrate 5.3a NS
Propionylglycine 5.1a 5.6a

3-Hydroxyisobutyrate 4.4a ND
Lactate 3.9a NS
a-Hydroxyisovalerylcarnitine 3.1a 3a

3-Hydroxy-2-ethylpropionate 3.0a NS
Isobutyrylglycine 3.0a NS
3-Methyl-2-oxobutyrate 2.9a NS
3-Methyl-2-oxovalerate 2.7a NS
3-Hydroxy-2-methylbutyrate 2.5a ND
4-Methyl-2-oxopentanoate 2.5a NS
Tiglylglycine 2.2a 1.6b

Isovalerylglycine 2.2a NS
a-Hydroxyisovalerate 2.1a 1.9b

2-Hydroxy-3-methylvalerate 2.0a NS
Tiglylcarnitine 1.9b NS
a-Hydroxyisocaproate -1.5c NS
Succinylcarnitine -1.8c -3.1d

Malonylcarnitine -4.0d -2.4d

Propionylcarnitine NS 5.6a

Isovalerylcarnitine NS NS
Hydroxybutyrylcarnitine NS NS
Succinate NS NS
2-Methylmalonylcarnitine NS -1.7c

NS, Biochemical was detected in that specific matrix but was not
statistically significant, Z score was -1.5 < Z < 1.5.

aZ score ‡2.
b1.5 < Z < 2.
c-2 < Z < -1.5.
dZ £ -2.
ND, not detected.
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four analytes showed decreased levels. In plasma, three
molecules showed increased levels and five showed de-
creased levels. N6-acetyllysine was the top biomarker for
urine and plasma. Several metabolic products of lysine me-
tabolism, including N6-trimethyllysine, 5-(galactosylhydroxy)-l-
lysine, and glutarylcarnitine, showed the largest decreases in
urine, exemplifying the inability of the patient to metabolize
lysine.

Another subject, diagnosed with citrullinemia, showed
several changes associated with urea cycle metabolism, as
well as pyrimidine biosynthesis and degradation (Fig. 4). The
urea cycle and pyrimidine metabolism are linked through
carbamoyl phosphate metabolism and genetic alterations in
argininosuccinate synthase that result in citrullinemia and
cause accumulation of metabolites linked to pyrimidine me-
tabolism. N-carbamoylaspartate was not detected in plasma,
but had a significantly elevated Z score in urine. For this
specific sample comparison, the urine samples showed more
significant changes in molecules associated with the urea
cycle, whereas the plasma samples showed more significant
changes in molecules associated with pyrimidine metabolism.

Table 4 outlines potential biomarkers for citrullinemia in
the urea cycle and pyrimidine metabolism, as well as markers
associated with the treatment of the disease. Analysis of the
urine sample identified 17 significantly altered analytes (14
increased, three decreased) and 16 analytes (all increased) in
plasma. This subject was treated with phenylbutyrate and
molecules linked to phenylbutyrate metabolism, including
several that could be linked to gut microbiota metabolism,
and showed increased levels due to the treatment.

Normalization of urine samples for clinical
analysis: creatinine and osmolality

To control for unwanted sources of variability, urine
samples can be normalized by different factors, including
creatinine or osmolality. Normalization can occur through
preprocessing (diluted before data acquisition) or post-
processing (data normalized after data acquisition). Targeted
analytical profiling and global profiling of creatinine showed
a high level of correlation (Fig. 5A). Serial dilution of three
independent urine samples resulted in the loss of detection of

FIG. 4. Biochemical map showing metabolic perturbations in urine from a patient diagnosed with citrullinemia. Red
circles indicate biochemicals with positive Z scores and blue circles indicate biochemicals with negative Z scores. The
diameters of the circles indicate the magnitude of the Z score. Pink circles represent biochemicals with Z score of
1.5 £ Z < 2.0, and light blue circles represent biochemicals with -2.0 < Z £ -1.5. Black circles represent other biochemicals
in the pathway detected in the urine sample, but had Z scores of -1.5 < Z < 1.5. Gray circles represent biochemicals in the
library but not detected. White circles are biochemicals not detected on the mass spectrometry platform.
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some biochemicals, but only at very large dilutions of the
samples (Fig. 5B).

To compare creatinine normalization and osmolality nor-
malization, for urine samples, the data from the 100 urine
samples described previously were adjusted for either pa-
rameter, and the Z scores for several biomarkers were com-
pared. The comparison of osmolality-normalized data and
creatinine data analyses revealed a high degree of agreement
between the methods (Supplementary Table S3). Of the 1201
biochemicals detected in urine, 766 (63.7% of the total bio-
chemicals) had correlation values of r > 0.9 when comparing
the Z scores obtained from creatinine and osmolality-
normalized data, 1000 (83.3%) had correlation values of
r > 0.8, and 1114 (92.8%) had correlation values of r > 0.70.
The molecules that showed correlation values of r < 0.7 did
not represent any particular single structural class or bio-
logical family. 3-Hydroxymandelate and cadaverine, the two
molecules with the lowest correlation levels, were present in
2 of the 100 samples. Several other molecules with r < 0.50
were detected in all or nearly all of the 100 samples. This
agreement between the two analyses shows that while the
normalization of the data may affect a small number of
specific biochemicals, this normalization will not influence

the majority of detected biomarkers and ability to identify
IEMs through biochemical pathway analysis.

The osmolality-normalized and creatinine-normalized Z
scores for all biochemicals detected in the study for each
subject are outlined in Supplementary Tables S2 and S3,
respectively. Examination of either set of analyses revealed
consistent biomarkers of disease for the respective diagnoses,
that is, the normalization did not affect the identification of
any biomarker or group of markers for a given diagnosis. The
exceptions to this were those disorders that affect urea cycle
metabolism, which can affect creatinine formation and me-
tabolism.

Discussion

The ability to analyze urine as a front-line specimen for
screening of IEMs through metabolomics would provide a
valuable means to efficiently, accurately, and rapidly identify
and manage many IEMs (Campeau et al., 2008). In the cases
analyzed in this study, urine and plasma biochemical profiles
show good concordance. Recently, metabolomics showed
high accuracy in identifying IEMs in plasma (Miller et al.,
2015). In this study, we assessed the feasibility of using

Table 4. Comparison of Biomarkers of Citrullinemia from Urine

(Osmolality Normalized) and Plasma Samples from the Same Subject

Pathway Biomarker Urine Z score (U324) Plasma Z score (132845)

Urea cycle Citrulline 4.84a 10.5a

N-acetylcitrulline 7.43a 6.11a

Homocitrulline 1.93a 3.77a

4-Guanidinobutanoate -2.01d 2.35a

N-acetylarginine -1.53c NS
Guanidinoacetate -3.47d NS
Ornithine NS NS
Urea -7.34d NS
Creatinine 3.43a NS
N-carbamoylaspartate 2.03a ND

Pyrimidine Metabolism 3-Ureidopropionate 3.89a 6.84a

4-Ureidobutyrate 9.98a 4.40a

Orotate 2.67a 3.28a

Uracil 2.40a 1.95b

Uridine NS 4.44a

5,6-Dihydrouracil 3.63a 3.79a

Orotidine NS 2.53a

Phenylbutyrate treatment and
phenylbutyrate metabolism

4-Phenylbutyrate 1,796,820a 1,439,554a

2-Phenylglycine 1.83b 7.64a

Phenylacetate ND 6.16a

2-Hydroxyphenylacetate NS 2.01a

3-Hydroxyphenylacetate NS ND
4-Hydroxyphenylacetate NS NS
3,4-Dihydroxyphenylacetate 2.91a ND
Phenylacetylglycine 2.09a 2.34a

Phenylacetylglutamine 3.15a 5.51a

Hippurate -1.50c NS
2-Methylhippurate NS ND
2-Hydroxyhippurate ND NS
4-Hydroxyhippurate NS NS

NS, biochemical was detected in that specific matrix but was not statistically significant, Z score was -1.5 < Z < 1.5.
aZ score ‡2.
b1.5 < Z < 2.
c-2 < Z < -1.5.
dZ £ -2.
ND, not detected.
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metabolomic evaluation of urine to assess IEMs that are
typically screened using urine, as well as for those IEMs
for which plasma-based screens are used clinically. Specifi-
cally, biochemical alterations detected in urine may be ana-
lyzed alongside plasma biochemical changes to get a more
robust understanding of metabolic perturbations under dis-
eased states.

The excretory system accumulates waste products, dead-
end products of metabolism, and excess molecules from the
circulation and governs the drive to keep plasma in a more
homeostatically balanced state, which may contribute to
differential biomarker availability (Tables 2–4). Hence, it
seemed plausible that our sensitive metabolomic method
would be able to detect disease signatures in the urine—even
for conditions where the current diagnostic sample is plasma.
A possible exception may be with the lipid family, as it
showed the largest disparity between the two matrices.
Plasma contained 292 molecules in the lipid superfamily,
whereas urine contained 112 in the lipid superfamily (Sup-
plementary Fig. S1 and Supplementary Table S4). Plasma
contained several more free fatty acids, sphingomyelin-
related metabolites (e.g., sphinganine, sphingosine, and sphin-

gosine 1-phosphate), and lysolipids which, under normal
physiologic conditions, are not absorbed and excreted through
the urinary tract. Therefore, the use of urine to detect condi-
tions where these metabolites are the only signatures of dis-
eases may be limited. Another notable difference with urine
was that it contained several methylated, sulfated, and acety-
lated compounds that are excreted through the urinary tract
through specific recognition of transporters in the kidney.

One important consideration of the use of urine as a sur-
rogate sample type for plasma is the well-established practice
of normalization. There is rich debate about the appropriate
method for normalization of urine samples (Morgenstern
et al., 2003; Dieterle et al., 2006; Warrack et al., 2009;
Godevithanage et al., 2010; Wagner et al., 2010; Ryan et al.,
2011; Schrier, 2011; Veselkov et al., 2011; Kohl et al., 2012;
Armstrong et al., 2013; Edmands et al., 2014; Curcio et al.,
2015; Souza et al., 2015). Normalizing accounts for different
variables such as hydration status of samples was by scaling
the spectral data to the same virtual overall concentration.
Urine creatinine is the most commonly used metric for nor-
malizing data collected from urine samples. In this study,
normalizing samples to creatinine or osmolality revealed
very consistent results through biomarker identification
(Supplementary Tables S1 and S2). We suspect that this lack
of sensitivity to the normalization process is likely due to the
large effect sizes observed with these conditions. This ap-
parent robustness may be particularly important in IEMs
where several disorders can impact creatinine metabolism.

Expanding the clinical validity and utility of urine-based
metabolomics could greatly enhance the identification and
management of IEMs for a number of reasons. Metabolomics
can be utilized as a broad-based screening tool in association
with other standard diagnostic tools to confirm diagnoses.
Multiple assays and sample types can potentially be ‘‘col-
lapsed’’ into a single sample and the single metabolomic
‘‘assay’’ (Fig. 6) as a first pass point for clinicians to reflex
tests using these standard diagnostic assays. The sensitivity
and breadth of the metabolomic method (as shown in this
study with urine being a sufficient surrogate for plasma) may
also circumvent the need to obtain invasive sample types
such as cerebrospinal fluid (Atwal et al., 2015; Miller et al.,
2015). This methodology will identify molecules between 50
and 1500 Da in molecular weight, and limitations for this
method include the direct identification of larger molecules
such as proteins, trace metal analysis, or cellular analysis.
However, with these clinical measurements, the biochemical
profile can create a more comprehensive view of a patient’s
health. The samples examined in this study were not matched
plasma and urine samples. Utilizing matched plasma and
urine samples, those obtained during the same clinical visit,
for analysis may provide greater resolution into biomarkers
of disease and treatment of IEMs. To this end, future work
will examine additional diseases as well as monitoring
treatment of those diseases through medicinal and nutritional
intervention.

In conclusion, this analysis combined with that of Miller
et al. (2015) has identified biochemical signatures for over 30
IEMs and may support the use of metabolomics as a tool to
screen and identify disease signatures of IEMs in clinical
samples. In addition to its rich biochemical profile, urine is a
biological matrix that can be obtained through noninvasive
means compared to plasma, serum, and cerebrospinal fluid.

FIG. 5. Creatinine and osmolality normalization of clini-
cal urine samples. (A) Creatinine measurements obtained
through global biochemical profiling and targeted assay
analysis are plotted. (B) Urine from three donors was seri-
ally diluted at least four times and data obtained through
global biochemical profiling. AU, arbitrary units.
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Furthermore, it also supports the possibility of using urine
more universally for screening—even for conditions typi-
cally assessed with other sample types. Thus, metabolomics
may offer a route to collapse dozens of assays and multi-
ple sample types into a metabolomic screen of a single urine
sample.
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