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ABSTRACT
At first glance it may seem that intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are
simpler than ordered proteins and domains on multiple levels. However, such multilevel simplicity
equips these proteins with the ability to have very complex behavior. KEYWORDS
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complexity; functional
complexity; intrinsically
disordered proteins;
structural content; structural
heterogeneity

This article continues a series of short comments on
the paradoxes and wonders of the protein intrinsic dis-
order phenomenon by introducing the “complexity of
simplicity” paradox. Intrinsically disordered proteins
(IDPs) are simpler than their ordered counterparts at
various levels, ranging from reduced amino acid alpha-
bet to redundancy of amino acid sequences (mani-
fested in various ways, such as in the common
presence of multiple sequence repeats), and to struc-
tural “primitivity” (i.e., an inability to gain well-ordered
structures in isolation). Despite this multilevel simplic-
ity, IDPs are very complex creatures characterized by
an expanded sequence space, binding promiscuity, and
conformational plasticity and polymorphism.

Reduced amino acid alphabet and expanded
sequence space

The first lesson one learn about IDPs/IDPRs is that
they lack ordered structure because of specific amino
acid biases, as they are typically depleted in order-pro-
moting residues (Cys, Trp, Tyr, Phe Ile, Leu, Val, and
Asn) and enriched in disorder-promoting residues
(Pro, Arg, Gly, Gln, Ser, Glu, Lys, and Ala) (see
Figure 1A),1-8 and have amino acid sequences that
commonly contain repeats. In other words, when com-
pared to ordered proteins and domains, the overall
alphabet that IDPs and IDPRs utilize in their amino

acid sequences is somehow reduced. Therefore, the
informational content of the amino acid sequences
encoding IDPs/IDPRs is also reduced, making these
proteins and domains simpler than their ordered coun-
terparts at the sequence level. However, this sequence
simplicity is translated into a vastly expanded sequence
space and related structural complexity. Furthermore,
the sequence space of IDPs/IDPRs is further increased
due to the removal of restrictions posed to ordered
proteins and domains created by the need to spontane-
ously fold into a unique ordered structure.9

Using an assumption that any of the normally
occurring 20 amino acids can be found in a protein
with equal probability (which is a drastic oversimplifi-
cation), the amino acid sequence space for a protein of
100 amino acids was estimated to be 20100 (~10130).10

Obviously, this number serves as the upper-most limit
of the sequence space for a 100 residues-long protein,
and in reality this space is noticeably smaller, espe-
cially for foldable or ordered proteins that require
unique structures in order to be functional. The reduc-
tion of the space originates from the inequality of the
natural abundance of 20 amino acids in proteins, and
from a simple observation that not all sequences can
fold. Theoretical and statistical analyses based on the
existing variation of protein sequences revealed that
the actual identity of the majority of amino acids is
irrelevant for protein folding, indicating that not all 20
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Figure 1. Peculiarities of the amino acid sequences of intrinsically disordered proteins. (A) Amino acid determinants defining structural
and functional differences between the ordered and intrinsically disordered proteins. Fractional difference in the amino acid composi-
tion (compositional profile) between the typical IDPs from the DisProt database56 and a set of completely ordered proteins57 calculated
for each amino acid residue. The fractional difference was evaluated as (CDisProt-CPDB)/CPDB, where CDisProt is the content of a given amino
acid in a DisProt database,56 and CPDB is the corresponding content in the dataset of fully ordered proteins from PDB select 25.57 Positive
bars correspond to residues found more abundantly in IDPs, whereas negative bars show residues, in which IDPs are depleted. Amino
acid types were ranked according to their decreasing disorder-promoting potential.58 (B) Evaluation of the charge-hydropathy space
available for mouse proteins. In this plot, areas accessible to sequences encoding compact proteins and extended IDPs are separated by
a set of boundaries described in the text.
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residues are equally needed for this process to
occur.11-18 These observations indicated that the size
of the amino acid ‘alphabet’ that defines protein fold-
ing is noticeably smaller than 20 natural amino
acids,10 resulting in a dramatic reduction of the ‘fold-
able’ sequence space. Assuming that only the surface
of the protein is important for its function, the size of
functional sequence space was estimated to be approx-
imately 233 (~1010).19 The lowest limit of the number of
‘foldable” sequences for a protein of 100 residues is
2100 (~1030), which can be evaluated based on the
hypothesis that only 2 types of amino acid were
needed to form a protein structure, namely hydro-
philic and hydrophobic.19 However, even a reduced
amino acid alphabet should be sufficient for producing
all the protein folds (which is believed to be in the
range of a few thousand folds20) and for generating
scaffolds needed to support all protein functions.10

In all the aforementioned considerations, which
were based on the assumption that proteins need to
fold for performing their function,10 IDPs/IDPRs were
obviously ignored. However, it is clear now that many
biological functions of IDPs/IDPRs do not require pro-
tein folding.5,21-27 Furthermore, by preserving signifi-
cant amounts of disorder in their bound states, IDPs
are known to often be engaged in the formation of
fuzzy complexes, which makes disorder-based interac-
tions very different from interactions involving ordered
proteins.28, 29 All this suggests that, due to the lack of
restrictions posed by the need to gain ordered struc-
ture, the sequence space of IDPs is noticeably greater
than that of ordered proteins.9 In fact, assuming that
all the amino acids are important for IDP function, the
size of the sequence space for an IDP of 100 amino
acids returns to the original estimate of 20100 (~10130) a.
Even for IDPs that do not have major order-promot-
ing residues, e.g., C, W, F and Y, the potentially avail-
able sequence space is still gigantic, 16100 (»10120).

Figure 1B shows the oversimplified sequence space
for the mouse proteome in a form of the ‘modified’
charge-hydropathy plot. Here, each protein is repre-
sented by a single point calculated based on a protein’s
mean net charge and mean net hydropathy. This plot
differs from the traditional CH-plot by showing both
positive and negative mean net charge values instead
of absolute mean net charges. The area accessible to
sequences encoding ordered and disordered proteins
are defined by several boundaries: (i) the known
boundary separating compact proteins and extended

IDPs (<R> D 2.785 <H> – 1.151, where <R> and
<H> correspond to the absolute mean charge and
mean hydropathy, respectively30); (ii) the mirror
image of this boundary (<R> D – 2. 785 <H> C
1.151, where <R> and <H> correspond to the mean
charge and mean hydropathy, respectively), which is
included to consider negatively charged proteins; (iii)
2 boundaries showing logical limits of the CH-space
(<R> D – 1.125 C 1.125 <H> and <R> D 1.00 –
<H>), evaluated for a series of hypothetical polypep-
tides containing different proportions of Ile (which is,
according to the Kyte and Doolittle scale, is the most
hydrophobic residue with the normalized hydropathy
of 1, ref.31) and a negatively charged Asp (which is
characterized by the normalized Kyte and Doolittle
hydropathy of 0.1111, ref.31) or a positively charged
Arg (which is characterized by the normalized Kyte
and Doolittle hydropathy of 0.0, ref.31); and (iv) the
boundary line within the area corresponding to com-
pact proteins to separate soluble and membrane pro-
teins, since proteins whose hydropathy in the
normalized Kyte and Doolittle scale exceeds 0.7 are
unlikely to be soluble. A comparison of the areas
accessible to soluble compact proteins and to extended
IDPs clearly shows that the IDP sequence space is sig-
nificantly larger than that accessible to the compact
proteins. In reality, this difference is even bigger, since
area assigned to compact proteins also includes com-
pact IDPs.30,32

Reduced structural content and structural
heterogeneity

From the viewpoint of their spatial organization and
structural content, IDPS/IDPRs are also simpler than
ordered proteins and domains. It is well-accepted that
3 levels with increased structural complexity are typi-
cally used to represent the structural hierarchy of an
ordered monomeric protein: a simple primary struc-
ture, a more complex secondary structure, and a
highly complex tertiary structure. Due to their inabil-
ity to fold in isolation, IDPs/IDPRs definitely lack the
ability to reach the highest level of this hierarchy, and
many of these proteins/regions either do not have an
ordered secondary structure or contain very limited
amounts of such structure. This is illustrated by
Figure 2 (left side), which shows characteristic exam-
ples of an ordered, rigid like a rock, and a completely
disordered, noodle-like, protein.
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On the other hand, due to their lack of stable
ordered structure, IDPs/IDPRs are characterized by
the exceptional structural heterogeneity, which, at

least in part, is defined by the highly inhomogeneous
distribution of order- and disorder-promoting resi-
dues within their sequences. It was pointed out that a

Figure 2. Structural heterogeneity of IDPs. Left side. Bi-colored, oversimplified representation of functional fully ordered proteins (blue)
and fully disordered, completely structure-less proteins (red). Right side. A continuous emission spectrum illustrates exceptional struc-
tural heterogeneity of functional proteins ranging from fully ordered to completely structure-less proteins, with everything in between.
Here, intrinsic disorder can have multiple faces, can affect different levels of protein structural organization, and whole proteins, or vari-
ous protein regions can be disordered to a different degree.
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sequence of an IDP represents a very complex mosaic
and typically contains a multitude of potentially fold-
able, partially foldable, differently foldable, or not
foldable at all segments.9 Furthermore, it seems that
intrinsic disorder can have multiple faces, can affect
different levels of protein structural organization, and
whole proteins, or various protein regions, can be dis-
ordered to a different degree. This is illustrated by
Figure 2 which shows that instead, of a highly polar-
ized bi-colored picture with ordered and disordered
proteins being homogeneously painted in blue and
red (see left side of Figure 2), the actual structural
space of a protein can be described as a continuous
spectrum of differently disordered conformations
extending from fully ordered to completely disordered
proteins, with everything in-between (see right side of
Figure 2).9

Another level of increased complexity originating
from simplicity is present in the form of the spatio-
temporal heterogeneity of IDPs.9 In fact, due to the
lack of fixed 3D-structure, different parts of an IDP
are ordered (or disordered) to a different degree and
this distribution is constantly changing with time. As
a result, at any given moment, a protein molecule has
a structure which is different from its structure seen at
another moment, and the structure of one molecule in
the conformational ensemble is significantly different
from the structure of another member of this ensem-
ble. In other words, a given segment of a protein mole-
cule will have different structures at different time
points. Therefore, IDPs act as 4D-proteins,33 whose
structural description requires time as a crucial com-
ponent, since their structures are not fixed, as is gener-
ally the case for “3D proteins,” but rather defined by
time and space, and since a given structure in an IDP
is seen at a given time only.9

Simplified energy landscape, induced folding, and
functional complexity

For a protein molecule, an energy landscape can be
created, with a topography that describes the probabil-
ity of each achievable conformation.34 Such energy
landscapes are very different for ordered and disor-
dered proteins. Figure 3A shows that the energy land-
scape of an ordered protein has a complex funnel-like
shape and possesses a well-defined global energy mini-
mum,35, 36 which corresponds to a unique well-folded
state. However, it is worth noting that the bottom of

this funnel-like energy landscape is rugged due to the
fact that even ordered proteins possess noticeable
structural flexibility37 and might have numerous con-
formational substates (or nearly isoenergetic confor-
mations).38-40 On a functional side, the presence of
this roughness defines the protein’s allosteric regula-
tion, where functional response is achieved via ener-
getic coupling of the remote sites, with the ligand
binding at one site modulating the structure and
dynamics of a distant binding site.41-49 Such roughness
also defines the capability of an ordered protein to
undergo a conformational change at ligand binding.50

The free energy of an extended IDP that exists as
the dynamic ensemble of a large number of intercon-
verting conformations lacks a deep energy minimum
seen in the landscape of an ordered protein. Instead,
the corresponding energy landscape is dramatically
simpler, relatively flat, and represents a “hilly plateau”
(Figure 3B), with hills corresponding to the forbidden
conformations.34,51,52 The lack of a global energy min-
imum and the presence of numerous local energy
minima force an IDP to behave as a highly frustrated
system without single folded state.

On the other hand, this flattened energy landscape
is highly sensitive to environmental changes and
explains the conformational plasticity of an IDP. In
fact, different environmental factors might affect the
energy landscape in a number of very different ways,
making some energy minima deeper and some energy
barriers higher (see Figure 3C). This gives some logical
explanations to the ability of an IDP to specifically
interact with many ligands of different nature, and to
fold differently as a result of these interactions. Here,
the interaction with a particular binding partner
affects the IDP folding landscape in a unique way,
promoting the formation of a specific structure on a
template-dependent manner.9

Importantly, due to the aforementioned multi-
level heterogeneity of IDPs, their actual energy
landscapes are essentially more complex than
shown in Figure 3B. In fact, individual energy land-
scapes should be used to describe different parts of
an IDP, with each of these sub-landscapes capable
of responding differently to different environmental
changes.9 This heterogeneity of the energy land-
scape defines the ability of IDPs to form fuzzy
complexes, where a significant part of a protein
preserves its intrinsically disordered state even in
the bound conformation.28,29,53,54
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Furthermore, there is a principle difference between
the spontaneously foldable ordered proteins and IDPs
undergoing binding-induced folding. In fact, although
all information required for an ordered protein to
spontaneously fold to its functional state is encoded in
its sequence, a significant portion of such folding code
is missing in IDPs. Since this missing portion of the
folding code (or a part of it) can be supplemented by a
binding partner(s), many IDPs can partially fold at
binding to their partners. Importantly, the folding fate
and the final folded state of an IDP/IDPR are not
strictly defined and depend on the partner. As a result,
a given IDP/IDPR can bind to multiple partners and
gain very different structures in the bound state.55

Finally, an interplay should be mentioned between
the complex ‘anatomy’ of IDPs/IDPRs, which are
highly heterogeneous entities containing multiple rela-
tively short functional elements that are folded/

disordered to different degree and are able to respond
differently to changes in their environment, and the
unique ‘physiology’ of these proteins; i.e., their ability
to interact, regulate, and control, and be regulated and
controlled by multiple structurally unrelated
partners.54

In summary, the exceptional functional complexity
and structural heterogeneity of IDPs/IDPRs would
not be possible without the multilevel sequential,
structural, and spatiotemporal simplicity of these pro-
teins and without their simplified energy landscapes.
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