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A short segment of the disordered p53 transactivation domain (p53TAD) forms an amphipathic helix when bound to
the E3 ubiquitin ligase, MDM2. In the unbound p53TAD, this short segment has transient helical secondary structure.
Using a method that combines broad sampling of conformational space with re-weighting, it is shown that it is possible
to generate multiple, independent structural ensembles that have highly similar secondary structure distributions for
both p53TAD and a P27A mutant. Fractional amounts of transient helical secondary structure were found at the MDM2
binding site that are very similar to estimates based directly on experimental observations. Structures were identified in
these ensembles containing segments that are highly similar to short p53 peptides bound to MDM2, even though the
ensembles were re-weighted using unbound experimental data. Ensembles were generated using chemical shift data
(alpha carbon only, or in combination with other chemical shifts) and cross-validated by predicting residual dipolar
couplings. We think this ensemble generator could be used to predict the bound state structure of protein interaction
sites in IDPs if there are detectable amounts of matching transient secondary structure in the unbound state.

Introduction

Intrinsically disordered proteins (IDPs) perform essential
functions in organisms from all phyla.1-6 IDPs are highly
dynamic, do not form tertiary structures, and contain variable
amounts of transient secondary structure.1,2,7-9 Generating realis-
tic structural ensembles of even a small IDP represents a major
challenge in structural biology.7,8,10-13

Several groups have made substantial progress developing
methods to generate structural ensembles of IDPs that are con-
sistent with the available experimental data.7,10,14-31 Most of
these methods use a strategy that is similar to the one that we
are using 32,33; that is, generate pools of physically realistic
structures, use these structures to simulate experimental data,
and determine a weight for each structure in the pool based on
how well the weighted average, simulated data fits the experi-
mental data. The final ensemble of structures with non-zero
weights should have properties that are consistent with the

type(s) of experimental data used during the fitting process and
may contain features that can be used to rationalize function.

There are some important differences between the methods
that are currently available to generate structural ensembles of
IDPs. Forman-Kay and collaborators developed a software pack-
age, referred to as ENSEMBLE, that determines structure
weights using Monte Carlo and attempts to generate the smallest
possible ensemble that is simultaneously consistent with multiple
forms of experimental data.7,14,22,23,31 Selecting the smallest
ensemble that fits the experimental data limits problems associ-
ated with overfitting. Another approach developed by Hummer
and collaborators reduces overfitting by using simulated anneal-
ing to implement a maximum-entropy method.20,34 Blackledge
and collaborators have done extensive development and testing
of two software packages, Flexible-Meccano and ASTEROIDS,
that can generate and re-weight pools of structures.8,19,21,24,26-
29,35 The Flexible-Meccano software samples a database of phi
and psi angles taken from the loop and coil regions of ordered
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proteins to provide a representation of the conformational vari-
ability of IDPs. After a suitable pool of structures is generated,
the ASTEROIDS software uses a genetic algorithm with an
iterative procedure to enhance the selection (and subsequent
generation) of structures consistent with different forms
of nuclear magnetic resonance (NMR) and small-angle
x-ray scattering data. There have also been efforts to approximate
the accuracy of the ensemble. In particular, Stultz and collabora-
tors developed a Bayesian weighting approach that determines
the error associated with all the possible combinations of weights
that can be assigned to the structures in the pool.10,15,16 Finally,
Vendruscolo and collaborators developed an approach that uses
the experimental data as a form of restraint during a molecular
simulation.11,36,37

In this study, we use the transactivation domain of the tumor
suppressor protein p53 as a model IDP because it has well charac-
terized structural and functional properties. The p53 protein is a
transcription factor and cell cycle regulator that determines cell

fate in response to DNA damage. Depending on the type and
extent of the damage, p53 will activate target genes that will
repair the damage, or induce cell-cycle arrest or apoptosis.38,39

The p53 protein is referred to as the “guardian of the genome”
and it is mutated and/or dysregulated in most human can-
cers.38,39 Residues 1-73 of human p53 include a transactivation
domain (p53TAD) that is responsible for regulating the tran-
scriptional activity and cellular stability of p53.38,40,41 To per-
form these functions p53TAD interacts with multiple binding
partners including the E3 ubiquitin ligase, MDM2. When bound
to MDM2 short segments of p53TAD undergo a disorder to
order transition to form amphipathic helices.42,43 Several studies
have concluded that p53TAD is an IDP containing some tran-
sient helical secondary structure that is localized to the MDM2
binding site.41,44,45

Using our broad ensemble generation with re-weighting
(BEGR) method 32,33 we show it is possible to generate multi-
ple, independent structural ensembles of p53TAD that have

Figure 1. BEGR ensembles for p53TAD re-weighted against primary CA chemical shifts. For all panels the experimental values are shown with black bars,
values for randomly selected structures are shown with gray bars, and the BEGR ensemble predictions are shown with red bars for panels a, c-e and blue
bars for panel b. The mean squared errors (MSE) are shown to quantify the agreement between BEGR and experiment, and between random and experi-
ment. (A) Secondary CA chemical shifts (CADd) for BEGR ensembles of p53TAD re-weighted with using CA chemical shift data, (B) Secondary CA chemical
shifts (CADd) for BEGR ensembles of the P27A mutant re-weighted with using CA chemical shift data, (C) Secondary CA chemical shifts (CADd) for BEGR
ensembles of p53TAD re-weighted with using CA, CB and CO chemical shift data, (D) Secondary CB chemical shifts (CBDd) for BEGR ensembles of
p53TAD re-weighted with using CA, CB and CO chemical shift data, (E) Secondary CO chemical shifts (CODd) for BEGR ensembles of p53TAD re-weighted
with using CA, CB and CO chemical shift data.
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highly similar secondary structure distributions. The key differ-
ence between BEGR and other methods is that we can simulta-
neously re-weight pools containing over one million structures,
which was necessary to obtain converged ensemble properties.
Using either alpha carbon (CA) chemical shifts, or CA chemical
shifts combined with beta carbon (CB) and carbonyl carbon
(CO) chemical shifts from unbound p53TAD, ensembles were
generated that contained structures that resemble short peptides
of p53TAD bound to MDM2. The BEGR ensembles of
p53TAD generated using chemical shifts were cross-validated
by predicting residual dipolar coupling data from Blackledge
and Fersht.24

Results

Ensemble generation and cross-validation
Primary CA, CB, and CO chemical shifts were measured for

human p53TAD and a mutant that changes a highly conserved
proline on the C-terminal edge of the MDM2 binding site to ala-
nine (P27A). The chemical shifts were measured in the absence
of any binding partners and therefore represent the ensemble
average secondary structure of the unbound proteins. These
experimental data were then used with our BEGR approach (see
Materials and Methods) to generate five independent structural
ensembles for both p53TAD and P27A.32 Briefly, the trajectory
directed ensemble-sampling (TraDES) program was first used to
generate one million member pools of structures for p53TAD
and P27A.46 The SPARTAC program was then used to predict
the CA, CB, and CO chemical shifts for these structures.47

Finally, a non-negative least squares fitting procedure was used
(accounting for simulation and experimental uncertainty) to
simultaneously assign weights to each of the structures in the mil-
lion member pools to obtain the best fit between the weighted
average of the predicted chemical shifts and the experimental
chemical shifts (see equation (1)). The weights represent the rela-
tive importance of each structure in fitting the experimental data
and are used to calculate physical properties of the ensembles (see
equation (2)). After the fitting process is complete, all structures
with non-zero weights are collected for further analysis and
referred to as the BEGR ensemble.

Figure 1 shows that the predicted chemical shifts from indi-
vidual BEGR ensembles of p53TAD fit the experimental second-
ary chemical shifts for CA (DdCA), CB (DdCB), and CO
(DdCO) with high accuracy. Black bars show the experimental
data. Positive CADd and CODd values are observed for residues
in a helical conformation and negative values are observed for res-
idues in a beta or extended conformation.48,49 The opposite
trend is observed for CBDd values in regions with beta structure
and CBDd values are near random coil for helical regions.
Figure 1A shows that the MDM2 binding site has some transient
helical secondary structure (positive CADd values for residues
17-28) with an estimated population (� 28%) that is consistent
with previous reports, and Figure 1B shows that this transient
helicity increases for P27A ((� 64%).24, 41, 45 The red and blue
bars in Figures 1A, B show the predicted CADd values for

p53TAD and P27A respectively, from a BEGR ensemble that
was re-weighted using CA chemical shifts (see Materials and
Methods). Figures 1C, D, and E respectively show the secondary
shift predictions for CA, CB and CO nuclei when re-weighting
is performed using all three carbon chemical shifts. The gray bars
show the secondary chemical shift values predicted for a ran-
domly drawn ensemble with no re-weighting. The mean squared
errors are shown as a measure of the goodness of fit between the
BEGR ensemble results and experiment, and between the ran-
dom ensembles and experiment.

Figure 2 shows cross-validation of the BEGR ensembles using
experimental residual dipolar couplings (RDCs) obtained from
Blackledge and Firsht.24 The five independent BEGR ensembles
that were generated for p53TAD, using either CA chemical shifts
(Fig. 2A) or CA, CB, and CO chemical shifts (Fig. 2B), were

Figure 2. Cross-validation of BEGR ensemble structures. Results are pre-
dictions of the residual dipolar coupling data for five independent
ensembles were generated using: (A) CA chemical shift data, (B) CA, CB
and CO chemical shift data. Averages are shown as red lines with stan-
dard deviations as the red shading and should be compared to the
experimental data (from reference 24) shown as black lines. The mean
squared errors (MSE) are shown to quantify the agreement between the
predicted and experimental results.
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used to predict residual dipolar couplings (RDCs). The predicted
RDCs are shown as averages (red lines) with standard deviations
(red shading) and the experimental RDCs are show as black lines.
The mean squared errors between the BEGR ensemble predic-
tions and the experimental data are also shown. The CA

re-weighted results (Fig. 2A) fit the experimental data very well
for most of the residues with the largest deviations occurring for
residues 58-70, possibly because the experimental data was col-
lected for a larger p53 fragment (residues 1-93). Using CA, CB
and CO chemical shifts (Fig. 2B) resulted in poorer fits to the
peaks of the RDC (e.g., residues 22-24, 48-49) compared to CA
re-weighting, and improved fits near the N-terminal.

Using BEGR ensembles to estimate secondary structure
populations

Figure 3 shows ensemble averaged population estimates of a
helical structure predicted by the five independent BEGR ensem-
bles. These ensembles were generated using CA chemical shift
data for unbound p53TAD and P27A. Averages (red line) and
standard deviations (light red shading) are given for p53TAD
and for P27A (blue line with light blue shading). The black
dashed line with gray shading shows averages and standard devia-
tions for a randomly drawn ensemble with no re-weighting.
According to the secondary structure predictions from the BEGR
ensembles, the P27A mutant has a population of transient helical
secondary structure in the MDM2 binding site that is more than
double the amount observed for wild type p53TAD. This is con-
sistent with the population estimates predicted directly from the
chemical shift data using d2D (Fig. 4).50

Figure 4 shows the predicted secondary structure distribu-
tions estimated using either the BEGR ensembles of p53TAD

(4a,b), or d2D (4c).50 The average sec-
ondary structure properties for alpha
helix (red), beta strand (gray) and poly-
proline II (PPII) helix (blue) are shown
for BEGR ensembles re-weighted using
CA chemical shifts (Fig. 4A), re-
weighted using CA, CB and CO chem-
ical shifts (Fig. 4B), and estimated
using d2D with all available chemical
shifts (CA, CB, CO, N, HN; Fig. 4C).
Using CA, CB and CO chemical shift
data lowers the predicted helical fre-
quency compared to using CA data
alone, but does not significantly change
the predicted strand or PPII
frequencies.

BEGR ensembles contain structures
that resemble p53 peptides bound to
MDM2

The results in Figure 5A show that
p53TAD ensembles, re-weighted using
only CA chemical shifts for the
unbound protein, contain short helical
segments resembling the backbone
structure of p53 peptides bound to
MDM2. Both panels show histograms
of the root mean square deviations
(RMSD) measured between the CA
atoms of residues 19-24 from all of the

Figure 3. Helicity of five BEGR ensembles for human p53TAD (red) and
P27A (blue). The solid lines are the weighted average helicities and the
shaded regions are the standard deviations for ensembles re-weighted
using CA chemical shifts.

Figure 4. Frequency of alpha helix (red), beta strand (gray) and polyproline II (PPII) helix (blue) pre-
dicted by BEGR ensembles and d2D. (A) Averages of five BEGR ensembles using CA chemical shift
data, (B) averages of five BEGR ensembles using CA, CB and CO chemical shift data, (C) d2D predic-
tions based on using all available chemical shifts.
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structures in the five independent BEGR ensembles of either
p53TAD (red line) or P27A (blue line) and a reference structure
from the protein data bank of a short p53 peptide bound to
MDM2 (1YCR).42,43 The solid lines with shading show the aver-
ages and standard deviations of the RMSD, respectively, for the
five ensembles of p53TAD and P27A. The black dashed line
with gray shading shows the averages and standard deviations for
a randomly drawn ensemble with no re-weighting. Figure 5B
shows results for re-weighting using CA chemical shifts, and
Figure 5B shows results for re-weighting using CA, CB and CO
shifts. Figure 5A also contains example structures from the three
peaks seen in the p53TAD histogram with the BEGR ensemble
structure shown in blue and the 1YCR peptide shown in green.
Chou and collaborators have also showed that NMR data for

unbound p21 could be used to identify structures in the free
ensemble that resemble the bound state.51

Large pools are necessary to generate ensembles with
converged properties

Figure 6 shows how pool size and accounting for uncertainty
(using noise) in the re-weighting process changes the convergence
of the RMSD histograms for independent ensembles. All the
panels in Figure 6 show the averages (red line) with standard
deviation (light red shading) for five independent ensembles gen-
erated using one million member pools with noise. Comparison
is made using the same pool size, shown as averages (black lines)
with standard deviation (gray shading), using no noise (Fig. 6A),
and using noise with ten thousand (Fig. 6B) and one hundred
thousand member pools. Convergence of the ensembles improves
as pool size is increased and noise is used.

Discussion

Previous groups have observed that good fits to the experi-
mental data (Fig. 1) can be obtained using ensembles of struc-
tures that appear very different.10 In the current study, we relied
exclusively on carbon chemical shift data, which has a strong
dependence on secondary structure, even the transient secondary
structure that is sometimes observed in IDPs.49,52,53 We demon-
strate that BEGR ensembles have very similar secondary structure
populations as those estimated directly from the primary chemi-
cal shifts. The small standard deviation values in Figures 2, 3,
and 5 (red or blue shading) show that the local structural proper-
ties of the five independent ensembles for p53TAD and P27A
are highly similar. To obtain a high level of similarity between
independent ensembles it was necessary to use large, one million
member pools of structures, and to account for the uncertainty
of the simulated and experimental results (see Fig. 6 and Materi-
als and Methods).

In our previous study of the global structural properties of
p53TAD using small-angle X-ray scattering data we determined
that the weighted average radius of gyration of the BEGR ensem-
bles was � 2.9 nm.32 In the current study we did not include
any data that would constrain or relax the tertiary structures of
the re-weighted ensembles, and we do not expect any correspon-
dence between the tertiary structures of the BEGR ensembles
that were re-weighted using chemical shifts and the real ensem-
bles. This is indeed what we observe. The BEGR ensembles that
were re-weighted using CA chemical shifts have an average radius
of gyration that is � 2.0 nm. We do not consider this a limita-
tion of the current study since only chemical shifts were used.
We did not include other forms of experimental data because we
are not convinced that a successful strategy for simultaneously re-
weighting data types that report on secondary and tertiary struc-
tures has been determined.

Because our method of generating ensembles is analogous to
estimating the equilibrium distribution of structures the results
do not have any bearing on whether the binding mechanism is
occurring through conformational selection or induced folding.

Figure 5. BEGR ensembles contain structures that resemble p53TAD
bound to MDM2. Histograms of CA root mean square deviations (RMSD)
for five BEGR ensembles are shown. The solid red and blue lines show
the average frequency of structures from the five BEGR ensembles of
p53TAD and P27A respectively, and the light red and blue shading
shows the standard deviations. Dashed black lines with gray shading
show the averages and standard deviation, respectively, for randomly
selected structures. (A) BEGR ensembles generated using CA chemical
shift data, (B) BEGR ensembles generated using CA, CB and CO chemical
shift data.
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Regardless of the binding mechanism an IDP uses, it is expected
that the unbound protein will occasionally (or frequently) sample
conformations that are similar to the bound structure(s) and that
some minimal indication of these structures will be present in the
unbound chemical shift data. The method we present for gener-
ating structural ensembles can be used to predict the bound state
structures of novel IDPs for which this condition is met, at least
if they fold into a helix upon binding.

The transient secondary structure (Fig. 4) and RMSD histo-
grams (Fig. 5) for ensembles that were re-weighted using only
CA chemical shifts are very similar to those re-weighted using
CA, CB, and CO chemical shifts. These results suggest that using
only CA chemical shifts may be sufficient to reproduce some of
the important structural properties of IDPs. We believe that
using CA chemical shifts to generate structural ensembles is desir-
able since these data have a straightforward relationship with the
backbone dihedral angles phi and psi ,48 because they are easier
to measure than residual dipolar couplings or paramagnetic relax-
ation enhancements, and because using only CA chemical shifts
could open the door for a minimalist approach to generating
structural ensembles of IDPs. The reason that using CA, CB and
CO chemical shifts results in poorer fits (larger MSE values) to
the experimental chemical shifts (Fig. 1) and the predicted
RDCs (Fig. 2), compared using CA only, may be due to our

strategy for using multiple forms of
data. Future work will include deter-
mining the best way to use multiple
forms of data.

To determine whether large pools
are needed to generate similar struc-
tural properties of the BEGR ensembles
we calculated the number of structures
in BEGR ensembles, generated using
different pool sizes, that are similar to
(RMSD < 0.1 nm) p53 peptides
bound to MDM2. For p53TAD using
CA re-weighting, going from pool sizes
of 104 to 105 to 106 structures
increased the number of bound state
structures from an average of 41 to 299
to 754 (factor of 18.4). These RMSD
values are based on a comparison to a
short five residue helix. To understand
how these values would change for a
longer helical segment we also calcu-
lated the RMSD between the BEGR
ensemble structures and a reference
structure from the protein data bank of
a p53 peptide, corresponding to p53
residues 46-54, bound to RPA70
(2B3G).42 For this longer helical seg-
ment, going from 104 to 105 to 106

structures in the pool increased the
number of bound state structures from
an average of 1.6 to 24 to 60 (factor of
37.5). Using larger pools significantly

increases the number of bound state structures in the BEGR
ensembles, and this effect is more pronounced for longer helical
segments (probably because longer helices are generated at a
lower frequency in the pool). From this result we conclude that
larger pools are more important for identifying longer helical
segments.

In this report we used our BEGR method to generate inde-
pendent ensembles for an intrinsically disordered protein that
have highly similar secondary structure properties, and these
properties did not have a strong dependence on the combination
of chemical shifts used during the re-weighting. These ensembles
also contained structures with segments that were very similar to
p53 peptides bound to MDM2 but, as expected, did not have
accurate tertiary structure since the experimental data used for
BEGR reports only on local structure. Because we were able to
consistently reproduce ensembles that had differences in the frac-
tional helicity of the MDM2 binding site expected for p53TAD
and P27A, we can also conclude that the BEGR method is sensi-
tive to single amino acid changes that modify the average proper-
ties of the structural ensemble. Based on previous work we know
that mutating the proline at position 27 increases the binding
affinity to MDM2.54,55 This may be related to a reduction in the
entropic penalty for binding that is expected for P27A. The sensi-
tivity of BEGR to single mutations is important because the

Figure 6. Influence of pool size and noise on BEGR ensemble properties. The red lines with red shading
in all panels shows the averages and standard deviations, respectively, of the RMSD between BEGR
ensemble structures and the p53 peptide bound to MDM2 (same as red curve in Fig. 5A). The black
lines with gray shading show results for BEGR ensembles generated using: (A) no noise with pools con-
taining 106 structures, (B) noise with pools containing 104 structures, (C) noise with pools containing
105 structures.
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future of drug discovery for IDPs could depend on being able to
determine whether and how disease-causing mutations change
the structural ensemble.

Materials and Methods

Experimental methods
Samples of human p53TAD (residues 1-73) that were uni-

formly labeled with either 15N or 15N and 13C were prepared as
previously described.45 Samples of the P27A mutant were pre-
pared using the same protocol. NMR experiments on p53TAD
and P27A were carried out at 25 �C on a Varian VNMRS
600 MHz spectrometer equipped with a triple resonance, pulsed
field, Z-axis gradient cold probe. To make the backbone reso-
nance assignments, sensitivity enhanced 1H-15N HSQC and
three dimensional HNCACB and HNCO experiments were per-
formed on the labeled p53TAD (0.40 mM) and P27A
(0.35 mM) samples in a 90%H2O/10% D2O, PBS buffer, at a
pH of 6.8 (Kay et al., 1992; Kay et al., 1994; Wittekind and
Mueller, 1993); see Table 1 for details. All NMR spectra were
processed with nmrPipe and analyzed using nmrView.56 To cal-
culate the secondary chemical shifts (Dd), neighbor corrected
random coil values 57 were subtracted from the measured chemi-
cal shifts (d) except for the case where a glycine preceded a pro-
line (G59) and for the two tryptophan residues (W23,W53).
Random coil values for these residues were taken from Wishart.58

Simulation Methods

Outline of the BEGR method
The BEGR method follows the same basic steps as other

methods such as ASTEROIDS 29 and ENSEMBLE.31 The key
difference between these methods and the BEGR method that
will be explained below is that a non-negative least squares
approach is used for re-weighting, rather than Monte Carlo or a
genetic algorithm. This allows for simultaneous re-weighting of a
very large number (over a million) of structures.

Step 1: Collect experimental data. For the current study CA,
CB, and CO chemical shifts were used.

Step 2: Generate a large pool of structures using computer
simulation. Pools containing one million p53TAD or P27A
structures were generated using the trajectory directed ensemble-
sampling (TraDES) software.46 TraDES implements a build-up
method to generate structures and was used in the standard sam-
pling mode with commands “seq2trj -t 2” and “trades -l 0 -k T.”

Step 3: Calculate the corresponding experimental data for
each structure in the pool. CA, CB, and CO chemical shift values
were calculated using SPARTAC.47

Step 4: Determine the BEGR ensemble by re-weighting struc-
tures in the pool. The goal of the re-weighting step is to assign
each structure in the pool a weight such that the weighted average
calculated data has the best possible fit to experimental data. In
order to assign these weights, the fit between the calculated spec-
tra and the experimental spectrum was optimized by minimizing
the two-norm of the difference between the experimental spec-
trum and the weighted average simulated spectrum:

minw k I simw¡ Iexp k 2
2;where wi�0: (1)

Here w is vector of n £ 1 structure weights wi that must all be
positive and n is the number of structures to be re-weighted
(n D 104, 105, or 106 for the results shown here). Iexp is a k £ 1
vector containing the experimental data where k is the number of
available experimental data points, which will vary between 72
and 203 depending on the combination of chemical shifts used
for re-weighting. Isim is a k £ n matrix containing the simulated
spectra where each column in the matrix is the spectrum for a sin-
gle structure from the pool.

Re-weighting using non-negative least squares and
Gaussian noise

To perform the re-weighting (step 4 above) the raw simulated
and experimental primary chemical shifts were imported into
GNU Octave respectively as a matrix Isim and vector Iexp and nor-
malized by dividing each element by the maximum value from
Iexp. The following steps were then performed:

� Gaussian random deviates with a mean of zero and standard
deviation of 0.23 ppm (25% of the CA chemical shift RMSD
from SPARTAC) were added to the simulated matrix Isim,
generating a new matrix Isim_noise. Gaussian random deviates
with a mean of zero and standard deviation of 0.05 ppm
(25% of approximate experimental uncertainty for CA chemi-
cal shifts) were added to the experimental vector Iexp generating
a new vector Iexp_noise. The choice of 25% of the simulation
and experimental uncertainty allowed for convergence of the
secondary structure properties while providing good fits to
experimental data, and is consistent with the choice of Black-
ledge and collaborators.19 Other groups have incorporated
uncertainty into their re-weighting procedure using different

Table 1. NMR experiments and number of resonance assignments.

Experiment/Sample Nuclei Detected Sweep Width (Hz) t3 x t2 x t1 Complex Points t3 x t2 x t1
1H-15N (amides) 13CA 13CB 13CO

HSQC/p53TAD 1H-15N n/a x 7225.4 x 1500.0 n/a x 512 x 128
HNCACB/p53TAD 1H-15N, 13CA, 13CB 7225.4 x 12063.4 x 1500.0 512 x 128 x 32 60 72 72
HNCO/p53TAD 1H-15N, 13CO 7225.4 x 3612.7 x 1500.0 512 x 128 x 32 59
HSQC/P27A 1H-15N n/a x 7225.4 x 1500.0 n/a x 512 x 128
HNCACB/P27A 1H-15N, 13CA, 13CB 7225.4 x 12063.4 x 1500.0 512 x 128 x 32 61 72 72
HNCO/P27A 1H-15N 13CO 7225.4 x 3612.7 x 1500.0 512 x 128 x 32 57
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strategies.15,20,29 We used CB and/or CO shifts with the same
importance as CA; the process above was carried out for each
shift type and then all shifts used for re-weighting were
concatenated to form Isim_noise and Iexp_noise.

� A set of weights, w, were determined by running the lsqnonneg
command in Octave using Isim_noise and Iexp_noise for the case of
using noise, and Isim and Iexp for the case of not using noise
(see Eq. (1)). This set of weights was then saved into memory.
If an element of Iexp was zero (experimental chemical shift
value could not be determined) then that element of Iexp or
Iexp_noise and the corresponding row of Isim or Isim_noise were
ignored in the re-weighting.

� For the case of using noise, the previous 2 steps were repeated
until the number of structures in the BEGR ensemble con-
verged. Convergence was determined by counting the number
of structures in the BEGR ensemble with non-zero weights
every 10 re-weighting steps. If the number of structures
changed by less than 5% then the re-weighting process was
stopped. This required around 200 re-weighting steps for the
results shown in this report for 106 member pools.

� The final set of weights was then calculated by averaging the
weights obtained during all of the individual re-weighting
steps.

To demonstrate how the use of Gaussian noise in BEGR helps
prevent overfitting we calculated the square two-norm (goodness
of fit) between the chemical shifts generated using 100% of the
experimental data for re-weighting and shifts using 90% of the
data. For CA re-weighting the square two-norm was 0.60 and
0.31 for no noise and noise respectively, demonstrating that
BEGR does a better job predicting the 100% data results when
noise is added during re-weighting. This was also true for
CACCBCCO re-weighting (averaged over CA, CB and CO)
where the square two-norm was 1.11 and 0.61 for no noise and
noise respectively. Use of noise also leads to large ensembles
(around 8,000 structures for CA re-weighting and 2,000 for
CACCBCCO re-weighting) which we believe could be an
advantage given that a complete description of the ensemble
nature of an IDP may require a large number of structures.

The non-negative least squares approach implemented in
BEGR is highly efficient. Using one core of a Xeon E5520 pro-
cessor, a single re-weighting step takes approximately 0.5 s, 6 s,
and 41 s for 104, 105 and 106 structure pools respectively. In our
tests, both Monte Carlo minimization and genetic algorithms
were much slower and became impractical for pools larger than
20,000 (data not shown).

Correcting for pre-proline residues and random coil shifts
In disordered proteins there is a 2.0 ppm upfield chemical

shift for the CA of amino acids that precede proline and a
2.8 ppm upfield chemical shift for CO.58 The CADd values cal-
culated by SPARTAC 59 for p53TAD do not completely correct
for this effect (data not shown). To develop a correction for this
residual offset we generated a 102 residue sequence containing
four residues of each amino acid type followed by a proline,
and capped at the C-terminus with two alanines

(AAAAPRRRRPNNNNP. . .YYYYPVVVVPAA). A million
structures with this sequence were generated with TraDES and
the average chemical shifts for CA, CB, and CO were calculated
using SPARTAC. The correction was calculated as the difference
between chemical shift values for the i-1 and i-2 residues that pre-
cede a proline. In addition, we wanted to use the neighbor cor-
rected random coil library developed by Mulder and colleagues
57 instead of the built in SPARTAC random coil values. The
final primary shifts used for re-weighting with BEGR are given
by (SPARTAC primary shifts) - (SPARTAC random coil shifts)
C (Mulder neighbor corrected random coil shifts) C (pre-proline
corrections).

Calculation of secondary structure and RMSD histograms
The BEGR ensemble consists of N structures with corre-

sponding weights wi. Ensemble averaged quantities were calcu-
lated using a weighted average formula

<X> D
X  N

iD 1
wiXi

X N
iD 1

wi

; (2)

where <X> is the desired average and Xi is the value for the i th
structure.

Transient secondary structure properties for alpha helix, beta
strand and PPII helix (Figs. 3, 4) were calculated using
SEGNO.60 The transient secondary structure type for a single
residue was calculated using Eq. (2) with Xi D 1 for cases when
this residue in structure i is consistent with the secondary struc-
ture type and Xi D 0 otherwise.

The RMSDs between the CA atoms of the p53 peptide from
1YCR and the BEGR ensembles were calculated using the
confrms program from GROMACS 4.5.5.61 RMSDs were mea-
sured for residues 19-24. Histograms were calculated by multi-
plying the RMSD values for each BEGR ensemble structures by
the corresponding weight of that structure.
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