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Identifying functional populations
among the interneurons in laminae
I-III of the spinal dorsal horn

Andrew J Todd

Abstract

The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different

laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and

inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal

horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains

potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding

of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among

the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron popula-

tions, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a

dramatic improvement in our understanding of somatosensory processing at the spinal level.
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Basic organisation of the dorsal horn

The dorsal horn of the spinal cord is the main site of
termination for primary somatosensory afferent axons,
and contains the first synapses in neuronal pathways that
transmit sensory information that is perceived as pain
and itch.1–3 In 1965, Melzack and Wall proposed that
this region, and in particular the substantia gelatinosa
(lamina II), played a key role in modulating somatosen-
sation, by selectively inhibiting primary afferent inputs
before these were transmitted to the brain through
ascending pathways.4 It is now known that the neuronal
organisation and synaptic circuitry of the region are far
more complex than could have been imagined at the time
of Melzack and Wall’s Gate Theory. However, the basic
assumption that the superficial dorsal horn modulates
nociceptive input is now universally accepted. This has
led to numerous studies that have investigated the mech-
anisms underlying this phenomenon, with a view to iden-
tifying novel targets for the treatment of pathological
pain states. A major goal has been to define the synaptic
circuits involving the various neuronal components of
the dorsal horn. In addition to terminal arbors of

primary afferents, the dorsal horn contains descending
axons from various brain regions, together with a large
number of neurons, which include both projection cells
and interneurons.

Primary afferents have been assigned to functional
classes based on their conduction velocity and their
responses to natural stimuli, together with a variety of
neurochemical features.3,5 Several major classes of
nociceptor have long been recognised, including myelin-
ated (predominantly Ad) afferents that terminate in
lamina I6 and two broad classes of unmyelinated
afferents: those that contain neuropeptides such as sub-
stance P and calcitonin gene-related peptide and arborise
mainly in lamina I and the outer part of lamina II (IIo),
and a non-peptidergic class that bind the lectin IB4,
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express the mas-related G protein-coupled receptor
MrgD (CMrgD afferents) and terminate in mid-lamina
II.7 These are thought to be involved in different aspects
of pain, since ablation of the peptidergic afferents results
in loss of thermal pain, while the MrgD population is
required for the full expression of mechanical pain.8

Low-threshold mechanoreceptors include unmyelinated
(C-LTMR) and myelinated (A-LTMR) types, and can be
classified by axon diameter and receptive field properties,
with the different types having characteristic zones of
termination that extend from the inner part of lamina
II (IIi) to lamina V.3,9,10 Recent studies of dorsal root
ganglion cells, involving unbiased classification through
cluster analysis, suggest that there are several other
distinct functional types of primary afferent that are cur-
rently less well understood.5,11

Dorsal horn neurons can be divided into twomain types:
those with axons that project to the brain (projection cells)
and those with axons that remain in the spinal cord (inter-
neurons). Several different classes of projection cell can be
recognised based on the supraspinal target(s) of their
axons,3 but those most relevant to pain and itch perception
belong to the anterolateral tract (ALT). ALT projection
neurons are most densely packed in lamina I and are scat-
tered throughout the deeper dorsal horn laminae (III-VI).
Their postsynaptic targets, which are mainly contralateral,
include the thalamus, periaqueductal grey matter, lateral
parabrachial area, and various parts of the medullary
reticular formation, with manyALT cells sending axon col-
laterals to several of these regions and some projecting bilat-
erally.12–14 These cells are glutamatergic,15 and since some
of them give rise to collateral axons in the spinal cord,16

they also contribute to local excitatory synaptic circuits.
The great majority of the neurons in laminae I-III are

interneurons. These account for virtually all of the neu-
rons in lamina II and 90%–95% of those in lamina I.17,18

It is more difficult to estimate the proportion in lamina
III, because this region contains projection cells belong-
ing to several different tracts.3 However, it is likely that
most neurons in this lamina are also interneurons.
Although the interneurons in laminae I-III probably all
give rise to local axonal arbors,19 it has been reported
that many of them also have long propriospinal projec-
tions that can extend for several segments.20

The interneurons can be divided into two broad
functional classes: inhibitory cells, which use GABA
and/or glycine as their principal transmitter, and
excitatory (glutamatergic) interneurons. These can be
distinguished by using immunocytochemistry, for exam-
ple, with antibodies against GABA and glycine, which
are present at relatively high levels in cell bodies of the
inhibitory interneurons.21 Virtually all of the neurons in
laminae I-III that show high levels of glycine immunor-
eactivity are also labelled with GABA antibodies, while
there are many additional cells that are only GABA-

immunoreactive. This suggests that most of the inhibi-
tory interneurons in this region release GABA, and that
some of these cells also release glycine. However, whole-
cell recordings from neurons in the superficial laminae
show that these frequently have inhibitory postsynaptic
currents that are mediated by glycine and not
GABA,22,23 and it has been suggested that this results
from differential distribution of GABAA and glycine
receptors at inhibitory synapses.23 Although inhibitory
interneurons are uniformly distributed throughout lami-
nae I-III, those enriched with glycine are particularly
numerous in lamina III.21 GABAergic and glycinergic
neurons can also be revealed by their expression of the
GABA-synthesising enzyme glutamate decarboxylase
(GAD) and the neuronal glycine transporter GlyT2,
respectively, and these show a laminar distribution con-
sistent with that described above.24 We have recently
reported that in the mouse, inhibitory interneurons
account for 26% of the neurons in laminae I-II and
38% of those in lamina III.25 It is likely that all of the
remaining neurons are glutamatergic,19 and these would
include both excitatory interneurons and projection cells.
Immunostaining for the amino acid transmitters is tech-
nically difficult, and a more convenient indirect approach
is use antibodies against transcription factors that define
inhibitory or excitatory phenotypes: Pax2 and Lmx1b,
respectively.26 We have found that the proportions of
neurons that are Pax2-immunoreactive in laminae I-II
and in lamina III are very close to the proportions that
show GABA and/or glycine immunoreactivity,25,27

which is consistent with the suggestion that Pax2 is a
reliable marker for the inhibitory interneurons in the
adult spinal cord.28,29

Early studies in which GABAA or glycine receptor
antagonists were applied to the spinal cord by intrathecal
injection showed that this resulted in exaggerated pain
responses.30,31 Although some GABAergic/glycinergic
synapses in the superficial dorsal horn involve axons
that originate from the brainstem,32 it is likely that the
great majority are formed by the axons of local inhibi-
tory interneurons. These findings therefore provided evi-
dence that an important role of the inhibitory
interneurons was to maintain an appropriate level of
pain (or lack of pain) in response to a peripheral stimu-
lus.31 Until recently, much less has been known about
the functions of the excitatory interneurons, although it
is becoming apparent that they have an important role in
both acute and pathological pain.33,34

Classification of the interneurons

It is clear that both the excitatory and the inhibitory
interneurons consist of several different functional popu-
lations, and there have therefore been many attempts to
define these populations. Elsewhere in the central
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nervous system (CNS), neuronal morphology has pro-
vided a valuable way of recognising functional popula-
tions of interneurons,35 and a similar approach has been
applied to the superficial dorsal horn. This was initially
achieved by using Golgi impregnation to provide sparse
labelling of apparently random types of neuron.36,37

More recently, neuronal morphology has been studied fol-
lowing whole-cell patch-clamp recording from spinal cord
slices in vitro.19,38–50 A major advantage of the latter
approach is that it allows correlation of morphology with
electrophysiological properties, for example, action poten-
tial firing pattern in response to injected depolarising cur-
rent.38,41,44,48,50,51 In addition, it is possible to compare
morphology with neurotransmitter phenotype, which can
be determined by staining for specific vesicular transporters
in the axons of recorded neurons19 or by the use of mouse
lines in which either inhibitory or excitatory interneurons
are selectively labelled with a fluorescent protein.44,50

Although both morphological and electrophysio-
logical properties can be used to classify some of the
interneurons in this region (see below), neither has pro-
vided a comprehensive classification scheme.2 The super-
ficial dorsal horn contains an extensive array of
neurochemical markers, including neuropeptides and
their receptors, calcium-binding proteins and a variety
of enzymes. These frequently show a specific laminar
pattern, and are often differentially distributed among
excitatory and inhibitory interneurons.52 These findings
have allowed us to define several neurochemically dis-
tinct populations among both of these broad classes.53,54

In addition, recent studies have used the transient devel-
opmental expression of certain proteins to identify inter-
neuron populations in the dorsal horn.34,55 A major
advantage of using neurochemistry to define neuronal
populations is that these can be targeted for electro-
physiological recording to provide detailed functional
information about the neurons.33,34,44,50,55–66 In add-
ition, it allows manipulation of their function through
molecular genetic techniques in which a recombinase
drives expression of another protein that can be used
to activate, inhibit, silence or ablate the neurons under
investigation.28,33,34,55,61,67,68 Neuronal populations that
can be defined by expression of neuropeptide receptors
have also been targeted by intrathecal administration of
the ribosome-inactivating toxin saporin conjugated to
the corresponding neuropeptide.69,70 Since all of these
methods can be applied in vivo, they can reveal the
effects of activating or inactivating different interneuron
populations on responses to painful or pruritic stimuli.

Populations defined by morphological and
electrophysiological properties

The most widely used morphological scheme for classify-
ing interneurons in lamina II is that developed by Grudt

and Perl,38 who identified four major types: (1) islet cells,
which have dendritic arbors that are highly elongated
along the rostrocaudal axis; (2) vertical cells, which are
generally located in the outer half of lamina II (lamina
IIo) and typically have dendrites that extend ventrally
from the soma within a cone-shaped volume; (3) radial
cells, which have relatively short dendrites that extend
along both rostrocaudal and dorsoventral axes; and (4)
central cells, which resemble islet cells, but have much
smaller dendritic trees (Figure 1). Certain patterns of
axonal arborisation were noted for each class: vertical
cell axons often extended into lamina I, and it was sub-
sequently shown that these could innervate ALT projec-
tion cells in this lamina.46 In contrast, the axons of islet,
radial and central cells were generally centred on lamina
II, with some extension into the adjacent laminae. There
were also differences in the firing patterns of the different
classes: islet cells and some of the vertical cells fired ton-
ically when injected with depolarising current, while the
remaining vertical cells and the radial cells showed a
delay before the first action potential. The central cells
were further divided into three subtypes, based on their
firing pattern in response to injected depolarising cur-
rent: tonic and transient firing. The transient firing cells
were further subdivided into those with or without an A-
type potassium (IA) current. It has also been shown that
cells belonging to these four classes differ in their mono-
synaptic primary afferent inputs, in their primary affer-
ent-evoked inhibitory inputs and in the extent to which
they are interconnected in synaptic circuits.38,40,45,46,49

However, although the majority of neurons identified
by Grudt and Perl could be assigned to one of these
classes, around 25% of their sample could not be classi-
fied with this scheme.

An important question is whether cells belonging to
each of these morphological classes are excitatory or
inhibitory interneurons. An early study71 that combined
Golgi staining with immunocytochemistry reported that

Figure 1. Confocal images of four lamina II neurons recorded in

parasagittal spinal cord slices from young adult rats in the study by

Yasaka et al.19 Neurobiotin in the pipette allowed labelling with

fluorescent avidin after whole-cell recording. The cells correspond

to the four main classes recognised by Grudt and Perl.38

Reproduced with permission from Yasaka et al.19
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islet cells were GABA-immunoreactive (and therefore
inhibitory), while another population defined as stalked
cells37 (which approximately correspond to Grudt and
Perl’s vertical class) were never GABA-immunoreactive,
and were therefore assumed to be excitatory. These find-
ings have been confirmed and extended by subsequent
whole-cell patch-clamp recording studies in which the
transmitter phenotype has been identified either by
means of immunocytochemistry,19,39 by recording from
cells that were genetically defined as inhibitory or exci-
tatory44,50 or by recording from pairs of synaptically
linked neurons and characterising the response of the
postsynaptic cell.45,46,49 Taken together, these studies
indicate that islet cells are invariably inhibitory inter-
neurons,19,39,44,45,49 while the great majority of vertical
cells are excitatory.19,39,46,50 However, a few neurons that
were classified as vertical cells were found to be inhibi-
tory, based on expression of the GABA-synthesing
enzyme GAD39,44 or the vesicular GABA transporter
(VGAT),19 and this indicates the need for caution in
defining these cells purely on a morphological basis.
Radial cells are likely to be exclusively excitatory inter-
neurons, since they were identified among cells that
express the vesicular glutamate transporter VGLUT2,50

but not among those expressing GAD,44 while their
axons were found to be VGLUT2-immunoreactive.19

Two cells described as radial by Maxwell et al.39 had
GAD-immunoreactive axons. However, these had
much more extensive dendritic trees than the radial
cells defined by Grudt and Perl.38 If the definition of
radial cells is confined to neurons with restricted den-
dritic trees, these should therefore be excitatory inter-
neurons. In the case of central cells, the situation is
much less clear, and as noted above, Grudt and Perl
identified three different subtypes. In addition, central
cells have been identified among both the inhibitory
and excitatory interneurons.19,39,45,46,49,50,57 It is there-
fore questionable whether assigning neurons to the ‘‘cen-
tral’’ morphological class is useful, and it has been
suggested that central cells, together with the remaining
unclassified neurons represent morphologically heteroge-
neous groups of cells among both the excitatory and
inhibitory interneurons.19

The situation is less clear for interneurons in laminae I
and III. Several morphological classes have been identi-
fied among lamina I neurons,36,41,72 but little is
known about whether cells in these classes correspond
to inhibitory or excitatory interneurons, and a further
complication is the presence of projection neurons in
this lamina. In recent whole-cell recording studies,73,74

lamina I interneurons have been found among three
morphological classes that were previously identified in
this lamina based on Golgi staining: fusiform, flattened
and multipolar cells.36 The flattened and fusiform cells
have dendrites that are mainly restricted to lamina I,

whereas multipolar cells have significant dendritic exten-
sion into lamina II and in some cases lamina III. In one
of these studies, some of the recorded cells were shown to
be inhibitory interneurons, based on expression of
VGAT in their axonal boutons.74 However, these were
found among both the flattened and multipolar classes,
and it is therefore not clear how dendritic morphology
relates to function. Lamina III also contains neurons
with highly variable morphology,42 but again the associ-
ation between morphology and neurotransmitter pheno-
type is poorly understood.

When neurons are injected with depolarising current,
they can show several different firing patterns, such as
transient (initial burst), gap, delayed and reluctant
firing.38,41,75,76 These patterns reflect the presence of dif-
ferent ion channels. For example, gap, delayed and reluc-
tant firing are thought to result from IA current mediated
by voltage-gated potassium channels, in particular
KV4.2.

51 There is general agreement that cells showing
these A-type firing patterns are much more frequently
encountered among the excitatory interneuron popula-
tions, whereas most inhibitory interneurons show tonic
or transient firing.19,44,50,57

Populations defined by neurochemical
properties

Several neuropeptides are expressed by subsets of
interneurons in laminae I-III. Some of these, for exam-
ple, neuropeptide Y (NPY), galanin and nociceptin are
present in inhibitory interneurons, others, such as som-
atostatin, neurotensin, GRP, neurokinin B (NKB), sub-
stance P and cholecystokinin are found predominantly in
excitatory interneurons, while the opioid peptides
enkephalin and dynorphin are expressed by both excita-
tory and inhibitory interneurons.33,77–88 A further com-
plication is that several of these peptides (somatostatin,
substance P and galanin) are normally also present at
relatively high levels in primary afferents, while NPY is
up-regulated in primary afferents following peripheral
nerve injury. The laminar distribution of dorsal horn
neurons that contain these different peptides varies con-
siderably. For example, galanin and substance P are
expressed by cells in lamina I and IIo, neurotensin and
NKB by cells on either side of the lamina II/III border,
somatostatin by cells throughout laminae I-II and NPY
by cells throughout laminae I-III.2,52 This suggests that
the neuropeptides may be differentially expressed by dis-
tinct functional populations of interneurons.

There are also various neuropeptide receptors in this
region. Among these, the somatostatin receptor 2a
(sst2A) is virtually restricted to inhibitory interneurons
in laminae I-II and is found on around half of these
cells.25,89 The neurokinin 1 receptor (NK1r, the receptor
for substance P) is present at high levels on many
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projection neurons in lamina I, but is also seen on exci-
tatory interneurons in this lamina.15 The NPY Y1 recep-
tor is highly expressed in laminae I-II, where it is found
mainly on excitatory interneurons.90–92 There has been
considerable interest in the receptor for GRP (GRPR),
following the finding that GRPR-expressing neurons
play an important role in itch.93,94 These cells are
restricted to laminae I-IIo, and are thought to be excita-
tory interneurons.85

Certain other proteins, including calcium-binding
proteins and a variety of enzymes, are restricted to sub-
sets of the interneurons. Among the calcium-binding
proteins, parvalbumin is found in cells in the inner part
of lamina II and in lamina III, the majority of which are
inhibitory interneurons.95–98 Both calbindin and calreti-
nin are present in many neurons throughout laminae I-
II.97–99 Most of these are excitatory neurons, although
around 12% of the calretinin cells are inhibitory.62,95,98

The g isoform of protein kinase C (PKCg) is largely
restricted to a band of excitatory interneurons that
occupy laminae IIi and III.100–102 These cells have
attracted considerable attention because they are appar-
ently necessary for the development of tactile allody-
nia.100,103–105 The neuronal form of nitric oxide
synthase (nNOS) is expressed by cells that are scattered
throughout the dorsal horn, with a relatively high con-
centration in laminae IIi-III, and most of these are
inhibitory interneurons.106–108

It is clear from this account that there are many
neurochemical markers that could be used to classify
interneurons in laminae I-III. However, it is unlikely
that any one of these will define a unique functional
population. One strategy that has been used in an
attempt to identify discrete populations has been to
look for markers that are expressed in non-overlapping
subsets among either the inhibitory or excitatory
interneurons. For example, we have found that in
laminae I-III of the rat spinal cord, four largely non-
overlapping populations of inhibitory interneurons
could be identified by their expression of NPY, galanin,
nNOS and parvalbumin54,109 (Figure 2). The galanin
cells largely correspond to those inhibitory interneurons
that express dynorphin, although dynorphin is also pre-
sent in a smaller population of excitatory interneurons
that lack galanin.81,83 As stated above, around half of the
inhibitory interneurons in laminae I-II express sst2A, and
the sst2A-positive neurons include those that contain
galanin/dynorphin as well as the nNOS cells. In contrast,
the PV cells, and most of the NPY cells, are not sst2A-
immunoreactive. Between them, these four populations
(those expressing NPY, galanin/dynorphin, nNOS or
parvalbumin) account for over half of the inhibitory
interneurons in laminae I-II.110 We have since found a
similar pattern in the mouse, although there is some co-
expression of nNOS with galanin/dynorphin29,59,111 and

we also find that some neurons contain both galanin and
NPY in this species (AJT and K Boyle, unpublished
data). Two further pieces of evidence link the galanin/
dynorphin- and nNOS-expressing inhibitory interneurons.
Firstly, they are both included among the cells that con-
tain enhanced green fluorescent protein (eGFP) in a
mouse line in which eGFP expression is under control
of the prion promoter (PrP-eGFP mouse).59 These cells
have been extensively characterised by Perl and co-work-
ers and found to have specific synaptic connections with
other neuronal populations.49,57,112 Secondly, we have
shown that the galanin/dynorphin and nNOS populations
of inhibitory interneurons are uniquely dependent on the
transcription factor Bhlhb5, since they are lost in the
Bhlhb5�/� mouse,29,111 a model of chronic itch.113

Various studies have examined the morphology of
cells belonging to these neurochemical classes following
whole-cell recording. Many of the parvalbumin cells in
lamina IIi (as well as some of those in lamina III) have
highly elongated dendritic trees, and can be classified as
islet cells.60,98 However, since islet cells are found
throughout lamina II,19,38 it is very likely that there are
other populations of islet cells that lack parvalbumin.
Hantman et al.57 reported that PrP-eGFP neurons
(which include galanin/dynorphin- and nNOS-expressing
inhibitory interneurons59) were central cells. However,
we have found that they have highly variable dendritic

Figure 2. Neurochemical populations among the inhibitory

interneurons. Four largely non-overlapping populations can be

identified among the inhibitory interneurons in lamina I-III, defined

by expression of neuropeptide Y (NPY), galanin (Gal), neuronal

nitric oxide synthase (nNOS) and parvalbumin (PV). This confocal

image shows a single optical plane through a transverse section of

rat lumbar spinal cord that had been immunostained to reveal each

of these substances. A single cell of each type is visible, and these

are indicated with asterisks. Approximate positions of laminae are

shown. Scale bar¼ 20mm. Reproduced with permission from

Battaglia AA: An Introduction to Pain and its relation to Nervous System

Disorders. John Wiley and Sons; 2016.
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arbors, and could not be assigned to any morphological
class.56 NPY-expressing cells were also morphologically
heterogeneous, and a cluster analysis based on dendritic
morphology failed to separate NPY-expressing cells
from the PrP-eGFP cells.58 These findings suggest that
parvalbumin is expressed in a subset of islet cells, while
cells that express NPY, nNOS or galanin/dynorphin
cannot be classified morphologically, but are never islet
cells.

More recently, we have used a similar strategy to
look for distinct populations among the excitatory inter-
neurons. The calcium-binding proteins calbindin and
calretinin are widely expressed by neurons in the super-
ficial dorsal horn,98,114 with virtually all of the neurons
that contain calbindin95 and around 88% of the calreti-
nin-containing cells62 being glutamatergic. However, the
large numbers of cells that contain each of these proteins
suggest that they are not confined to specific functional
populations, and it has been shown that excitatory cal-
retinin-containing neurons include vertical, radial and
central cells.62 Several neuropeptides are expressed
mainly or exclusively by excitatory interneurons,2,52

and we have found that four of these peptides: substance
P, GRP, neurotensin and NKB are expressed in largely
separate populations in the mouse. Between them these
account for just over half of the excitatory interneurons
in laminae I-II27,53 (Figure 3), and they show distinct
laminar distributions. The neurotensin and NKB popu-
lations are found in lamina IIi-III, with many corres-
ponding to the PKCg-expressing cells. The GRP
neurons were identified in a transgenic mouse line
(Tg(GRP-eGFP)) in which eGFP expression is largely
restricted to cells with GRP mRNA.115 They occupied
the central part of lamina II and showed very limited
overlap with the PKCg cells. Substance P-expressing
neurons were identified with two methods: immunocyto-
chemical detection of the substance P precursor (prepro-
tachykinin A, PPTA) and intraspinal injection of
adenoassociated virus coding for a Cre-dependent form
of eGFP (AAV.flex.eGFP) into mice in which Cre was
knocked into the Tac1 locus (Tac1Cre).27 Both methods
revealed that the substance P-expressing neurons were
concentrated in lamina IIo, and that there was no over-
lap with expression of PKCg (Figure 4).

There is limited information about the relation
between neuropeptide expression and morphology for
these populations of excitatory interneurons. The GRP
cells are morphologically diverse, and although a small
number have vertical cell morphology,84 these are extre-
mely rare (AJT and AM Bell, unpublished observations).
There have apparently been no morphological studies of
either the neurotensin or NKB cells, but these overlap
extensively with PKCg cells in lamina IIi-III,53 and again
these are diverse in terms of their morphology.102

Although the substance P cells often have ventrally

directed primary dendrites,27 our initial observations fol-
lowing intraspinal injection of AAVs coding for mem-
brane-targeted fluorescent proteins116 in Tac1Cre mice
suggest that these cells are not vertical cells. For exam-
ple, they do not have dendrites that extend ventrally into
lamina III (AJT and E Polgár, unpublished data). It is
therefore likely that excitatory interneurons expressing
each of these four neuropeptides correspond to the cen-
tral, radial or unclassified cells of Grudt and Perl.38

Interestingly, when mice in which Cre has been knocked
into the prodynorphin locus (pdynCre) were crossed with
a reporter line in which Cre drives tdTomato (tdTom)
expression, some vertical cells were labelled with
tdTom.33 Although dynorphin is expressed mainly by
inhibitory interneurons, between 15% and 20% of
dynorphin cells in laminae I-II are excitatory,33,81 and
these presumably include the tdTom-positive vertical
cells. It is therefore likely that although vertical cells
are not included among the substance P, GRP, NKB
or neurotensin populations, at least some of them
express dynorphin.

Somatostatin is widely expressed among excitatory
neurons in laminae I-II, although it is also present in
inhibitory neurons in deeper dorsal horn laminae.33,78

Figure 3. Populations of excitatory neurons in laminae I-II

defined by neuropeptide expression. The pie chart shows the

proportions of all excitatory neurons in this region that express

neurokinin B (NKB), neurotensin (NT), gastrin-releasing peptide

(GRP) or substance P (SP). The GRP cells were detected by the

presence of eGFP in mice in which eGFP is under control of the

GRP promoter, while the other populations were revealed by

immunocytochemistry for the neuropeptide or its precursor

protein. Note that there is limited overlap between the neuro-

tensin cells and those that express NKB or GRP. Between them,

these four populations account for just over half of the excitatory

neurons in laminae I-II. Unlike these four neuropeptides, somato-

statin is widely expressed among excitatory neurons. We have

estimated that it is present in between 60% and 90% of the cells

that express each of the other neuropeptides, as well as in some of

the remaining excitatory neurons. For further details, see text.
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We have estimated that somatostatin-immunoreactivity
can be detected in �60% of the excitatory interneurons
in laminae I-II,53 including the majority of those belong-
ing to the substance P, GRP, NKB and neurotensin
populations (Figure 3). This indicates that unlike these
four neuropeptides, somatostatin is not restricted to a
specific population among the excitatory interneurons,
and this is consistent with the finding that somatosta-
tin-expressing cells are morphologically and electrophy-
siologically heterogeneous.33 In addition, we have

identified somatostatin in the axons of some (but not
all) vertical cells in the rat.19 Vertical cells therefore
appear to represent a discrete functional population
among the excitatory interneurons, with some of these
cells expressing dynorphin and/or somatostatin. Among
the remaining excitatory interneurons (those with radial,
central or unclassified morphology), expression of sub-
stance P, GRP, NKB and neurotensin defines four lar-
gely non-overlapping populations that are concentrated
in specific sublaminae. However, it is not yet clear how
they relate to these morphologically defined classes. It is
also not known whether the subsets of PKCg cells that
express neurotensin or NKB represent different func-
tional populations, or whether they correspond to a
single class, with some expressing one or other peptide
in an apparently random fashion.

The neurochemical populations described above
account for over half of the inhibitory and excitatory
interneurons in laminae I-II, but relatively few of those
in lamina III. Two recent studies have provided further
insight into the organisation of lamina III interneurons.
Peirs et al.34 reported that transient expression of the
vesicular glutamate transporter VGLUT3 defined a
large population of excitatory interneurons in lamina
III. These overlapped partially with the PKCg cells and
typically had dendrites that extended dorsal to the soma.
Cui et al.55 identified a population of inhibitory inter-
neurons, based on early expression of the receptor tyro-
sine kinase RET, that were mainly restricted to lamina
III. These cells, which were morphologically heteroge-
neous, accounted for �one third of the inhibitory inter-
neurons in this region, and overlapped with the
parvalbumin, but not the dynorphin or nNOS,
populations.

Taken together, the findings discussed above indicate
that a neurochemical approach is likely to be useful for
identifying functional populations among both the
inhibitory and excitatory interneurons. However, consid-
erable care is needed in defining populations, and it is
likely that in most cases at least two different neurochem-
ical markers will be required for this. An additional
problem is that some of these markers, particularly the
neuropeptides, may be transiently expressed in a wider
group of cells. For example, we have found that when
Tac1Cre mice were crossed with a tdTom reporter line,
many of the PKCg-immunoreactive neurons in lamina
IIi were tdTomþ, even though these cells did not express
eGFPþ following intraspinal injection of
AAV.flex.eGFP27 (Figure 4). This suggests that many
of the PKCg cells transiently express substance P, but
that this is switched off during development. Using a
similar approach, we have also found evidence for tran-
sient expression of dynorphin in some inhibitory inter-
neurons that do not express the peptide in the adult,
including nNOS cells (AJT, M Gutierrez-Mecinas and

Figure 4. The distribution of tdTom- and eGFP-positive cells in

the dorsal horn following intraspinal injection of AAV.flex.eGFP

into a Tac1Cre;Ai9 mouse. The section has been scanned to reveal

tdTom (red), eGFP (green) and PKCg (blue). (a) TdTomþ neurons

are concentrated in the superficial laminae and scattered through

the deep dorsal horn. (b) The distribution of eGFPþ neurons is

more restricted, as most of these lie dorsal to the band of PKCg-

immunoreactive neurons, which occupy lamina IIi. Note that none

of the eGFPþ cells are PKCg-immunoreactive. (c) In the merged

image, it can be seen that there are many tdTomþ neurons that

lack eGFP (and therefore appear red), and that these include

PKCg-immunoreactive cells (some indicated with arrowheads).

The two large cells that are indicated with arrows are likely to be

ALT projection neurons, some of which express substance P. The

images are projected from 45 optical sections at 1mm z-spacing.

Scale bar¼ 50 mm. Reproduced with permission from Gutierrez-

Mecinas et al.27
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E Polgár, unpublished data), and this is consistent with
the finding that preprodynorphin mRNA could only be
detected in �75% of tdTom neurons when pdynCre mice
were crossed with a tdTom reporter line.33

Synaptic circuits involving interneuron
populations

Numerous studies have investigated synaptic circuits
that involve dorsal horn interneurons. A potential diffi-
culty with interpretation of their findings is that, as noted
above, some of the classes of interneuron that have been
defined by morphology or by the expression of particular
neurochemical markers may include more than one
functional population, and these could have differing
synaptic inputs and outputs. This section will therefore
focus on studies that involve relatively restricted popu-
lations among the inhibitory or excitatory interneurons
(Figure 5).

Among the inhibitory interneurons, those that express
parvalbumin have been shown to give rise to axoaxonic
synapses on the central terminals of A-LTMR afferents,
and also to receive direct synaptic input from these affer-
ents.60 The majority of parvalbumin-containing boutons
in lamina IIi were presynaptic to these primary afferent
terminals (identified by their glomerular synaptic
arrangement117), although only around half of the
A-LTMR terminals were associated with a parvalbu-
min-immunoreactive bouton. This suggests that the par-
valbumin cells are an important source of presynaptic
inhibition of myelinated low-threshold afferents,
although other interneurons are also presumably
involved in this form of inhibition. It has also been
reported that parvalbumin axons form synapses on
PKCg neurons in lamina IIi.61 Consistent with the lam-
inar location of the parvalbumin cells, we found that
they did not upregulate the transcription factor Fos or
phosphorylate extracellular-signal regulated kinases
(ERK) following various types of noxious stimulation.54

It is therefore likely that their main input is from A-
LTMRs60 and that they respond to tactile stimuli.

PrP-eGFP cells (which include some of the galanin/
dynorphin- and nNOS-expressing inhibitory inter-
neurons) can receive monosynaptic input from both
unmyelinated and myelinated primary afferents.56,57

These include C fibres that express the transient receptor
potential (TRP) channels TRPV1 or TRPM8, as well as
A-LTMRs, and there is evidence that different types of
primary afferent input converge onto individual cells.49,56

Kardon et al.29 recorded from a population of superficial
dorsal horn neurons identified by expression of the tran-
scription factor Bhlhb5. All of these were hyperpolarised
by somatostatin, and were therefore presumably inhibi-
tory interneurons belonging to the galanin/dynorphin or
nNOS populations.25,54,59 Most of these cells showed

evidence of monosynaptic input from TRPV1-,
TRPA1- and TRPM8-expressing primary afferents.
Duan et al.33 investigated cells in which tdTom expres-
sion was driven from the pdyn locus and reported that
the vast majority of these cells were activated either
mono- or polysynaptically following stimulation of Ab
afferents (most of which are LTMRs). Although the
tdTom cells will have included some excitatory inter-
neurons, as well as cells that transiently expressed dynor-
phin, this suggests that most dynorphin-expressing
inhibitory interneurons receive A-LTMR input either
directly or indirectly. Inhibitory interneurons in the rat
that express galanin or nNOS have been shown to

Figure 5. A schematic diagram showing some of the synaptic

circuits discussed. Cells that express GFP under control of the

prion promoter (PrP) correspond to a subset of inhibitory inter-

neurons that express nNOS and/or galanin and dynorphin. These

cells receive synaptic input from a variety of primary afferents,

including C fibres that express TRPV1 or TRPM8, non-peptidergic

C nociceptors that express MrgD and myelinated low-threshold

myelinated afferents (A-LTMRs) that conduct in the Ad or Ab
range. There is evidence that different classes of primary afferent

converge on the same cell. They form reciprocal (inhibitory) syn-

aptic connections with lamina II islet cells, and they are also pre-

synaptic to lamina II vertical (ver) cells and to projection neurons

in lamina I, which include giant cells. Lamina II vertical cells are

thought to form part of a polysynaptic pathway that can transmit

input from A-LTMRs to NK1r-expressing lamina I projection neu-

rons. This pathway involves PKCg-expressing excitatory inter-

neurons in lamina IIi/III, together with transient central (TrC) cells

in lamina II. A feedforward circuit involving inhibitory interneurons

(including some that express parvalbumin, PV) normally limits the

activation of PKCg cells by A-LTMRs, and this could occur through

both GABAergic presynaptic inhibition of the A-LTMR terminals

and glycinergic postsynaptic inhibition of the PKCg cells. A-LTMR

afferents are also thought to innervate the ventral dendrites of

vertical cells and this synaptic input may also be presynaptically

inhibited by the PV cells. There is also evidence that both TrC and

vertical cells receive nociceptive input from TRPV1-expressing

primary afferents, indicating that the pathway involving these cells

normally transmits nociceptive information. Note that dendrites

are only illustrated on vertical cells to show that these enter lamina

III, where they may receive A-LTMR input. Excitatory and inhibi-

tory synapses are represented by open and closed circles,

respectively. For further details, see text.
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respond to a variety of noxious stimuli, based on expres-
sion of Fos or phospho-ERK (pERK).54 The galanin
cells were frequently activated by noxious thermal and
mechanical stimuli, as well as by chemical stimuli (sub-
cutaneous capsaicin or formalin), whereas the nNOS
cells were activated by noxious heat and subcutaneous
formalin, but seldom by capsaicin. Electrophysiological
studies have shown that the PrP-eGFP cells can be pre-
synaptic to both islet and vertical cells in lamina II.49

They also receive inhibitory synaptic input from islet
cells, and in some cases form reciprocal synapses with
these cells. We found that although the axons of the PrP-
eGFP cells arborise in lamina II, they often extend into
laminae I and III. Their postsynaptic targets included
NK1r-expressing neurons in this lamina (at least some
of which are likely to be ALT projection cells). In add-
ition, they targeted a specific type of lamina I projection
neuron known as giant cells,118,119 which are charac-
terised by a very high density of excitatory and inhibitory
synaptic input. The giant cells received numerous syn-
apses from PrP-eGFP axons that were nNOS-immunor-
eactive, and these accounted for �70% of their
inhibitory synaptic input.56 However, all of the PrP-
eGFP cells with axon entering lamina I also had exten-
sive axonal arbors in lamina II. Taken together, these
findings indicate that both the nNOS and galanin/dynor-
phin populations are likely to receive input from several
different classes of primary afferent, including thermore-
ceptors, nociceptors and A-LTMRs, with many cells
receiving convergent inputs from different types of affer-
ent. However, they are likely to differ in their inputs,
since the galanin/dynorphin cells were often activated
by capsaicin, whereas the nNOS cells were not. Their
postsynaptic targets include both interneurons and pro-
jection neurons, and although some of the nNOS cells
innervate lamina I giant cells (providing their major
inhibitory input), the giant cells probably represent
only a minority of their postsynaptic targets.

We have recently performed a combined electro-
physiological and morphological study of NPY-expres-
sing cells in a NPY-eGFP mouse line.58 Although most
eGFPþ cells in these mice were NPY-immunoreactive,
they only accounted for �one third of the NPY-immu-
noreactive neurons in laminae I-II. Dorsal root stimula-
tion revealed that the cells could receive monosynaptic
input from C fibres, but they seldom responded to bath-
applied capsaicin, and never to icilin, which suggests that
few of them are innervated by TRPV1- or TRPM8-
expressing primary afferents. However, it is possible
that NPY cells in laminae I-II that lacked eGFP in this
mouse line receive inputs of this type. For four of the
recorded cells (three of which had cell bodies in lamina
III), we found that monosynaptic C fibre-evoked excita-
tory postsynaptic currents (EPSCs) were resistant to
bath-applied capsaicin, indicating that they were from

TRPV1-negative afferents. The recordings were made
in the medial region of the lumbar enlargement, which
receives input from glabrous skin and therefore lacks C-
LTMRs. It is therefore likely that these inputs originated
from CMrgD nociceptors, most of which lack TRPV1,7

and which are thought to be involved in mechanical
pain.8 Consistent with this interpretation, we found
that lamina III NPY cells often showed pERK following
pinching of the skin. We have also reported that in the
rat many NPY cells in laminae I-II are activated by
mechanical, thermal and chemical noxious stimuli.54

Postsynaptic targets of the NPY cells have been identi-
fied in the rat, and include ALT projection neurons in
lamina III as well as PKCg interneurons in lamina
IIi,120,121 with both of these populations receiving
around 30% of their inhibitory synapses from
GABAergic boutons that contain NPY. Lamina III
ALT neurons in the mouse are also innervated by
NPY cells,15 and this input appears to originate from a
specific subset of the NPY cells.58 However, for those
NPY cells that innervate lamina III ALT neurons, this
seems to represent only a minority of their axonal
output.

Relatively little is known about the synaptic circuitry
involving excitatory interneuron populations. Several
studies have investigated vertical cells in lamina II, and
these have been shown to receive monosynaptic excita-
tory input from both C and Ad afferents.38,40,46,49 Since
their dendrites often extend at least as far as lamina IIi,
the Ad input could originate from either nociceptive or
LTMR afferents, and it is not known whether both of
these types directly innervate the cells. We have found
that the ventral dendrites of vertical cells are frequently
contacted by axons that contain the vesicular glutamate
transporter VGLUT1,122 which would be consistent with
a direct synaptic input from A-LTMRs (including Ad D-
hair afferents).6,79 There is disagreement about the extent
to which vertical cells are innervated by primary afferents
that express TRP channels. Zheng et al.49 found no
increase in the frequency of miniature EPSCs in the pres-
ence of either capsaicin or icilin, which would suggest
that vertical cells receive little or no input from
TRPV1- or TRPM8-expressing primary afferents.
However, most of the vertical cells recorded by Uta
et al.123 showed an increased mEPSC frequency in
response to both capsaicin and cinnamaldehyde, suggest-
ing monosynaptic input from afferents expressing
TRPV1 and TRPA1. Since non-peptidergic C nocicep-
tors (which correspond to the CMrgD population in
mouse) express TRPV1 in rats, but not in adult
mice,124 it is possible that the vertical cells are innervated
by these, but not by peptidergic afferents (which continue
to express TRPV1 in both species). Dorsal root stimula-
tion can evoke inhibitory postsynaptic currents (IPSCs)
in vertical cells at latencies consistent with activation of
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both Ad and C fibres, indicating that inhibitory inter-
neurons that synapse on these cells are activated by
both myelinated and unmyelinated afferents.40 At least
some of this inhibitory input is likely to originate from
PrP-eGFP cells (i.e., those belonging to the nNOS and/
or galanin/dynorphin populations), since Zheng found
that these cells (but not islet cells) provided direct syn-
aptic input to vertical cells.49 Lu and Perl46 also identi-
fied direct synaptic inputs to vertical cells from another
population of excitatory interneurons that they defined
as ‘‘transient central’’ cells. Based on paired recordings,
Lu and Perl46 were also able to identify lamina I neurons
as postsynaptic targets of vertical cells, and some of these
lamina I neurons were shown to have long ascending
axons and to respond to bath-applied substance P.
This strongly suggests that lamina I projection neurons
that express the NK1r receive excitatory synaptic input
from lamina II vertical cells. Consistent with this inter-
pretation, trans-synaptic retrograde labelling from the
lateral parabrachial area (the major target for lamina I
ALT neurons) revealed a population of lamina II vertical
cells that were presumably presynaptic to the ALT neu-
rons in lamina I.125 However, vertical cells also have
extensive axonal arborisation in lamina II (and some-
times in deeper laminae), while most lamina I ALT neu-
rons have dendrites that remain within this lamina. This
indicates that lamina I projection neurons represent only
a minority of the synaptic output from vertical cells.

As stated above, PKCg-expressing excitatory inter-
neurons in lamina IIi-III have been implicated in
mechanical allodynia in chronic pain states.100,103–105

Torsney and MacDermott126 showed that large lamina
I NK1r-expressing neurons (which are likely to have
been projection cells) normally receive minimal input
from Ab afferents. However, when synaptic inhibition
in the dorsal horn was blocked, these cells showed poly-
synaptic Ab inputs. This was thought to represent a sub-
strate for mechanical allodynia, with output neurons that
were normally driven by noxious stimuli acquiring low-
threshold tactile inputs. The PKCg cells have been
shown to receive synapses from VGLUT1-containing
axons,127 which presumably include A-LTMRs. In an
elegant paired-recording study in the rat, Lu et al.105

showed that they also receive an inhibitory input from
glycinergic interneurons in lamina III, which presumably
include the PV cells.61 Both the PKCg cell and the
lamina III inhibitory interneuron were innervated by
Ab afferents, forming a feed-forward inhibitory circuit
that could suppress low-threshold mechanoreceptive
input to the PKCg cells.105 Lu and Perl46 also demon-
strated that PKCg cells formed excitatory synapses onto
the transient central cells in lamina II, and these have
been shown to target vertical cells, which in turn can
synapse on lamina I projection neurons. The circuit pro-
posed by Lu et al.105 (see Figure 5) would therefore

provide a polysynaptic route through which tactile
input from A-LTMRs could gain access to lamina I pro-
jection neurons, consistent with the findings of Torsney
and MacDermott.126 Interestingly, following ligation of
the L5 spinal nerve,128 the glycinergic inhibition of PKCg
cells was reduced, while the excitatory input from PKCg
to transient central cells was strengthened.105

Stimulation of the L5 dorsal root at Ab strength now
resulted in polysynaptic EPSPs and action potential
firing in transient central cells, vertical cells and NK1r-
expressing lamina I neurons in this segment. However,
these changes were apparently not seen when the intact
L4 dorsal root was stimulated. Since the input from
intact L4 afferents is thought to underlie mechanical allo-
dynia in this model,129,130 it is not clear to what extent
the changes observed after nerve injury contribute to this
type of allodynia.

Duan et al.33 recorded from somatostatin-expressing
interneurons in lamina II and found that most of these
were innervated by C fibres, with some also receiving
input from Ad and/or Ab afferents. Subsequent analysis
revealed that these neurons were morphologically het-
erogeneous, consistent with the widespread expression
of somatostatin among various excitatory interneuron
populations.

One further example of selective circuitry involving
excitatory interneurons involves lamina III ALT projec-
tion neurons. These cells receive numerous excitatory
synapses from peptidergic primary afferents,131 but
they are also innervated by non-primary glutamatergic
boutons, which can be identified by expression of
VGLUT2 and are likely to originate from local excita-
tory interneurons.132 We found that in the rat �60% of
VGLUT2 terminals contacting these cells were immu-
noreactive for preprodynorphin, and that these formed
synapses on the dendrites of the ALT neurons. Since
preprodynorphin was only seen in �5% of VGLUT2
boutons in laminae I-IV, this indicates a highly selective
innervation of the lamina III ALT neurons by dynor-
phin-containing excitatory interneurons.81 However, it
is not known whether these interneurons have their cell
bodies in the superficial or deep dorsal horn.

Neuropeptide signalling

Although the functions of dorsal horn interneurons are
presumably mediated mainly through the synaptic action
of the fast transmitters glutamate, GABA and glycine,
the presence of numerous peptides and the correspond-
ing receptors in this region indicates that neuropeptide
signalling is also likely to play a significant role in som-
atosensory processing.

Substance P released from nociceptive primary affer-
ents133,134 and excitatory interneurons27 will act on NK1
receptors, which are expressed mainly by ALT projection
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neurons and excitatory interneurons in lamina I.15,135

The resulting depolarisation of these cells presumably
contributes to the perception of pain because mice lack-
ing substance P or the NK1 receptor show reductions in
pain behaviour.136,137 However, the majority of sub-
stance P in the dorsal horn is in primary afferent ter-
minals, with only �20% originating from local
neurons,138 and it is therefore not clear to what extent
substance P released from local interneurons contributes
to this effect.

Like substance P, somatostatin will also be released
from both primary afferents and axons of local excita-
tory interneurons, but in this case the excitatory inter-
neuron terminals are likely to be much more numerous
than those of primary afferent origin.139 The main recep-
tor for somatostatin in the dorsal horn is sst2A, which is
expressed on some primary afferent terminals and on a
subset of inhibitory interneurons that include the gala-
nin/dynorphin and nNOS populations.54,89,140 Since
somatostatin has a hyperpolarising (inhibitory) action
on dorsal horn neurons,19,59,141 the overall effect will pre-
sumably be disinhibition. Intrathecal injection of som-
atostatin, or its analogue octreotide, causes scratching,
biting and licking behaviour that are thought to result
from itch.29,142 In addition, a subthreshold intrathecal
dose of octreotide increased the duration of biting in
response to intradermal injection of the pruritogen
chloroquine but had no effect on the latency to withdraw
the hindlimb on a hotplate.29 Interestingly, intrathecal
octreotide caused very little scratching or biting in
Bhlhb5-/- mice, which lack the galanin/dynorphin and
nNOS inhibitory interneurons. These findings suggest
that somatostatin released by primary afferents and/or
local excitatory interneurons acts by suppressing activity
in neurons that normally inhibit the spinal itch
pathway.29

There has been considerable debate about the sources
of GRP in the spinal cord. Although early studies
reported that it was expressed by primary afferents,93

several groups have failed to detect mRNA for GRP in
dorsal root ganglion115,143,144 and it is now thought that
the GRP-like immunoreactivity seen in primary afferents
results from cross-reaction with substance P.84,115

Several lines of evidence point to a role for GRP and
the GRPR in certain types of chemical itch93,94: (1) mice
lacking the GRPR show significantly reduced itch, par-
ticularly in response to non-histaminergic pruritogens
such as chloroquine; (2) intrathecal GRPR agonists
evoke scratching, while antagonists reduce scratching
in response to injected pruritogens; and (3) ablation of
spinal GRPR-expressing neurons with saporin conju-
gated to bombesin (an amphibian homologue of GRP)
results in reduced responsiveness to pruritogens. Since
excitatory interneurons in lamina II appear to be the
main source for spinal GRP, this would suggest that

they are among those activated by pruritogens such as
chloroquine. However, we have found that the GRP cells
have a relatively low probability of expressing Fos or
pERK following intradermal injection of chloroquine.145

Their involvement in spinal itch mechanisms will there-
fore require further investigation.

NKB or neurotensin can be released by some excita-
tory interneurons in lamina IIi-III. NKB acts on the
neurokinin 3 receptor (NK3r), which is expressed by at
least two populations of superficial dorsal horn inter-
neurons:146,147 inhibitory interneurons that contain
nNOS and a population of excitatory interneurons that
co-express the m-opioid receptor.148 However, at present,
little seems to be known about the role of NKB and the
NK3r in spinal somatosensory processing. Although
receptors for neurotensin have been identified in the
spinal cord, there is apparently no information on the
types of interneuron on which these are expressed.

NPY released from inhibitory interneurons can act on
the NPY Y1 receptor, which is expressed by many dorsal
horn neurons, including both projection cells and excita-
tory interneurons in the superficial laminae.90,92 Since
activation of this receptor causes hyperpolarisation,149

this is likely to contribute to the anti-nociceptive actions
of NPY.150 However, interpretation of the behavioural
effects of NPY is complicated by the presence of func-
tional Y1 receptors on nociceptive primary afferent ter-
minals.151 Interestingly, knockdown of NPY from the
spinal cord did not affect baseline pain thresholds, but
caused the reappearance of behavioural signs of neuro-
pathic pain after these had resolved in nerve-injured ani-
mals.152 This suggests that NPY signalling is more
important in pathological pain states than in normal sen-
sation. Galanin is contained in a different population of
inhibitory interneurons109 and can act on galanin1 recep-
tors, which are expressed by many excitatory inter-
neurons in the superficial laminae.153,154 As with NPY,
release of galanin may therefore inhibit excitatory inter-
neurons, leading to a reduction in nociceptive transmis-
sion in the dorsal horn, but again the situation is
complicated by the presence of galanin receptors on pri-
mary afferent terminals.150

Dynorphin acts on the k opioid receptor (KOR), and
although relatively little is known about the spinal dis-
tribution of KORs, this signalling pathway has been
implicated in itch.29 Intrathecal delivery of two different
KOR agonists to the lumbar spinal cord suppressed itch
evoked by intradermal injection of chloroquine in the
calf, whereas administration of KOR antagonist led to
an increase in chloroquine-evoked biting.29 KOR agon-
ists also reduced the itching caused by intrathecal admin-
istration of GRP, suggesting that the KOR action was
downstream of the GRP-GRPR mechanism. Direct evi-
dence that dynorphin released from spinal interneurons
is involved in suppressing itch was provided by showing
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that chloroquine-evoked itch could be inhibited by men-
thol in wild-type mice, but not in Bhlhb5�/� mice, in
which the dynorphin cells are largely absent.29

What we know about the functions of dif-
ferent interneuron populations

Several recent studies have investigated the roles of
populations of inhibitory or excitatory interneurons in
the dorsal horn in vivo by targeting them with molecular
genetic strategies. Mice in which recombinases (generally
Cre) were expressed in specific populations were either
crossed with other mouse lines that expressed Cre-depen-
dent proteins or received intraspinal injections of viruses
coding for these proteins. This then allowed a variety of
manipulations, including ablation or silencing of neurons
with toxins, as well as activation or inactivation of the
cells, achieved through either chemogenetic or optoge-
netic approaches.

Foster et al.28 demonstrated an important role for
glycinergic neurons, by injecting AAVs coding for Cre-
dependent toxins into the spinal cords of mice in which
Cre was expressed under control of the GlyT2 promoter.
Glycinergic cells account for a large proportion (�90%)
of the inhibitory interneurons in deeper dorsal horn
(laminae III-VI) and ventral horn, but only around
20% of those in lamina I-II. However, they include
most of the nNOS cells in the superficial laminae.28,108

Ablation of the GlyT2-expressing neurons with diph-
theria toxin A fragment (DTA) or synaptic silencing
with tetanus toxin light chain resulted in hypersensitivity
to both thermal and mechanical stimuli, as well as spon-
taneous aversive behaviour. The mice also showed exces-
sive scratching and biting, resulting in hair loss in the
affected dermatomes, and this was thought to reflect
spontaneous itching. Chemogenetic activation of the gly-
cinergic neurons by means of clozapine-N-oxide (CNO)
acting on the modified muscarinic receptor hM3Dq155

increased the threshold for mechanical and thermal nox-
ious stimuli, reduced signs of neuropathic pain following
peripheral nerve injury and also reduced responses to
pruritic stimuli (intradermal injection of chloroquine
and histamine).

Inhibitory interneurons that express parvalbumin are
included among the glycinergic neurons in laminae IIi-
III, although there is also a population of parvalbumin-
expressing excitatory interneurons in this region.95,96

Petitjean et al. showed that activation of parvalbumin
cells, mediated through the action of CNO on hM3Dq,
increased withdrawal thresholds to mechanical (but not
thermal stimuli) and attenuated mechanical allodynia
following peripheral nerve injury. They also showed
that ablation of the cells with saporin led to mechanical
allodynia, but no change in responses to thermal sti-
muli.61 The suppression of mechanical allodynia

appeared to involve PKCg-expressing excitatory inter-
neurons,61 suggesting that parvalbumin cells may corres-
pond (at least in part) to the glycinergic lamina III
neurons that provide feedforward inhibition of A-
LTMR input to the PKCg cells105 (Figure 5).

Cui et al.55 tested the effects of ablating (with DTA) or
activating (via hM3Dq) inhibitory interneurons that
were defined by early expression of RET. They found
that ablating these cells, which are mainly located in
lamina III and include some of the parvalbumin cells,
resulted in mechanical allodynia, together with enhanced
responses to acute noxious (mechanical and thermal) sti-
muli and increased hyperalgesia in both inflammatory
and neuropathic pain states. In contrast, activating
them led to a reduction of acute pain and of both neuro-
pathic and inflammatory hyperalgesia.

Mice lacking the transcription factor Bhlhb5 show
exaggerated itch, which is thought to result from loss
of inhibitory interneurons in the superficial dorsal
horn.113 This loss of interneurons is restricted to the
nNOS- and dynorphin/galanin-expressing cells, and it
has been proposed that one or both of these populations
of inhibitory interneurons contributes to the suppression
of itch by counterstimuli.29 Dynorphin released by these
cells can reduce itch through a spinal action on k-opioid
receptors, but is thought that a fast synaptic transmitter
(GABA or glycine) underlies the immediate relief pro-
vided by counterstimuli, such as scratching.29 However,
Duan et al.33 reported that although ablation of Cre-
expressing spinal neurons in pdynCre mice resulted in a
dramatic increase in responses to noxious mechanical
(but not thermal) stimuli, it had no effect on itch behav-
iour following intradermal injection of various prurito-
gens. As noted above, there is transient expression of
dynorphin in some dorsal horn interneurons, and the
population ablated in this study may therefore have
included these cells.

NPY-expressing cells have been targeted in a mouse
line in which Cre expression is under control of the NPY
promoter.33,67 However, it was reported that when this
line was crossed with a reporter strain to induce tdTom
in Cre-containing neurons, only a third of the tdTomþ

cells in adult mice expressed NPY, presumably because
of transient expression of NPY by a much larger popu-
lation of inhibitory interneurons during development.
Ablation of the Cre-expressing cells had no effect on
mechanical or thermal nociceptive thresholds or on the
responses to injected pruritogens. However, ablation or
silencing of these neurons did result in spontaneous
scratching of hairy skin that led to skin lesions, and
this was thought to reflect loss of inhibition of mechan-
ical itch.

Taken together, the results of these studies suggest
that inhibitory interneurons in the deep dorsal horn
(laminae III-VI) are involved in suppressing all types of
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acute and pathological pain.28,55,61 Among these cells,
those that express parvalbumin appear to be particularly
important for preventing mechanical allodynia,61 and
this is consistent with their proposed role in the pre-
synaptic inhibition of A-LTMRs.60 In contrast,
the dynorphin-expressing inhibitory interneurons
(which are restricted to the superficial laminae) can sup-
press mechanical, but not thermal, pain. The situation
with itch is more complex: The itching evoked by intra-
dermal injection of pruritogens, such as chloroquine and
histamine, is increased in Bhlhb5�/� mice, suggesting an
antipruritic role for the dynorphin/galanin and/or nNOS
populations.29 However, ablation of Cre-expressing
inhibitory interneurons in the pdynCre mouse (which
may also include nNOS cells) had no significant effect
on chloroquine-evoked itch.33 In addition, the GlyT2
population, which includes many of the nNOS cells in
superficial dorsal horn, seems to be involved in suppress-
ing itch.28 It will therefore be of interest to determine
whether selective activation of either dynorphin/galanin
or nNOS populations can reduce the itching caused by
pruritogens. Finally, a population of cells labelled in a
NPY-Cre line can suppress mechanical itch from hairy
skin. However, this is not likely to be the only role of the
NPY cells because the plexus of NPY-containing axons
that originates from these cells is present throughout the
mediolateral extent of the dorsal horn in mid-lumbar
regions,120 including the medial part, which corresponds
to glabrous skin territory.

A number of studies have investigated the roles of
excitatory interneuron populations. Duan et al.33

showed that ablation of somatostatin-expressing neurons
led to a dramatic reduction in mechanical pain, as well as
absence of mechanical allodynia in both inflammatory
and neuropathic pain states. This loss of allodynia was
thought to result from disruption of transmission from
Ab LTMRs through circuits in the superficial dorsal
horn. Consistent with these findings, Christensen
et al.68 reported that optogenetic activation of somato-
statin interneurons resulted in a nocifensive response,
involving licking of the appropriate dermatome. Tests
for conditioned place preference confirmed that this
was an aversive stimulus. They also demonstrated that
chemogenetic inhibition of somatostatin cells increased
acute mechanical withdrawal thresholds and reduced
mechanical allodynia in an inflammatory model.
However, unlike Duan et al., they also saw an effect on
noxious thermal stimuli, with a slight increase in with-
drawal latency following chemogenetic inhibition of the
somatostatin cells.

Duan et al.33 also ablated two additional populations
among the excitatory neurons: those expressing NKB or
calretinin. Loss of the NKB cells had no effect on mech-
anical pain, while loss of the calretinin cells resulted in a
significant increase in the withdrawal threshold for von

Frey hairs, but no change in repsonses to pinch or pin-
prick and no signs of mechanical allodynia. Since calre-
tinin is expressed in a large number of excitatory
interneurons, the relatively modest change seen after
ablation of these cells is surprising. However, around
12% of calretinin cells in the superficial dorsal horn are
inhibitory,62 and it is possible that ablation of calretinin-
expressing inhibitory interneurons partially compensated
for the reduction of nociceptive transmission due to loss
of the excitatory calretinin cells. The findings described
above clearly implicate excitatory interneurons in lami-
nae I-II in pathways responsible for mechanical pain.
However, the somatostatin-expressing cells seem to be
a fairly heterogeneous population,33,53 and it will be
important to determine the roles of more restricted
populations, such as vertical cells, or excitatory inter-
neurons that express GRP or substance P.

Mice lacking VGLUT3 show attenuated acute mech-
anical pain and reduced mechanical allodynia after nerve
injury or inflammation.10 Peirs et al.34 recently demon-
strated that this can be replicated by deletion of
VGLUT3 from the ‘‘transient VGLUT3’’ population
of excitatory interneurons that are mainly restricted to
lamina III, thus implicating these cells in mechanical
pain and hypersensitivity. They provided further evi-
dence for this interpretation by chemogenetically activat-
ing these cells via hM3Dq, and showing that this resulted
in mechanical allodynia with no change in response to
noxious thermal stimuli. In addition, they activated cal-
retinin neurons in adult mice, and demonstrated that this
also caused mechanical allodynia, suggesting that calre-
tinin-expressing excitatory interneurons in the superficial
dorsal horn play a significant role in transmitting nox-
ious mechanical information.

Conclusions

The findings discussed above indicate that the neuronal
organisation of the dorsal horn is highly complex, and
we still do not have a comprehensive scheme for classify-
ing the excitatory and inhibitory interneurons. This has
inevitably limited our understanding of the synaptic cir-
cuits that transmit and modulate somatosensory infor-
mation within the dorsal horn. It is clear that inhibitory
interneurons can suppress pain and itch, while excitatory
interneurons contribute to both acute and pathological
pain, but it is likely that different populations have rela-
tively specific roles within these broadly defined func-
tions. The identification of specific molecular/genetic
markers to allow targeting of interneuron populations,
together with dramatic advances in the development of
methods for manipulating neuronal function in vivo,
have already provided major breakthroughs in our
understanding of somatosensory processing. However,
care is needed when selecting these genetic markers
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because in many cases, they are likely to be expressed in
more than one functional population, either permanently
or transiently. It is therefore likely that intersectional
genetic approaches, probably requiring the use of two
different recombinases,33 will be required.

Many important questions remain to be addressed.
For example, which types of inhibitory interneuron are
responsible for presynaptic inhibition of primary affer-
ents, including the CMrgD nociceptors, which are known
to receive axoaxonic synapses.117,156 Several independent
studies have proposed a circuit for mechanical allodynia
that involves three different types of excitatory inter-
neuron: PKCg cells, transient central cells and vertical
cells (Figure 5). It will be important to determine
whether any of the neurochemical markers so far identi-
fied correspond to the transient central cells, and also to
find a way of selectively manipulating the functions of
vertical cells. A more general question is whether the
non-overlapping neurochemical subsets that have been
identified among both inhibitory54 and excitatory27 inter-
neurons correspond to genuine functional populations.
To answer this, it will be necessary to compare other
parameters, such as firing patterns and synaptic inputs,
within and between these groups. Further morphological
studies will be needed to test whether the radial cells
identified by Grudt and Perl38 have consistent neuro-
chemical properties or synaptic relationships and thus
represent a distinct population. Little attention has so
far been paid to long intraspinal connections, and it
will therefore be of interest to see which populations of
interneurons project to rostral and/or caudal spinal
segments.
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