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Effects of dispersal and selection on stochastic
assembly in microbial communities
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Stochastic processes can play an important role in microbial community assembly. Dispersal limitation
is one process that can increase stochasticity and obscure relationships between environmental
variables and microbial community composition, but the relationship between dispersal, selection and
stochasticity has not been described in a comprehensive way. We examine how dispersal and its
interactions with drift and selection alter the consistency with which microbial communities assemble
using a realistic, individual-based model of microbial decomposers. Communities were assembled
under different environmental conditions and dispersal rates in repeated simulations, and we examined
the compositional difference among replicate communities colonizing the same type of leaf litter
(‘within-group distance’), as well as between-group deterministic selection. Dispersal rates below 25%
turnover per year resulted in high within-group distance among communities and no significant
environmental effects. As dispersal limitation was alleviated, both within- and between-group distance
decreased, but despite this homogenization, deterministic environmental effects remained significant.
In addition to direct effects of dispersal rate, stochasticity of community composition was influenced by
an interaction between dispersal and selection strength. Specifically, communities experiencing
stronger selection (less favorable litter chemistries) were more stochastic, possibly because lower
biomass and richness intensified drift or priority effects. Overall, we show that dispersal rate can
significantly alter patterns of community composition. Partitioning the effects of dispersal, selection and
drift based on static patterns of microbial composition will be difficult, if not impossible. Experiments
will be required to tease apart these complex interactions between assembly processes shaping

microbial communities.
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Introduction

A common framework to understand community
assembly is the distinction between deterministic, or
niche-driven, processes and those that are stochastic or
neutral (Hubbel, 2001; Vellend et al., 2014). Because
microbes have high dispersal rates, large population
sizes, fast growth rates and a propensity for dormancy,
communities were traditionally thought to assemble
deterministically. However, recent characterizations of
microbial communities provide evidence that in
addition to environmental selection, stochastic pro-
cesses can be important drivers of microbial commu-
nity assembly (Ferrenberg et al., 2013; Nemergut ef al.,
2013; Zhou et al., 2013; Fukami, 2015).

Here, we define stochastic processes as those
that are probabilistic in relation to species identity
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(Vellend et al., 2014). Some mechanisms of micro-
bial community assembly (Vellend, 2010) map easily
onto the stochastic—deterministic framework: demo-
graphic drift, or fluctuation in population size due to
random birth and death events, is a stochastic
process, whereas selection, equivalent to environ-
mental filtering or species sorting, can be considered
deterministic. In contrast, dispersal can be determi-
nistic—when certain species are better dispersers
than others—or stochastic, occurring through pas-
sive processes like wind (Nemergut et al., 2013;
Lowe and McPeek, 2014). Low or limited dispersal
can also introduce stochasticity in microbial com-
munities (Martiny et al., 2006; Bell, 2010; Lindstrom
and Ostman, 2011), potentially through increased
drift (Hanson et al., 2012; Stegen et al., 2013),
whereas high rates of dispersal can induce mass
effects. Through mass effects, high dispersal rates
can swamp selection, making microbial commu-
nities more similar to a regional species pool than
expected by chance and less predictable from
environmental variables (Leibold et al., 2004).

In this study, we examine how dispersal and
its interactions with drift and selection alter the
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consistency with which microbial communities
assemble. If communities are only influenced by
deterministic processes, repeated assembly under
identical conditions will yield identical commu-
nities. Conversely, variation in the composition
of communities under the same conditions could
be introduced by stochastic processes. In a multi-
variate framework, in which community differe-
nces are represented by multidimensional distance,
this variation is quantified by within-group dissim-
ilarity or distance (used synonymously here). At the
same time, the mean difference between commu-
nities in different environments, or between-group
distance, is driven by deterministic selection. Using
this variance-partitioning framework, we ask:

How does dispersal rate affect within- and between-
group differences in community composition?

How does selection strength interact with dispersal to
alter within-group distance in community composition?

Empirical studies face several challenges when
assessing stochastic effects on microbial community
assembly. First, calculations of within-group dis-
tance include variance generated by error and
unmeasured environmental factors, inflating esti-
mates of stochasticity. In addition, it is often not
possible to manipulate—or measure—microbial dis-
persal (but see, for example, Bell, 2010; Peay et al.,
2010; Lindstrém and Ostman, 2011), making it
challenging to isolate its influence on patterns or
describe generalities across studies. The individual-
based Decomposition Model of Enzymatic Traits
(DEMENT) (Allison, 2012) is well suited to fill gaps
in our theoretical understanding of microbial com-
munity assembly. DEMENT not only retains the
complexity of a realistic microbial system by using
empirically determined physiological, community
and environmental parameters, but also allows us
to manipulate dispersal and quantify within- and
between-group distance without confounding vari-
ables. Using DEMENT, we can subject randomly
assembled, replicated communities of taxa to differ-
ent dispersal rates and environments (here, substrate
chemistries). Taxa with different suites of traits
assemble through stochastic and deterministic pro-
cesses. In the end, we can quantify variation in
community composition between environments and
within replicate communities as we would in an
experiment, but without confounding factors.

Although little is known about the relationship
between dispersal and microbial community compo-
sition, we can form general hypotheses for how
dispersal alters within- and between-group distances
of microbial communities (Figure 1). We first
hypothesize that low dispersal rates cause increases
in within-group distance as a result of demographic
drift (Hanson et al., 2012), whereas higher dispersal
rates result in decreases in within-group distance
(Figure 1, compare panels a and b). High dispersal
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can also ‘swamp’ the variation caused by local
environmental factors through mass effects, but this
may be minimal in microbial communities because
of fast turnover and selection (Lindstrom and
Ostman, 2011). Thus, we expect between-group
distance to remain high even at high dispersal.
Second, niche selection can be stronger when
environmental conditions are suboptimal (Chase,
2007; Vellend, 2010). Assembly under strong selec-
tive conditions would result in lower within-group
distance among communities provided dispersal is
sufficient enough to support larger populations and
overcome ecological drift (Hubbel, 2001; Vellend,
2010). Therefore, we hypothesize that strong selec-
tion, (here, low-quality substrates and high dispersal
will result in lower within-group dissimilarity, such
that stochastic effects are less apparent (low- and
high-quality substrates in Figure 1b).

Materials and methods

Model core structure

In the DEMENT model, litter decomposes through
the microbial production of extracellular enzymes
on a spatially explicit grid analogous to a leaf. Fungal
and bacterial taxa are assigned values of several
enzymatic traits, drawn from empirically derived
trait distributions and constrained by tradeoffs
(Supplementary Figure S1) (Allison, 2012). As
a result, taxa have unique resource assimilation
strategies and competitive abilities that determine
community filtering and biogeochemical dynamics
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Figure 1 Conceptual illustration of hypothesized patterns of
microbial communities under low (a) and high (b) dispersal rates,
assembled under two environments (symbol colors). Selection
strength differs by environment, with low quality litter substrates
(orange) exerting a stronger selection pressure on microbial
communities than those that are high quality (blue) and easier to
degrade. We hypothesize that within- and between-group distance
among microbial communities will be influenced by dispersal rate
(comparing a and b) and selection strength (comparing colors in b).
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across the grid. At initialization of the model, a
senesced leaf supplies a source of substrate, and
microbial cells are randomly assigned to grid boxes,
colonizing the leaf. Leaf substrate chemistry varies
by user input (see ‘Selection by leaf chemistry’
section below). On the first day of each subsequent
model year (365 days), a new leaf falls, correspond-
ing to senescence. Taxa from the previous year’s leaf
colonize the new leaf, along with a pool of immigrant
taxa, the size of which is determined by dispersal
rate (see ‘Dispersal’ section below). Sampling of taxa
from the prior year’s leaf as well as cell death are
random processes weighted according to taxa abun-
dances. These processes contribute to demographic
drift in the model. Model parameters are similar to
Allison (2012), and those important or unique to this
study are reported in Table 1. For a more detailed
description of the model, including dynamics of
growth and mortality, see Supplementary Figure S1
and Allison (2012, 2014).

Dispersal

We simulate dispersal in the model by introducing a
new immigrant community at the beginning of each
year, ranging in biomass from 10 to 6000 mg Cm™?
and 1 to 600 taxa. We express dispersal rate as a
percentage of initial microbial biomass of all com-
munities each year that equaled 10000mgCm™?
(summed over all grid cells). Thus, a 1% dispersal
rate signifies that immigrant biomass is 1% of
10000mgCm~* or 100mgCm~>. In this case, the
other 99% of biomass would comprise colonizers
from the previous year, a proportion that would
decrease with increasing dispersal levels. Within a
community, the population size of each immigrant is
held constant at 10 mg Cm~?. The regional pool in
the model consisted of 1102 taxa, and local commu-
nities each began with 100 taxa. The size of the local
and regional species pools was based on data from an
experiment at Loma Ridge, CA, USA (Matulich et al.,
2015). In this previous study, the total number of

operational taxonomic units at 97% sequence
Table 1 Model parameters®

Parameter Value
Initial number of local taxa 100
Number of taxa in regional pool 1102
Dispersal rate” 0-60%
Substrate lignin/N 3.9-48.1
Grid size (number of grid cells) 100 x 100
Number of substrates 12
Probability taxa occupies grid cell® 0.01
Days per year 365
Years 6

@Parameters not listed follow those in Table 1 of Allison (2012).
"Number of immigrants (dispersal rate) per year are expressed as
percent of starting community.“With 10 000 (100 x 100) grid cells, and
100 taxa at the start of each year, an occupancy probability of 0.01
produces an average of 1 microbial cell per grid cell, or initial density

of 1 mgcm~2.
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similarity across all plots (regional pool) equaled
2199 and the median observed on each sample of
leaf litter (local community) was 211. However,
including these many taxa was not feasible in our
model. We adjusted the size of the regional pool to
1102 taxa, and the size of local communities to 100
taxa, so that we achieved a similar ratio of local to
regional richness (100:1102 compared with 211:2199
in the field study) as this ratio can influence within-
and between-group distance through sampling
effects (Chase and Myers, 2011).

Immigrant communities were randomly drawn
from the regional pool (with replacement) and
introduced on day 1 of each year together with other
taxa colonizing the new leaf from the previous year
(Supplementary Figure S1). The total colonizer
biomass at the beginning of each year (immigrants
and colonizers from the previous year) was kept
constant across dispersal treatments, such that a
larger immigrant community (under high dispersal
rates) decreases the likelihood that low-abundance
residents in the previous year’s community would
colonize the new leaf. In this way, as dispersal
rate increased, emigration rate of resident taxa also
increased, making dispersal rates more similar to an
estimate of community turnover.

We subjected communities in our model to
dispersal rates of 0%, 0.5%, 2.5%, 5%, 50% and
60%. We chose these levels a priori because they
resembled the range of dispersal rates experimen-
tally induced in other studies (Van der Gucht et al.,
2007; Lindstrom and Ostman, 2011), and allowed us
to more closely examine low rates of dispersal that
are likely to limit sorting in nature. To provide
additional perspective on the extent that commu-
nities in each of these dispersal levels were dispersal
limited, Supplementary Table S1 shows the prob-
ability that a taxon was never introduced over all
years, and the probability that a taxon is introduced
at least once. Probability of dispersing is not linked
to other traits in the model (for example, competitive
ability), and did not vary among taxa in any
deterministic way. Although studies have found that
some microbial life forms are more easily dispersed
than others (for example, spores), most microorgan-
isms are likely to disperse passively over large areas
(Martiny et al., 2006; Nemergut et al., 2013).

Selection by leaf chemistry

We limited the potential deterministic drivers of
community composition to one, known environ-
mental factor: leaf substrate chemistry. We varied
leaf chemistry by altering the lignin to nitrogen (N)
ratio. We chose this metric because it is a well-
established control on microbial activity and litter
decomposition (Parton et al., 1987), and because we
know that the ability of microbes to degrade different
substrate lignin/N varies depending on specific traits
they posses (Paul and Clark, 1997). Lignin/N ranged
from 3.9 to 48.6 (see Supplementary Table S2 for



complete chemical composition), representing the
breadth of litter chemistries across diverse environ-
ments (Adair et al., 2008). We used this environ-
mental gradient in two ways in our study. First, we
used lignin/N as an environmental variable over
which we expected community composition to vary
in a deterministic way. Specifically, when examin-
ing the effect of dispersal on community composi-
tion, average distance between centroids of lignin/N
treatments, as well as the overall correlation of
lignin/N to community composition, provided a
measure of deterministic variation under different
dispersal rates, contextualizing our comparison of
within-group distance across dispersal rates. Second,
we took advantage of the varying selection pressure
introduced by high and low lignin/N. We define
a strongly selecting environment as one in which
fewer taxa are able to survive and grow optimally,
and that consistently favor specialist taxa that
are able to survive the harshness of the environment.
Substrates with high lignin:N are a strongly selective
habitat for microorganisms because they are nutri-
ent-poor and difficult for taxa lacking specialized
enzymes to degrade. In contrast, low lignin:N
substrates exert milder selection pressure because
they provide conditions more favorable for the
growth of most taxa (Chapin et al., 2002; Allison
et al., 2014; Allison, 2012).

Model scenarios and statistical analyses

We examined stochasticity that resulted from variation
in dispersal and lignin/N by performing repeated
(N=6) simulations of each combination of the two
factors. The replicate assembly simulations were
initiated with 100 taxa (10 000 mg C m~* biomass) that
were randomly chosen from the regional pool, and run
for six simulation years to allow sufficient time for
filtering but still maintain computational feasibility.
Annual taxon abundance was calculated by summing
biomass over the entire grid and integrating over
a year, and at time 0, abundance was calculated
on the first day of year 1. To examine differences
in community properties (biomass, species richness,
Shannon’s diversity index and community evenness)
we first log-transformed response variables that did not
fit a normal distribution. We used a two-factor analysis
of variance to test for an overall effect of lignin/N and
when a significant interaction was observed, we
examined lignin/N within dispersal levels.

To examine community similarity, we first standar-
dized abundance by the total biomass of each sample,
calculated Bray—Curtis similarity between all samples,
converting it to dissimilarity or distance (1 —similar-
ity). Mean and s.e. of within-group distance (differ-
ences in communities in the same lignin/N and
dispersal treatments) and between-group distance
(average differences among communities in different
lignin/N treatments) were calculated from this distance
matrix. We also calculated within-group distance as a
proportion of total variance as a relative measure of
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stochasticity that is analogous to residuals often
reported in empirical studies. In addition, many
studies test for significant effects of environmental
factors as an indicator of whether stochasticity
obscures detectable relationships between commu-
nity composition and environmental factors. Thus,
we also tested the null hypothesis that there was
no effect of leaf chemistry within each dispersal
level using PerMANOVA (permutational multivari-
ate analysis of variance; Anderson, 2001) that
calculates a pseudo F-statistic by comparing the
total variance explained by sample identities with
variance explained by random permutations of
sample identities. We tested for significant differ-
ences in within-group variation among the selection
strengths of different lignin/N levels using the test
of p-dispersion homogeneity (Anderson, 2006) that is
analogous to Levene’s test for homogeneity of
variance (Levene, 1960). All analyses were per-
formed in R (R Core Team, 2013) using package
vegan (Okanen et al., 2013).

To examine how dispersal influences the within-
group dissimilarity of microbial communities (ques-
tion 1), we examined the within-group distances
(averaged over lignin/N levels) as well as the average
distance between groups of lignin/N under each
dispersal rate. To assess how selection strength
interacted with dispersal (question 2), we also
compared within-group distances of communities
in strongly selecting environments (high lignin/N)
with those under weak selection (low lignin/N).

Results

We simulated community assembly of microbial taxa
on leaves with varying substrate chemistry and under
different dispersal rates in the DEMENT model. Under
6 years of assembly, both leaf chemistry (lignin/N) and
dispersal influenced microbial biomass, species rich-
ness and Shannon’s index of a-diversity (that incor-
porates richness and evenness) in local communities
(Figures 2a—c), but had a weaker effects on community
evenness (Figure 2d). Higher dispersal rates resulted
in significantly greater microbial biomass carbon,
species richness and diversity, particularly in com-
munities under weak selection (low lignin/N).

We examined how dispersal affected the relative
influence of stochastic and deterministic assembly
processes by calculating the average within- and
between-group distance across all lignin/N treat-
ments. Within-group distance of replicate commu-
nities under low dispersal (0-5% biomass/year)
remained high or increased throughout the 6-year
simulation (Figures 3a and 4 and Supplementary
Figure S2). In contrast, high dispersal rates coincided
with a large decrease in within-group distance
(Figures 3b and 4), a trend that was already apparent
by year 2 (Supplementary Figure S3).

The average between-group distance among
communities on different substrates (representing
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Figure 2 Microbial community biomass (a), richness (b), diversity (c), and evenness (d) after communities assembled under different
dispersal levels (x-axis) and litter chemistries (lignin:N, symbols and colored lines) for six years. Species richness is the number of species
present, while alpha diversity (measured by Shannon's diversity index) incorporates both richness and evenness. Taxa abundances were
integrated over 365 days in year six and summed over the entire grid. Asterisks indicate a significant effect (P<0.01) of lignin:N, and error

bars show standard error around the mean (N=6).

deterministic selection) followed the same trend as
within-group distance, decreasing with increasing
dispersal. At lower dispersal rates, both within-
group and between-group distance remained
high (Figure 4a). However, as dispersal increased,
within-group distance decreased more than between-
group distance, causing within-group distance to
decline as a proportion of total variation (Figure 4b),
although overall differences were relatively minor.

We assessed the null hypothesis that there is no
difference between lignin/N levels within each
dispersal rate using PerMANOVA (N=6). Leaf
chemistry was a significant predictor of community
composition above 5% dispersal (P-values <0.01 for
dispersal levels 5%, 25%, 50% and 60%), but not
significant or only marginally significant at low
dispersals (PerMANOVA P-values >0.01 for disper-
sal levels 0%, 0.5% and 2.5%). Although leaf
chemistry weakly affected community composition
without any dispersal (P=0.04, Figure 4), trends
without dispersal were similar to those with low
dispersal (little decrease in within- or between-group
distance over time, Supplementary Figure S3,
and no effect of selection strength on within-group
distance, Figure 5), and hence we did not interpret
this to mean that fundamentally different dynamics
occur at zero dispersal compared with low dispersal
levels.
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We also tested whether the strength of selection—
defined by the lignin/N content of the leaves—
affected within-group distance. We found that selec-
tion strength interacted with dispersal to affect
within-group distance (Figure 5). At low dispersal
(0-2.5%), within-group distance did not vary with
selection strength (Figure 5, rows 1-3), as induced by
variation in lignin/N (Figure 5, x axis). Under higher
levels of dispersal, selection strength influenced
within-group distance, but in the opposite direction
that we predicted. As selection intensified under
higher lignin/N, conditions in which fewer taxa can
thrive, within-group distance increased (Figure 5,
rows 4-7, and Supplementary Figure S2).

Discussion

In this study, we describe specific relationships
between dispersal rates and microbial community
composition (within- and between-group distance)
using an individual-based model parameterized with
realistic microbial traits and environmental condi-
tions. Taken together, our results show that dispersal
limitation introduces significant stochasticity in
microbial community assembly (Figures 3 and 4),
but stochasticity is also high under high dispersal in
strongly selecting conditions (Figure 5). This is



possibly because these conditions foster commu-
nities with smaller populations and/or lower diversity
(Figure 2) in which drift is more prominent (Vellend,
2010). This work suggests that complex interactions
between microbial dispersal, drift and selection
are likely to alter or obscure relationships between
environmental variables and microbial community
composition.

Dispersal alters the relative contribution of stochastic
and deterministic processes

In answer to our first question, dispersal rate altered
both within- and between-group distances. Stochas-
tic effects—measured as within-group distance of
replicate communities—decreased with increasing
dispersal rate, consistent with our hypothesis. How-
ever, different mechanisms contributed to this
pattern at low and high dispersal.

At low dispersal, within-group distance slowly and
consistently increased over time (Supplementary
Figure S3). This trend is characteristic of stochasticity
introduced by drift that can increase in importance
under low dispersal rates (Vellend, 2010; Hanson
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Figure 3 Nonmetric multidimensional scaling ordinations show-
ing simulated communities after 6 years of sorting on substrates
with low lignin/N (orange, lignin/N=20.1, 30.2, 48.6) that are low
in quality and induce strong selection, or substrate with low
lignin/N (blue, lignin/N=3.9, 7.8, 12.9) that are high in quality and
induce weaker selection. Low dispersal (a) includes dispersal rates
0%, 0.5% and 2.5%. High dispersal (b) includes dispersal rates
25%, 50% and 60%. The x and y axes are NMDS axes 1 and 2,
respectively. See Supplementary Figure S2 for ordinations of all
dispersals and lignin/N levels, and all communities and their
similarities at initialization of the model.
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et al., 2012), although we cannot rule out that priority
effects also contributed to this pattern. Between-group
distance also increased slightly at low dispersal rates,
relative to that of communities randomly assembled at
initialization, suggesting that some selection occurred.
However, our deterministic factor, leaf chemistry
(lignin/N), was relatively unimportant for community
composition with the number of statistical replicates
examined here (Figure 4). Thus, we find that low
dispersal rates in natural decomposer communities
might result in apparently weak deterministic effects
(low significance of environmental effect) that would
have been apparent with higher dispersal rates.
Supporting this idea, Lindstrom and Ostman (2011)
also found that deterministic effects in lakes only
become apparent when bacterial dispersal reached
intermediate rates (but see Declerck et al., 2013, where
this occurs at a much lower dispersal rate). Notably,
when we grouped taxa into functional groups accord-
ing to their traits and performed the same community
analyses, communities grouped more strongly by their
local environment (data not shown), suggesting in
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Figure 4 (a) Mean within- and between-group distances
(1 -Bray—Curtis Similarity) of communities in a given dispersal
level at the initialization of the model (time 0) and after 6 years of
exposure to different lignin/N treatments. Error bars represent s.e.m.
(N=6). See Results for significance of lignin/N treatment for a
given dispersal level. (b) Within-group distance as a proportion of
the sum of within- and between-group distances, referred to as
‘relative stochasticity’ in the text (compared with stochasticity
measured by within-group distance in (a)).
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these conditions, function would be affected to a
lesser extent by dispersal limitation.

At high dispersal, within-group distance decreased.
High dispersal rates are thought to lead to commu-
nities overwhelmed by mass effects that can alter the
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importance of stochasticity on microbial community
composition (Ofiteru et al., 2010; Adams et al., 2014).
Our model allows us to distinguish between two
possible outcomes of mass effects. On the one hand,
mass effects can increase within-group distance of
community composition by introducing maladapted
taxa. If dispersal is random with respect to species
identity, this would increase within-group distances
of microbial communities and potentially overwhelm
species sorting. We did not find evidence of this:
within-group distance among replicate communities
was reduced at high dispersal rates (Figures 3 and 4
and Supplementary Figures S2 and S3).

On the other hand, mass effects can homogenize
local communities, decreasing between-group
distance and making them more similar to one
another and to the regional species pool (Leibold
et al., 2004; Stegen et al., 2013). We did find
evidence for this type of mass effect: between-
group distance decreased at high dispersal rates.
However, microbial communities under very high
dispersal rates were still strongly influenced by
selection, as indicated by a significant relationship
with the environment, and a low proportional
contribution of stochastic processes (Figure 4, bars).
Thus, mass effects induced by high dispersal rates
may not increase microbial community stochasticity
as measured by within-group distance, but can
homogenize communities across environments. This
was only revealed by a consideration of within-group
distance relative to between-group distance (what we
call relative stochasticity), rather than within-group
alone distance serving as an indicator of stochasti-
city. Stegen et al. (2015) developed a simpler
model in which communities assembled according
to species’ evolutionary optima to a predetermined
community size, yet found remarkably similar
outcomes under varying selection and dispersal.
This may be related to the fact that the emergent
community size in DEMENT (and starting regional
pool) was similar to richness and number of
individuals used in this study.

Some empirical studies, often in aquatic systems,
have detected mass effects in microbial communities
under high dispersal, but the ultimate influence it
has on selection can vary. For example, Ofiteru et al.
(2010) studied communities in wastewater treatment
plants that are subject to high dispersal rates,
and found that deterministic selection had little
influence on microbial community composition, and
was instead driven by neutral dynamics (drift and
random immigration). In lakes, high immigration
rates rarely overwhelm local selection (Jones and
McMahon, 2009; Logue and Lindstrém, 2010) but
can cause local communities to become more similar
to the composition of communities immigrating
(for example, from a stream inlet) (Lindstrom et al.,
2006; Crump et al., 2007; Adams et al., 2014).
Our results suggest that microbial growth rates are
fast enough to observe strong deterministic effects in
leaf litter communities even under extremely high



dispersal rates. High dispersal may be more likely
to swamp local deterministic effects on shorter
timescales, after a sudden influx of microorganisms
(Adams et al., 2014; Symons and Arnott, 2014).
Although we focused on effects of dispersal on
B-diversity, it is notable that a-diversity increased
with dispersal rate in our model. This deviates from
predictions in simpler theoretical models that local
diversity begins to decline at intermediate dispersal
levels (Loreau and Mouquet, 1999; Mouquet and
Loreau, 2002). This could be a result of the initial
ratio of local to regional species richness used in our
model, or the fact that initial biomass in our model
was far below carrying capacity of the simulated
environment (as indicated by steadily increasing
biomass and richness over time). Evenness tended to
be lower at intermediate dispersals, suggesting that
more competitive colonizers were able to dominate
at these levels, but mass effects increased both
richness and evenness at high dispersal rates. In
addition, increases in a-diversity likely contributed
to decreases in p-diversity (Chase and Myers, 2011).
When comparing across metacommunities that may
differ in size or source pool, removing this effect can
be important (for example, through statistical methods
such as Raup-Crick distance; Chase et al., 2011).
However, we aimed to compare local diversity within
a single metacommunity, and hence changes in
B-diversity were important to capture even if influ-
enced by o-diversity. Local species richness relative
to that of the regional pool will also alter the extent
that community homogenization is observed under
high dispersal. Thus, when possible, studies should
measure and report these community properties.

The effect of dispersal on community composition
depends on environment

In answer to our second question, dispersal interacted
with selection to influence stochastic community
assembly in our model communities. However, this
interaction was only apparent at high dispersal rates
(Figure 5, rows 4-7). At low dispersal rates (below
5%), within-group distance was invariant across
lignin/N (Figure 5, rows 1-3). At higher dispersal
rates, assembly of replicate communities was more
consistent under weak selection than strong selection
induced by high lignin/N. In contrast, Chase (2007)
found that drought led to a decrease in stochastic
assembly in pond communities, presumably because
drought amplified niche selection.

The most parsimonious explanation for the
observed effect of selection strength on within-group
distance is that biomass and population size also
changed with shifts in selection strength. Commu-
nities under strong selection (high lignin/N) had
the fewest species and lowest biomass (Figure 2).
The smaller sizes of these communities (number of
individuals summed over species) may have made
them more susceptible to demographic drift (Vellend
etal., 2014). In addition, the low total biomass in these
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treatments likely lessened the intensity of competitive
interactions, essentially weakening density-dependent
selection despite (apparently) strong abiotic selection.
This could be tested by examining diversity of
microbial functional groups, but overall this finding
highlights the importance of community size in
understanding outcomes of assembly processes.

We also cannot rule out priority effects as
a generator of stochasticity in community composi-
tion, although to our knowledge, priority effects are
not necessarily more prominent under strong selec-
tion. We tested for priority effects in all levels of
selection by examining the relationship between a
taxon’s final abundance and its starting abundance or
year of introduction, but they were not significantly
correlated in any scenario (P> 0.05, data not shown).
A positive correlation might provide evidence for a
‘niche preemption’ priority effect (sensu Fukami,
2015), whereby earlier colonizers fill niche space
from which later colonizers are excluded, but the test
could miss ‘environmental modification’ priority
effects that occur as early colonizers modify the
environment in a way that favors certain taxa. The
latter type of priority effect could have occurred in
DEMENT; in the model, a microbial cell’s effect on
grid cell substrate chemistry lingers until a new leaf is
introduced (annually). Despite this possibility, there is
no support that this priority effect would be stronger
under suboptimal conditions or strong environmental
selection (here, higher lignin/N). In general, priority
effects are stronger in communities with high pro-
ductivity or turnover (Fukami, 2015), or after experi-
encing a disturbance or environmental shift (Mergeay
et al., 2011), none of which describe high lignin/N
scenarios.

Caveats and recommendations for future work

The patterns we observed in this theoretical model
provide new testable hypotheses about how disper-
sal and selection influence microbial community
assembly. However, future research might address
some of our model’s omissions. For instance, we
treated dispersal as a one-time, yearly event, but
assembly patterns can be sensitive to whether an
immigration event is sequential or simultaneous
(Steiner, 2014), or whether colonizers are primary
(the first to arrive in an area) or secondary (coloniz-
ing an area with a pre-existing community) (Vellend
et al., 2014). We also did not include variation
in dispersal ability among taxa. Although passive
dispersal is prominent in microbial communities,
dispersal ability and mode can vary among taxa that
would add a deterministic driver of community
assembly (Vanette et al., 2014). Finally, we did
not include reciprocal effects between regional
and local species pools, but several studies have
found that community and evolutionary dynamics in
local assemblages (sorting, speciation) influence
immigration and mass effects (Leibold et al., 2004;
Venail et al., 2008; Mittelbach and Schemske, 2015).
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Inclusion of feedbacks between regional and local
pools might have resulted in greater homogenization
of community composition across treatments in
our model, or increased within-group distance by
reinforcing priority effects (Fukami, 2015).

Environmental factors explain a significant
portion of variation in microbial community compo-
sition, but just as often, large residuals are left
unexplained, with little knowledge of why. Our
results indicate that partitioning the effects of
dispersal, selection and drift based on static patterns
of microbial composition will be difficult, if not
impossible. Thus, teasing apart the complex interac-
tions between assembly processes will require more
direct assays. For instance, greater efforts should be
placed on the quantification and manipulation of
microbial dispersal rates across microbial commu-
nities. Although several studies have tackled this
challenge (Bruns, 1995; Bell, 2010; Lindstrém and
Ostman, 2011; Peay et al., 2012; Martiny, 2015),
we need to pay careful attention to the methods
(and units) for characterizing dispersal rate in order
to generalize across studies and scales. A second
key measurement in future studies should be micro-
bial biomass and/or absolute abundance. We found
community size (number of individuals summed
over all species) and biomass were major drivers
of the compositional outcome of shifts in dispersal
and selection. Such measures are often omitted
from studies assessing community composition with
high-throughput sequencing, but are directly related
to the importance of stochastic effects on microbial
community assembly.
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