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Abstract

Local concentrations of mutations are well-known in human cancers. However, their 3-
dimensional (3D) spatial relationships have yet to be systematically explored. We developed a
computational tool, HotSpot3D, to identify such spatial hotspots (clusters) and to interpret the
potential function of variants within them. We applied HotSpot3D to >4,400 TCGA tumors across
19 cancer types, discovering >6,000 intra- and inter-molecular clusters, some of which showed
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tumor/tissue specificity. In addition, we identified 369 rare mutations from genes including 7,53,
PTEN, VHL, EGFR, and FBXW?7and 99 medium recurrence mutations from genes such as
RUNX1, MTOR, CA3, PI3, and PTPN11, all residing within clusters having potential functional
implications. As a proof of concept, we validated our predictions in EGFR using high throughput
phosphorylation data and cell-line based experimental evaluation. Finally, drug-mutation cluster/
network analysis predicted over 800 promising candidates of druggable mutations, raising new
possibilities for designing personalized treatments for patients carrying specific mutations.

Introduction

With tens of thousands of tumor-normal pairs already sequenced, accumulation of cancer
genomic data continues to accelerate. The vast majority of mutations are incidental with no
discernable role in tumor development. Various computational approaches!-6 have been
developed to winnow mutation lists down to the drivers, including searching for genes or
pathways having mutation rates higher than that explained by chance, genes having either
mutually exclusive or co-occurring mutations, or those having neighboring mutations on the
linear DNA/protein sequences.

Mutational impact on protein structure has not yet been systematically analyzed, but recent
developments are moving in this direction. For example, MuPIT’, an extension of LS-
SNP/PDBS8, maps sequence variants onto protein structures, Interactome3D? annotates
protein-protein interactions with structural details, other web tools1%-12 map and visualize
variants on protein structures, SpacePAC3 identifies mutation clusters via simulation,
CLUMPS4 clusters cancer genes and examines protein-protein interactions where at least
one protein is known to be cancer related, and Mechismo identifies interaction sites
contributing to the binding forces between proteins and other peptides!®. However, no
system yet provides comprehensive analysis for understanding mutational consequences or
implications for drug delivery.

Here we present a novel computational tool, HotSpot3D, which identifies mutation-mutation
and mutation-drug clusters using three-dimensional structures and correlates these clusters
with known or potentially interacting functional variants, domains, and proteins. We
describe its testing and subsequent application to more than 4,000 TCGA tumors across 19
cancer types. Over 6,000 interacting cluster discoveries are identified, many of which are
likely undetectable by conventional approaches, with a subset supported by high throughput
phosphorylation data and cell-line based experimental evaluation included in this study as
well as accumulated experimental evidence®-18, We also report 800 promising candidate,
druggable mutations, generally characterized by complex, multi-dimensional interactions
between drugs and mutations. The list furnishes substantial possibilities for future
therapeutics.
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Results

Intra- and inter-mutation clusters across 19 cancer types

HotSpot3D is a multifaceted tool that integrates sequence mutations with three dimensional
protein structures (M ethods and Supplementary Note). It identifies significant spatial
mutation and mutation-drug clusters in the form of novel or rare mutations co-clustering
with known hotspot residues, medium recurrent mutations that collectively exhibit
enrichment, cancer type-specific mutation clusters within and between proteins, and
mutations potentially interacting with cancer drugs. HotSpot3D utilizes structures from the
Protein Data Bank (PDB)° and mutation/drug co-structures from DrugPort (M ethods and
Figure 1a). We evaluated HotSpot3D clustering performance and compared it to existing
tools to demonstrate its advancement for mutation cluster analysis (Figure 1a—d and
Supplementary Note).

We applied HotSpot3D to somatic non-truncational mutations (549,295 unique missense
mutations and 4,201 in frame indels) in 4,405 samples from 19 major cancer types
(Methods). To identify potential intra-molecular (within a single protein), inter-molecular
(between proteins in a complex), and drug-mutation interactions (e.g. near drug binding
pocket), we focused on detecting pairs within the typical protein interaction range of 10A20,
We applied Hotspot3D to specifically target intra-molecular mutation pairs separated by at
least 20 amino acids (Methods). Clustering was performed on pairs within significant
proximity (P < 0.05) and ultimately compared to a known cancer gene list of 624 genes
(Supplementary Table 1).

Among the 5,822 intra-molecular clusters identified, 698 clusters are from 244 known
cancer genes and 5,124 clusters are from 2,275 non-cancer genes (Supplementary Table 2
and 3). 38 clusters (35 “cancer genes” and 3 “non-cancer genes”) were above the cluster
closeness (Cc) threshold (Cc > 10.3, see Methods). The top 5 cancer genes exhibiting high
cluster closeness are 7P53, KRAS, BRAF, IDH1, and PIK3CA, as expected and due largely
to their high mutation rates in cancer (Figure 2a). 7P53 has the highest cluster closeness, a
result of both numerous mutations in close proximity (192 unique mutations) and mutation
recurrence (38 hotspot residues) throughout the gene. We observed a shift towards higher
cluster closeness for mutation clusters in cancer genes as compared to non-cancer genes (P ~
5.3e-13) (Figure 2a inset) (M ethods).

Clustering analysis of protein complexes resulted in 488 clusters, of which 34 were
comprised only of cancer genes, 122 contained at least one cancer gene, and 332 contained
no cancer genes (Supplementary Table 2 and 4). Similar to the intra-molecular analysis, we
selected top inter-molecular clusters (Cc > 4.1, see M ethods) for downstream analyses
(Figure 2b). Of the 22 clusters that passed the threshold, clusters containing cancer genes
exhibit significantly higher cluster closeness than those having no cancer genes (Figure 2b
inset).

Oncogenes and tumor suppressor genes (TSGs) have distinct mutation signatures, the former
characterized by recurrent mutations at activating sites and the latter having higher
abundances of truncations scattered across their sequences?!. However, the mutational
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patterns of non-truncational mutations in TSGs have not been intensively studied. Using 64
oncogenes and 74 TSGs classified by Vogelstein et al.2, we observed 124 and 89 intra-
molecular clusters in 36 oncogenes and 38 TSGs, respectively (Supplementary Fig. 1 and
Supplementary Tables 5 and 6). Nine oncogenes (HRAS, KRAS, IDH1, IDHZ, BRAF,
PPP2R1A, SPOF, PIK3CA, and MAP2K1I) and five TSGs (7P53, CDKNZA, B2M,
FBXW?7, and MAPZK4) account for >50% of non-truncational mutations included in
clusters; Difference between oncogene/TSG in the number of genes with a majority of
mutations in clusters is not significant (P ~ 0.4). Clusters in both categories tend to correlate
with known functional domains, suggesting functional implications (Supplementary Tables 7
and 8).

Significant mutation clusters with cancer type specificity

To explore cancer type specificities within significant clusters, we performed unsupervised
clustering of cancers with the 38 intra-molecular clusters (Cc > 10.3) and 22 inter-molecular
clusters (Cc > 4.1) (Methods and Figure 3a,c). Non-specific intra-molecular clusters
included those from TP53, PIK3R1, and KRAS (Figure 3a). We further identified 18 intra-
molecular clusters that were at least 50% specific to one cancer type (Supplementary Table
9), suggesting diverse roles in different cell types. High specificity is associated with VHL
and MTOR (Supplementary Fig. 2a), having 95% and 86% of their respective mutation
clusters specific to KIRC, and DNMT3A with 91% specificity to AML. High-specificity
clusters can be the result of a hotspot site having most of its mutations in one cancer type, as
is the case with DNMT3A residue Arg882. Conversely, VHL and MTOR show distribution
across multiple residues.

PIK3CA has 6 top-scoring, distinct clusters, exhibiting both UCEC and BRCA specificity
(Figure 3b and Supplementary Fig. 2b). The PIK3CA(4) cluster at centroid Arg88 is
primarily UCEC specific (54% of its mutations) and is distributed among three different
residues (Arg38, Glu39, and Arg88) that show little BRCA specificity. Conversely, the
PIK3CA(1) cluster is primarily BRCA specific (69% of its mutations), and the His1047
centroid is primarily responsible for the overall BRCA specificity. Finally, the PIK3CA(5)
cluster with centroid Cys420 shows distribution across multiple cancer types. We found mild
GBM specificity in PIK3CA across 4 residues (Arg38, Glu39, Arg88, and Cys90) in the
PIK3CA(4) cluster and CESC specificity at Glu726 in the PIK3CA(6) cluster. EGFR also
has two different clusters that contribute to different cancer types (Figure 3b): an
extracellular cluster, EGFR(1), with centroid at Ala289 enriched in LGG/GBM and the
kinase domain cluster, EGFR(2), with centroid at Leu858 enriched in LUSC/LUAD.

Several inter-molecular clusters also showed tumor specificity, with 8 clusters >50% specific
to one cancer type, including well-known oncogenic protein complexes ASB9/SOCS4/
TCEB1/VHL (KIRC), BTRC/CTNNB1 (UCEC), AKAP13/ARHGEF12/RHOA (HNSC),
PPP2R1A/PPP2R2A (UCEC), and CBFB/RUNX1 (BRCA) (Figure 3c and Supplementary
Table 10). KEAP1/NFE2L2 showed mutual exclusivity, with KEAPI mutations in
adenocarcinomas LUAD and STAD and NFEZLZ2 mutations in multiple other cancer types
(Figure 3d). Two of the residues, Arg415 and Arg483 from KEAPL, have been
experimentally validated and shown both to be in the KEAP1 binding pocket and to play a

Nat Genet. Author manuscript; available in PMC 2017 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Niu et al.

Page 5

major role in the stability of the KEAP1/NFE2L2 complex?2. We also identified 4 TCEB1
residues, Arg82, Ser67, Ser86, and Tyr79 in UCEC, BRCA, UCEC, and KIRC, respectively,
clustering with 7 VHL residues, Cys162, Leul53, Leul58, Leul69, Ser168, Gly114, and
Val165 in KIRC; Tyr79 has been experimentally validated to disrupt the TCEB1/VHL
complex!8 (Figure 3d and Supplementary Table 11).

Rare and medium recurrence functional mutation discovery

Rare and medium recurrent drivers are often missed by frequency-based approaches? 2. We
define hotspot residues as those mutated in at least 5 different patient samples, regardless of
the amino acid change. Mutations that fall in the same cluster as the hotspot residues are
considered potential novel functional mutations.

We found 100 hotspot residues and 249 potentially novel functional mutations
(Supplementary Table 12 and Figure 4a) clustered with hotspot residues from intra-
molecular analysis. TP53, PTEN, VHL, EGFR, and FBXW?7 contain the top 5 clusters
contributing the most novel functional mutations. A KRAS cluster had the second highest
cluster closeness across all clusters, which is a consequence of the high frequency of
mutations at the centroid and nearby hotspots. The centroid is at Gly12 (found in 198 patient
samples) and has multiple amino acid changes (Gly12Cys/Asp/Ser/Val/Ala/Phe). For this
particular cluster, we have 3 hotspot residues Gly12, Gly13, and GIn61 (Figure 5a).
Additional possible functional mutations outside of hotspot residues are 11e36M,
Ala59GIu/Gly/Thr (each in one sample), and Glu62Lys. Importantly, mutations
Ala59GIu/Gly/Thr have a geodesic length of only 3A from the highly mutated centroid
Gly12 in 3D space, even though they are 47 amino acids away in the linear sequence. Ala59
has a higher closeness centrality than expected due to its close proximity to highly mutated
residues (GIn61, Gly12, and Gly13). Likewise, Ile36Met is more than 20 amino acids away
from all other hotspot residues in the cluster, but has a geodesic distance of only 5.8A from
Gly12. These 5 potential novel functional mutations could be good candidates for
subsequent functional validation. Another interesting observation is a MAP2K1 cluster with
centroid at Pro124, which is recurrently mutated in 7 patient samples. Additionally, it
contained another hotspot at Glu203, mutated 5 times (Figure 5b). Other potential functional
candidates in this cluster are Arg47GIn (mutated only once, but having geodesic length of
5.9 A from the centroid) and Asn122Asp and Glu333Ala (likewise mutated once, but
geodesics within 10 A of centroid). Experimental evidence exists for our prediction that rare
mutation Arg47GlIn is functional in cancer (Supplementary Table 11). Arg47GIn led to
increased phosphorylation of downstream kinases ERK1/2, supporting the activating
potential of the mutation®’.

Similarly, we can uncover potentially novel, functional variants from inter-molecular
clusters. We found 33 hotspot residues and 120 potentially novel functional variants, 4 of
which were already observed in intra-molecular clusters (Supplementary Table 13 and
Figure 4b). Notable examples are the SMAD2, SMAD3, and SMAD4 complexes. Two
separate inter-molecular clusters (Figure 5¢) account for 28.6% of the SMAD2/SMAD3/
SMAD4 missense mutations and in-frame indels. For one of the complexes (purple cluster,
Figure 5c), we were able to identify 7 rare variants, each mutated only once from SMAD?2
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(Leud42Val, Leud46Val, Ser276Leu), SMAD3 (GIn405Leu), and SMAD4 (Asp355Gly,
Pro356Leu, Ser357Pro) and all in close spatial proximity with the SMAD4 Arg361 hotspot
(Arg361Cys/His/Pro/Ser). In addition, Asp450Asn in SMAD?2 is mutated only once and is
the closest spatially (2.6A) to the SMAD4 hotspot residue, making it another functional
candidate. Recent work confirms our prediction that mutations (Asp450 and Ser276 from
SMAD?) in close proximity to the Arg361 hotspot on SMAD4 destabilize the SMAD2/4
and SMAD3/4 complexes!® (Supplementary Table 11).

Our analysis also identified five such intra-molecular cases above the cluster closeness
threshold involving RUNX1, MTOR, CA3, PI3, and PTPN11. None have hotspot residues,
but all contain mutations having medium recurrence or rare variants that are spatially dense.
All of the mutations in each of the five clusters collectively contribute to the high cluster
closeness and could all be novel functional mutations (Supplementary Table 14). For
example, the cluster in RUNX1 contains Arg162 recurrently mutated 4 times, Pro113
mutated twice, and four other singleton mutations (Leul61Pro, Val118Ala, Asp160Gly, and
Alal34Pro). In terms of inter-molecular cases, there are 9 clusters with significant cluster
closeness, but no hotspot residues (Supplementary Table 15). The other SMADZ2/3/4 cluster
(orange cluster, Figure 5c¢) contains Asp537 (SMAD4) mutated 4 times, Arg268 (SMAD3)
mutated 3 times, Pro305 (SMAD2) mutated twice, and four singletons (Arg531 and Leu533
from SMAD4, Asp304 and Asp300 from SMAD?2). Additionally, RBX1, CUL1 and GLMN
form a cluster, but none are on the cancer gene list. This cluster contains Arg506, Gly543,
and Glu758 from CUL1 and Met50 from RBX1, which are all mutated twice, and 6
remaining mutations that are singletons (Supplementary Table 16).

Validation by protein array and functional experiment

In cancer, mutations within extracellular and kinase domains of Receptor Tyrosine Kinases
(RTKSs) can cause ligand-independent activation, leading to autophosphorylation. We keyed
on this phenomenon to validate the performance of HotSpot3D for identifying functional
variants. Specifically, we first conducted validation using Reverse Phase Protein Array
(RPPA) expression data to assess whether predicted clusters in EGFR actually have higher
levels of protein expression/autophosphorylation than either the wild type or mutations
outside clusters. EGFR is an excellent test case because of the high number of mutations
found across multiple patient samples and the two most significant clusters being highly
cancer specific. The latter is important because RPPA varies by cancer type. We used the
RPPA values to examine EGFR protein expression and site-specific phosphorylation at
major autophosphorylation sites pTyr1173 and pTyrl1068.

We validated the two clusters in EGFR that exceeded the Cc threshold, one specific to GBM
with centroid at Ala289 from the extracellular domain and the other specific to LUAD with
centroid at Leu858 from the kinase domain. The mean protein and phosphoprotein
(pTyr1173 and pTyr1068) levels were significantly higher in GBM samples with mutations
from the Ala289 cluster as compared to wild type EGFR, P=2.3e-8, P=1.9e-5, P=1.5e-6,
respectively (Figure 6a) Means were also higher than for samples with EGFR mutations
outside of any cluster, but there were insufficient data to establish this observation as
statistically significant. Almost all of the mutations for LUAD in the kinase domain are from
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the L858 cluster, so here we focus on comparing it to the wild type. Mean protein and
phosphoprotein (pTyr1173 and pTyr1068) levels were again significantly higher for samples
containing a mutation in the Leu858 cluster, P=0.01, P=0.04, P=4.6e-5, respectively (Figure
6a). We also conducted validation on one ERBB2 cluster in the kinase domain having its
centroid at Val842lle using RPPA data for ERBB2 protein expression and
autophosphorylation site pTyr1248. This cluster exhibited the same trend as the two EGFR
clusters; the mean protein and phosphoprotein (pTyr1248) levels were the highest for
samples having mutations in the Val842lle cluster (M ethods).

We also performed EGFR phosphorylation experiments on mutations from the EGFR
Leu858Arg cluster in cultured NIH3T3 cells to more conclusively assess functional
predictions from HotSpot3D. This cluster included well-known mutations such as
Leu858Arg, Gly719Ala, and Thr790Met. Additional rare mutations, having no available
direct evidence of autophosphorylation consequence, include Asp761Asn, Ile789Met,
Arg831His, and Leu833Phe, although a few reports suggested weak/partial response to
tyrosine kinase inhibitors in samples with other known druggable mutations?3-25, Qur
phosphorylation experiment targeting autophosphorylation site pTyr1068 showed a low level
of pTyrl068 phosphorylated EGFR (pEGFR, 0.21, normalized by the total EGFR) in the
wild type without EGF treatment (Figure 6b). Leu858Arg, Gly719Ala, and Thr790Met have
higher levels of normalized pEGFR (0.79, 0.89, and 1.08, respectively), indicating ligand-
independent activation. Asp761Asn, 1le789Met, Arg831His, and Leu833Phe also yielded
higher levels of normalized pEGFR (0.78, 0.38, 0.32, and 0.55, respectively), suggesting
potential ligand-independent activation as well (Figure 6b). In addition, similar to
Thr790Met and Gly719Ala, Asp761Asn shows a much higher normalized pEGFR level
(1.76) when compared to the wild type (1.08) under EGF stimulation. These observations
demonstrate that some of the variants do not just have ligand-independent activation; their
levels of autophosphorylation upon EGF stimulation can be higher than that of the wild type
(Figure 6b and Supplementary Table 17). Furthermore, we performed an experiment
examining sensitivity of the EGFR variants to gefitinib. We found that Thr790Met is
resistant to gefitinib, consistent with previous reports?6. The other 6 variants are all sensitive
to gefitinib (Figure 6¢). In aggregate, these results furnish convincing evidence of the
HotSpot3D approach.

Mutation-drug networks and clinical implications

The HotSpot3D drug module targets mutations in spatial proximity to actionable sites for
pharmaceuticals and nutraceuticals derived from DrugPort (M ethods). We identified 394
significant drug-mutation clusters involving 153 drugs and 359 genes (Supplementary Table
2, 18). Top HGNC gene families and drug classes are in Supplementary Note (Figure 7a and
Supplementary Tables 19, 20, 21). While we have obtained drug-mutation relationships from
multiple databases (M ethods), only 14 unique mutations (with different amino acid position
and/or change) in the clusters have been reported in these sources, implying the remaining
844 unique mutations are potentially novel drug interacting candidates.

Of particular interest, we have detected 48 protein kinases, interacting with 21 drugs (Figure
7b) with strong mutation-drug clusters found in EGFR, BRAF, KSR2, ERBB3, CDK7/8,
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and ABL1. Our analysis also showed that 24 out of the 394 mutation-drug clusters have
cluster closeness scores greater than 2.5 (Table 1), including several protein kinases (BRAF,
ERBB3, EGFR, PDK3, and NTRK1), nuclear hormone receptors (ESR1 and PPARD), CD
molecules (ACE, CD40LG, and ITGAX), as well as tumor suppressors (TP53 and VHL).
Among the kinase-drug clusters, BRAF (a serine/threonine kinase) with sorafenib (a
tyrosine kinase inhibitor) tops the list due to hotspots at Val600 and Lys601. Interestingly,
there are 8 unique BRAF mutations in this cluster: Arg462Lys, Gly469Ala/Arg,
Asp594Gly/His/Asn, Gly596Asp, and Val600Arg that are each observed in one or two
samples. Three of these mutations (Arg462Lys, Gly469Arg, Gly596Asp) are not in the
current releases of MyCancerGenome (MCG), CancerDR (CDR), Personalized Cancer
Therapy (PCT), or Gene-Drug Knowledge Database (GDKD), and eight (Gly469Ala,
Asp594Gly/His/Asn, Val600Glu/Lys/Arg, and Lys601Glu) are present in at least one or
more of these databases, but have unknown effects on drug binding affinity. Our analysis
lends weight to the potential druggability of the 3 functionally unknown, unique BRAF
mutations (Figure 7c¢). We also found two drug-mutation clusters of ERBB3 in which 8 of
the 9 unique mutations were not catalogued in these databases (from the extracellular
domain cluster: Val104Leu/Met, Ala245Val, Gly284Arg in GDKD, Lys329GIu/Thr, R103H,
and R388Q and from the kinase cluster: L792V) and V104 is the centroid mutated in 11
samples. The larger ERBB3 cluster evidently interacts with 4 n-acetyl-d-glucosamine (NAG)
molecules throughout the extracellular domain spanning both receptor L domains and the
Furin-like cysteine rich region. The second ERBB3 cluster involves bosutinib, a tyrosine
kinase inhibitor. Two EGFR drug-mutation clusters were found in which 11 out of 16 unique
mutations are novel (Figure 7d). None of the three mutations of the PDK3 drug-mutation
cluster have been reported in the four druggable mutation databases (Arg299Cys/Ser and
Phe324Leu). The three mutations of NTRK1 were likewise not found in these databases
(Arg649Leu/Trp and Arg702Cys) and are observed with an acetic ion binding in the C-
terminal lobe adjacent to the binding pocket and DFG motif (within 10A).

ESR1, PPARD, and PPARG top the nuclear hormone receptor family of mutation-drug
clusters (Supplementary Table 18). The ESR1 cluster with Cc = 4.6, has 4 unique mutations
interacting with 5 different compounds: raloxifene, estradiol, estrone, estriol, and
diethylstilbestrol (Figure 7e). Raloxifene is a FDA-approved estrogen receptor modulator for
reducing the risk of invasive breast cancer?’, while estradiol, estrone, and estriol are
estrogenic hormones functioning through ESR1. Arg394His/Leu mutations in ESR1 form
significant pairs with all 5 compounds and could potentially affect their responses (Figure
7e). HotSpot3D analysis suggests multiple putative therapeutic options for one mutation, but
functional validation will still be required for confirmation and to determine which drug is
most appropriate. Peroxisome proliferator-activated receptor delta (PPARD) is found with 2
unique mutations, His287Arg and His287Tyr, adjacent to icosapent, a micronutrient which
has been used to treat a variety of symptoms and diseases and most notably has been
suggested to improve chemotherapy response28. Another PPAR drug-mutation cluster
involves 6 unique PPARG mutations that are associated with 4 drugs (indomethacin,
pioglitazone, rosiglitazone, and telmisartan) (Supplementary Table 18). The action site for
indomethacin, a non-steroidal anti-inflammatory drug (NSAID), neighbors all 6 mutations
of the cluster, while the sites for pioglitazone and rosiglitazone (anti-diabetic drugs) and
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telmisartan (an angiotensin 1l receptor antagonist (ARB)) neighbor two (11e277Asn and
I1e290Met), three (11e290Met, Arg316Cys, and His494Tyr), and two (Arg316Cys and
E352K) mutations, respectively. It is significant that, although none of these drugs has any
previously known use in treating cancer, their action sites have all been found near a
frequently mutated binding pocket in cancer. Both clusters of ESR1 and PPARG exist in the
hormone receptor domain, suggesting that drug binding in this region may be affected by
cancer mutations.

The drug-module in HotSpot3D allows users to identify mutation-drug clusters involving
multiple drugs, independent of on-label (drug approved for a specific mutation manifested
by a specific disease) status, as well as drugs interacting with mutations from multiple genes.
For example, ABL1, from the 8th ranked kinase cluster, interacts with four tyrosine kinase
inhibitors (TKIs): bosutinib, dasatinib, imatinib, and nilotinib; each has been used for
treating chronic myelogenous leukemia (CML) patients with the BCR-ABL fusion2: 30,
Although there are only three unique mutations (Val390Leu, Asp400Tyr, and Phe401Leu)
observed in the ABL1 drug cluster, the cluster closeness measure is significantly increased
due to the four drugs involved. Each of the Asp400 and Phe401 residues, from the DFG
motif, controls blocking of the binding pocket by conformational changes and therefore
modulates the binding of imatinib and nilotinib. The gatekeeper in ABL1, Thr315, which
controls ATP access to the binding pocket, was not found to be mutated in the TCGA dataset
studied, but the gatekeeper in EGFR, Thr790, is found in its own TKI drug-mutation cluster
with erlotinib, gefitinib, and lapatinib. Both Thr315 in ABL1 and Thr790 in EGFR are
shown to confer drug resistance to TKI therapy, indicating similarly positioned mutations in
drug families have the same effects within a drug class3. Further, we found that the DFG
motif is also mutated in BTK (PheGly540LeuCys), another tyrosine kinase. Notably,
mutations in three genes, ABL1, BTK (including Leu528Phe), and BMX (Gly424Glu), are
within the spatial interaction range of dasatinib (Supplementary Fig. 3). Overall, HotSpot3D
provides the means to identify complex, multi-dimensional interactions among drugs and
mutations and consequently to find alternative therapeutics that may provide greater
flexibility in treating a wide range of genetic diseases.

Discussion

The enormous numbers of available variants and protein structures offer an unprecedented
resource for investigating the direct impact these variants have upon protein structures,
which is fundamentally important to the design of targeted cancer drugs. Here, we developed
HotSpot3D to provide novel capabilities not found in existing tools: 1) It handles any
mutation and variation data, has no limitation on the number of clusters per protein, and
considers all available structures, thus maximizing the potential for novel cluster/interaction
discovery for studies not limited to cancer. 2) It unifies discovery of many different entities
under a single algorithm: significant clusters within a single protein, at the interface of
protein-protein complexes, and near drugs. It is the first tool to effectively handle drug-
mutation clusters. 3) It provides comprehensive downstream analyses in prioritizing clusters
that are significantly enriched in mutations from multiple patient samples and supports rare/
medium recurrent functional mutation discovery.
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We used HotSpot3D to analyze TCGA Pan-Cancer data, discovering a large set of mutations
and revealed their relationships with known drivers. This is a rich resource for future
functional explorations (Supplementary Table 22). Our HotSpot3D drug analysis also
indicated that only 14 unigue mutations in the significant mutation-drug clusters have been
reported in the four standard databases we searched, implying discovery of over 800 novel
drug interacting candidate mutations. The larger implications of this work are threefold: 1)
using non-cancer drugs for treating cancers, 2) applying cancer-type specific drugs for
treating patients with other types of cancers, and 3) employing targeted drugs for treating
patients with non-canonical cancer mutations that cluster with known druggable mutations.

Although we have experimentally validated a small subset of predictions using high
throughput phosphorylation data and /n7 vitro cell-based assay, additional experimental
testing of all putative novel drivers and drug interacting mutations discovered in our study is
required to confirm their biological functions. We envision that structure-based analyses
using HotSpot3D will lead to discoveries of many types of relationships among variants
undetectable by conventional approaches, for example, in human variations identified from
population-based studies, as well as germline variations and de novo mutations that play
roles in many common diseases.

Online Methods

HotSpot3D and code comparison

HotSpot3D (see URLS) has three parts: data preprocessing, structural analyses, and
visualization (Figure 1a). For SpacePAC comparison, we used the “SimMax” option, cluster
radii 2-10 angstroms, up to 3 clusters, and 1000 simulated configurations. We restricted
HotSpot3D to the single molecule information available to SpacePAC and configured its
parameters for an unbiased comparison: no linear separation, links formed with distance p-
values, and 10 angstrom maximum cluster radius. We retained only the most significant
clusters for SpacePAC and used the average inner cluster distance between constituent
residues as a test statistic. Permutation testing was performed for each cluster residue mass
(number of residues in a cluster) for each structure. For cluster k of mass m, there are n =
m(m-1)/2residue pairs among all residues, which have an average of dj. For each m, we
sampled 10° sets of /7random pairs, and for the /7 set we obtained the average inner cluster
distance, d). The p-value for the &7 cluster of mass /7 is the proportion of sets with average
inner distance less than d.

Data preprocessing

Genes and their transcripts and proteins are procured from public sources, including the
Human Genome Organization (HUGO). Preprocessing extracts four features from the
HUGO Gene Nomenclature Committee (HGNC) (see URLS): HGNC gene name, Universal
Protein Resource (UniProt32) 1D, gene synonyms, and description.

UniProt is a comprehensive database for protein sequence and annotation data. For each
HUGO gene, UniProt ID was used to retrieve PDB IDs from the Protein Data Bank (PDB)
(see URLSs), transcript and protein IDs from Ensembl, sequence from UniProt, and region of
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interest (ROI) information. For each ROI, corresponding information contains initial and
destination coordinates of UniProt sequence and specific function description. By comparing
each UniProt sequence with all known and novel peptide sequences of human build GRCh37
(Ensembl release 74), we identified and kept only those transcripts having the same
translated length and sequence identity =98%. We only allowed one top Ensembl transcript
match based on alignments with UniProt sequences.

This process culminates in an association table containing each HUGO gene, its UniProt,
PDB, and transcript 1Ds, and sequence identity with UniProt sequence (Supplementary
Table 23). This table was used for PDB-related 3D distance calculations and conversion
between PDB and UniProt coordinates. This information is stored in a MySQL database and
a flat file.

3D proximal pairs analysis

3D distance calculation—UniProt ID enables protein structure data to be extracted from
PDB33, For each of the 25,627 PDB structures, one or more chains could correspond to the
UniProt sequence. Here, we used the longest chain containing the amino acid of interest to
calculate 3D distances between amino acids. In case of multiple identical MODELS, one is
picked randomly. We take intra-molecular interactions as any pair from the same UniProt
ID, regardless of chain in homomer complexes. Inter-molecular pairs are between amino
acid pairs from different UniProt ID’s within the same PDB structure.

Distance is calculated as follows. Given a pair, AA0and AAZ, and their respective sets of
atomic coordinates in space, AAO and AAL, the distance between them, D(AA0,AAI), is the
minimum 3D distance between all atoms of AA0and of AAL

D(AAD, AA1)= min d(i, j)
leEAAl (1)

where d'is the distance between atoms 7and jfrom AAQO and AA1, respectively, and the
amino acids range either over a single chain or over two chains, depending on context.

Significance determination and prioritization—To calculate significance of distance
between mutations, we statistically analyzed all possible 3D distances within each PDB
structure. Permutation-based P-value for each pair of amino acids is the proportion of all
pairwise 3D distances less than or equal to D(AA0,AA1). To reduce false-positives due to
proximal residues in primary sequence, amino acid pairs must be separated by at least AN
residues along the protein sequence. Here, we use the following empirically derived criteria:
P<0.05, D< 10A, and AN > 20 for intra-molecular clusters, while D < 20A was allowed for
inter-molecular and drug-mutation clusters. This procedure generates a data set consisting of
the residue pairs and their 3D distance, linear distance, and p-value for each PDB structure.

Variant List Input—For a given MAF or VVCF input, transcript ID and amino acid change
information from Ensembl annotation must be provided for each variant. Based on the
association table, variants map to specific UniProt IDs. From the 3D proximity results, the
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amino acid change information was then used to map the variant to a specific location within
the UniProt sequence. Using 3D proximity results, COSMIC annotation information, and
ROI information, we conducted 3D proximal pairs analysis for a given variant list.
Ultimately, our method reports 5 kinds of proximity information: mutations in ROI, close to
ROI, close to each other, at COSMIC locations, and close to COSMIC mutations. Users can
extract pairs of mutations that are in close proximity to each other within a single protein, as
well as on protein-protein complexes.

Drug interaction module

HotSpot3D includes a drug-protein interaction module based on data from DrugPort (see
URLSs), which contains structures of drugs and their target proteins in PDB, the latter derived
from DrugBank34. The version of DrugPort used here contains 1,492 approved drugs and
1,664 unique protein targets, in which there are 480 molecules in all (425 drugs and 55
nutraceuticals) contained within 21,603 PDB structures. Each drug, has four attributes:
number of different targets, number of targets with known structure in PDB, number of
drug-bound target structures, and total number of drug-bound structures. There is an
important preprocessing step to establish the relationship between mutations and PDB
structures containing each pharmaceutical. Using the DrugPort API, we parsed the raw
DrugPort data file, obtaining DrugPort ID, PDB Het Group, drug molecule position in the
PDB structure, and flag information. Het records describe non-standard residues, such as
prosthetic groups, inhibitors, solvent molecules, and ions for which coordinates are supplied.
Flag information identifies whether the structure is a target protein or not a target protein but
which nevertheless contains this drug molecule. Using these pre-processing results as input
for each drug, the HotSpot3D drug-protein interaction module can search mutations to
determine whether any are within the three-dimensional distance cutoff of each drug.

Cancer mutation data set and cancer types

We analyzed somatic mutations (Supplementary Table 24) from 4,405 TCGA tumor samples
from 19 cancer types: bladder urothelial carcinoma (BLCA), breast adenocarcinoma
(BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC),
colon and rectal carcinoma (COAD, READ), glioblastoma multiforme (GBM), head and
neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), acute myeloid leukaemia (LAML; conventionally
called AML), low-grade glioma (LGG), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous carcinoma (OV), pancreatic adenocarcinoma (PAAD),
prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), stomach
adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial
carcinoma (UCEC).

Identifying mutation and drug-mutation clusters

Mutations in proximal pairs are assigned to different clusters. To seed initial clusters, we
start from significant proximal pairs, iteratively adding new mutations if they are
significantly paired with a mutation already in that cluster. Because this procedure can form
large clusters by the “chaining effect”, as each addition lacks knowledge of the overall
cluster size, we require a “stopping rule” to limit growth. Specifically, we identify the
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centroid of the cluster as the mutation having the highest closeness centrality and discard
mutations outside its threshold radius (see below).

Formally, a cluster is an undirected graph G = (V,E), where V is a subset of the
nonsynonymous mutations from the input and E is the set of proximal pairs from V
identified by HotSpot3D. Two options are available for selecting V: 1) the set of all non-
truncational mutations, V' = V; 2) the set of unique mutations affected by the mutation
cohort without recurrence, V' =V, (a proximity only approach). Let v; v; € Vfor j, j€
{1,2,...,N} where N is the number of vertices in V. Edges ¢;;€ Eare distances, where |¢;j =
aj jfor paired elements vj and vj, and |e; | = oo for vertices that are not paired. For V' =V, |
éjl = dj;=0if vj and v; are recurrent mutations as well as different amino acid changes at
the same residue, and for V' = V5, |¢; | = dj ;= 0 if v; and v; are different amino acid changes
at the same residue. Clusters are built-up by the Floyd-Warshall shortest paths algorithm,
initialized by the distance matrix of the edges, to obtain the geodesics, gj ; between each v;
and vj. Unique clusters emerge as disjoint subsets in V having infinite geodesics between
any two elements from different clusters. For each v; € V; we then calculate the closeness
centrality3®, c(vj),

N 1
C(Vi):ijl 29,5’
i%j

@)

where N is the number of vertices in the cluster. For each cluster, the centroid is the vertex
whose closeness centrality is the maximum. Finally, clusters can be focused according to
user input for the cluster radius limit. The cluster radius limit is the maximum geodesic
measured from the cluster centroid; any vertices outside this bound are pruned. For intra-
molecular clusters, we used a radius limit of 10A to keep clusters small and dense spatially.
For inter-molecular, we used a larger limit of 20A, since we are spanning across multiple
proteins.

Clustering for drug-mutation pairs follows the same approach. Multiple instances of the
same drug in a single protein are considered a single entity, despite the possibility of binding
in several places. All mutations significantly paired with the drug, regardless of binding
location, are included in the initial cluster, even if the mutations themselves are not close to
one another. Conversely, one drug binding within a protein is treated separately from the
same drug bound to other proteins, forming disjoint clusters; each cluster only includes
mutations from a single protein. The cluster radius is again 20A.

Prioritizing clusters with high cluster closeness

We focused on top clusters for downstream analyses using cluster closeness (Cc) as a
measure to establish thresholds. Cc is simply the sum of the closeness centralities over each
mutation in a cluster. High Cc indicates spatially dense clusters enriched in mutations from
multiple patient samples. Here, we distinguished between clusters with cancer genes and
non-cancer genes. We generated Cc distributions for both groups, using Wilcoxon testing to
verify that they were significantly different and that Cc was in fact a good metric to
determine functionality of clusters. We observed that clusters with cancer genes had
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significantly higher Cc than clusters without (P ~ 5.3e-13). We could use the Cc threshold to
identify novel cancer genes that exhibit similar tightness and enrichment of mutations in
clusters as cancer genes. We wanted a stringent Cc threshold focusing on a small,
conservative subset of intra-molecular clusters, so we defined the threshold as the top 5%
cutoff of the cancer gene group (Cc = 10.283) (Figure 2a). To get an idea of the spatial
“tightness” this threshold implies, an idealized equilateral tetrahedron having all equal
geodesic distances, g, would indicate threshold of A2/29 > 10.283 from Eq. (2), whereby g<
In(A2/10.283)/In(2). Substituting A=4 for the tetrahedron, each vertex would be a distance of
0.64A at most from all the others. For inter-molecular analysis, we distinguished clusters
with all cancer genes, at least one cancer gene, and no cancer genes. We created Cc
distributions for all three groups. Here, clusters with cancer genes also had significantly
higher Cc than clusters having none. Due to significantly fewer inter-molecular clusters, we
defined the threshold as the top 20% cutoff for the all cancer gene group (Cc = 4.118)
(Figure 2b), which equates to a maximum geodesic distance of 1.96 A in the idealized
tetrahedron model.

Cluster conservation score

The phastCons score36 quantifies conservation of mutated and deleted bases. Each cluster is
scored by the weighted average of its variants’ phastCons scores, with variants weighted by
recurrence. For each intra-molecular cluster, we compared Cc to cluster conservation score
to evaluate whether clusters occur in functionally important regions: 70% (4,083 out of
5,822 intra-molecular clusters) have a high score (above 0.95). T-testing on mutations within
clusters versus mutations not in clusters showed clustered mutations’ preference for
conserved regions (P < 2.2e-16). Clusters with high Cc tend to have a high conservation
score, and we found 547 clusters from 542 cancer genes, including all 38 of the top intra-
molecular clusters, among the high cluster conservation score group. Clusters of cancer
genes segregate as oncogene, TSG, or unclassified (general) cancer genes, and cluster
conservation between groups is compared for clusters exhibiting high Cc. T-tests on clusters
with top Cc failed to show significant difference between oncogenes and TSGs in terms of
cluster conservation, both for the top 38 intra-molecular clusters and the top 100 clusters (p-
values of 0.1036 and 0.7733, respectively).

Cluster validation

Reverse Phase Protein Array (RPPA) data—Using the subset of the TCGA cohort
having available RPPA data, we examined EGFR protein expression and site-specific
phosphorylation at major autophosphorylation sites pTyr1173 and pTyr1068. Here, we
discarded the linear limit on clustering because proximal mutations in the linear sequence
may be functionally significant. We examined GBM samples, dividing them into 3
categories: having mutations from the EGFR Ala289 cluster, having mutations outside of
any cluster, and having no EGFR mutation. The same method was applied to LUAD
samples, the cluster of interest being Leu858Arg. Protein and phosphoprotein levels were
retrieved for the 3 categories. Welch’s t-test was used to determine if the mean protein and
phosphoprotein levels were significantly higher in samples from the first category, as
compared to samples from the other two categories. Similar methodology was used for
ERBB2.
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Phosphorylation functional experiments: NIH3T3 (clone2.2) cells were kindly provided

by Dr. Robert Friesel (Maine Medical Center Research Institute). These cells have typical
fibroblast morphology, undetectable levels of endogenous EGF receptor, characteristic of
this subclone3’, and were negative for mycoplasma, based on the absence of extranuclear
signals by DAPI (4',6-diamidino-2-phenylindole) staining. Cells were cultured in DMEM
(Corning) supplemented with 10% calf serum (ThermoFisher) and penicillin/streptomycin
(Life Technologies). All plasmids for the expression of EGFR variants were generated from
the wild-type EGFR plasmid (Sino Biological) using Q5 site—directed mutagenesis (New
England Biolabs). All constructs were confirmed by sequencing. Cells were transiently
transfected with wild-type or mutant EGFR constructs using Lipofectamine 2000 reagent
(Life Technologies) in 6-well plates. 24 hours after transfection, cells were switched to
medium containing 0.5% calf serum for 24h before stimulation with 50ng/ml recombinant
human EGF (R&D Systems) for 10 minutes. Cells were lysed in buffer containing 20mM
Tris-HCI (pH7.5), 150mM NaCl, 1mM Na,EDTA, 1mM EGTA, 1% NP-40, 1% sodium
deoxycholate, 2.5 mM sodium pyrophosphate, 1mM c-glycerophosphate, 1%, 1mM
NazVOy, Lug/ml leupeptin (Cell Signaling). Protease and phosphatase inhibitors (Roche)
were added immediately before use. Samples were boiled in buffer and subjected to SDS-
PAGE on 10% polyarcrylamide gels and Western blotting was done on Immobilon-P PVDF
membranes (Millipore). The following antibodies were used for immunoblotting: anti-
phospho-EGFR Tyr1068 (Abcam, Tyr1092 in the unprocessed EGFR), anti-EGFR (Abcam)
and anti-B-Tubulin (DSHB). Appropriate secondary antibodies with infrared dyes (LI1-COR)
were used. Protein bands were visualized using the Odyssey Infrared Imaging System (LI-
COR).

Mutation and drug annotations

ClinVar contains clinical variant annotation for 19,801 genes and 129,758 variants (see
URLSs). The Pancan19 MAF was annotated with available ClinVar clinical variant
information. Of the 549,295 unique mutations observed in the TCGA dataset, 805 had
pathogenic information from ClinVar.

We curated mutations from 4 databases: MyCancerGenome, PCT, GDKD, and CancerDR.
MyCancer Genome catalogs cancer mutations, therapeutic options, available clinical trials,
and druggability information for 43 genes (including receptor tyrosine kinases like EGFR,
KIT, and PDGFRA) and 289 relevant variants. PCT, or the Personalized Cancer Therapy,
contains druggability information for variants of 24 cancer-related genes and over 140 gene
variant-drug interactions supported by clinical evidence. GDKD, or the Gene-Drug
Knowledge Database, provides information on predictive genomic markers for over 40
malignancies and tumor-type sensitivity/resistance for specific gene variants to approved or
experimental drugs. More than 700 variant-specific gene—drug interactions with therapeutic
relevance were curated for this effort. CancerDR lists 148 anticancer drugs and their
effectiveness against 1000 cancer cell lines. Pharmacological profiles of these drugs were
collected from the CCLE and COSMIC databases as IC50 values. CancerDR contains
information for 116 drug targets, including their corresponding gene sequences in cancer
cell lines. Drug/sequence interactions that resulted in an 1C50 value +2 S.D. of the mean
were used.
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Prioritized variant list for functional validation

We prioritized putative drivers that would be good candidates for experimental validation
(Supplementary Table 22), based on rare and medium recurrent variants appearing in
clusters above the intra-molecular and inter-molecular Cc thresholds. The variants were
ranked according to closeness centralities and only the top 10 variants were included per
gene.

Software engineering aspects

We developed an interactive browser-based visualization portal (see URLS) to help assess
whether a mutation interaction is likely to have functional importance. It maps individual
mutations onto a PDB structure, displays potentially interacting mutation pairs or clusters,
and provides for graphic annotation. Users can load individual mutations, multiple
mutations, or HotSpot3D results and review all protein structures that contain the residues of
the mutations. As an example, Supplementary Figure 4 shows two mutations from TCGA
kidney cancer data, one from 7CEBI and the other from VHL. The client side of the portal
runs within any native browser implementation, depending only on the Java plug-in to run
the open-source Jmol Java applet for displaying protein structures. The webserver is Apache
Tomcat 7 running JSP programs and a Java servlet as an interface to access the underlying
MySQL database of pre-processed biological information. The entire server runs on a Dell
PowerEdge M620 blade server, with one 8-core Intel Xeon E-2603 1.8 GHz CPUs, and 128
GB of RAM.

We analyzed clustering algorithm performance using robustness trials (Supplementary
Note), where random mutations were chosen and run through the HotSpot3D clustering
module. We observed O(n3) time where n represents the number of input mutations, which is
consistent with the characteristic time complexity of the Floyd-Warshall algorithm. Other
algorithms that might provide performance gains would do so only under special constraints
on the graph that are not guaranteed to exist for problems of this type.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HotSpot3D wor kflow, robustness simulations, and comparison to SpacePAC
a) HotSpot3D work-flow can be grouped to three processing steps, (from left to right), Data

Preprocessing, Structural Analysis, and Post Processing. First, annotation resources from
several databases are used to contextualize input datasets, including user-defined DNA
variants. Variants are then annotated and mapped onto appropriate PDB structures. DrugPort
annotations are used to map pharmaceutical/nutraceuticals onto PDB molecules as a part of
the drug module. Mutation pairwise calculations are performed and users can perform
clustering of the paired mutations. Users can then visualize mutation clusters along with
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annotated information. Analyses by users can then lead to in silico discoveries for functional
validation hypotheses. b) Robustness simulations show a steady reduction in the percentage
of clusters found relative to the percentage of the variant set used. Error bars represent one
standard deviation from the mean over 50 random trials. c) Cluster mass distributions show
steady decline in clusters of all sizes. Each variant percentage curve (below 100%) is an
average over the random trials represented in panel b. d) Significant mutation clusters (P <
0.05) are shown as circles found by HotSpot3D (red) and SpacePAC (blue). The number of
residues in each cluster is shown for each structure, labeled by HUGO Symbol and PDB ID.
Centers are slightly offset from each residue number, with SpacePAC on the left and
HotSpot3D on the right. For all structures, molecule chain A was used. The size of each
circle indicates the average inner cluster distance.
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Panels are divided into intra-molecular (a) and inter-molecular (b) results and purple and
green shading denoting gene type, i.e. cancer and non-cancer genes, respectively. a) List of
intra-molecular clusters having the highest cluster closeness as defined by the same type of
threshold procedure on cluster closeness distribution (inset). b) List of inter-molecular
clusters having the highest cluster closeness, with threshold set at top 20% (inset). Here,
inter-molecular clusters are divided into 3 groups: clusters of strictly cancer genes (purple),
clusters with at least one cancer gene (blue), and cluster composed solely of non-cancer
genes (green) and axis labels only include the top two genes contributing the most number
of mutations. Multiple clusters within a single protein or protein complex are differentiated

with a numerical suffix in parentheses.
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Figure 3. Cancer type specificity of intra-molecular and inter-molecular clusters
a) Cancer specificity heat map of intra-molecular clusters exceeding the threshold defined in

Figure 1b. Each row represents a cluster, with intensity of shading indicating the proportion
of mutations across all samples in a cluster observed in a particular cancer type. b)
Distribution of cancer type specificities of 6 PIK3CA (purple, green, blue, red, orange, and
pink) and 2 EGFR (brown and gray) clusters at the residue level. Bubble sizes indicate the
fraction of mutations in the cluster that occur at specific residues (labeled on y-axis) for each
of the 19 cancer types (x-axis). Bubble color indicates corresponding clusters on the heat
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map in panel (a), with a trailing suffix in parenthesis to distinguish multiple clusters within
same gene. ¢) Cancer specificity heat map of the inter-molecular clusters exceeding the
threshold defined in Figure 1d. d) Distribution of cancer type specificities of the KEAP1/
NFE2L2 (red and blue, respectively) and VHL/TCEB1 (green and purple, respectively)
clusters at a residue level. Here, colors correspond to the specific genes that make up the
cluster.
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Figure 4. Intra-molecular and inter-molecular clusterswith unique hotspot mutations and novel
mutations

Numbers of unique hotspot and novel mutations are indicated by bubble area and y-axis
position, respectively. a) Intra-molecular clusters: Proteins are labeled on the x-axis and each
bubble denotes a cluster from each protein. b) Inter-molecular clusters: Clusters are labeled
on the x-axis and bubble colors correspond to member proteins (multiple clusters involving
the same proteins are designated in parenthesis). Hollow bubbles indicate that a protein has
novel unique mutations but does not have a hotspot.
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Figure5. Polar plots showing rare/medium recurrent functional mutation discovery in intra-
molecular and inter-molecular clusters

Centroids (black) and mutations are represented by bubbles. The latter are ordered clockwise
according to primary sequence position, with the radial extent proportional to centroid-
mutation spatial distance (rather than geodesics used for clustering). Bubble area indicates
number of samples in which the mutations are found. Outer and inner rings represent,
respectively, the entire protein linear sequence and a subsection within which the mutations
are found. Corresponding clusters on the 3D protein structure are shown below each polar
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plot. Although there is a linear limit of 20 peptides between paired mutations (M ethods),
clusters represent networks with edge lengths as the pairwise distance, thus picking up
mutations between linearly limited mutations through chaining mutations. a) KRAS Gly12
cluster, with colors indicating mutation distance from the centroid, and corresponding 3D
protein structure. b) MAP2K1 Pro124 cluster with same scaling as panel (a) and
corresponding 3D structure. ¢) SMADZ2/3/4 clusters with centroid located at SMAD4
Arg361 (top left) and SMAD4 Asp537 (top right). The three proteins are distinguished on
the polar plots by differing colors of the outer and inner rings (which correspond to protein
backbone color on 3D structure) and slight variation in hue for the bubbles. SMAD3/
SMADA4 complex 3D structure on bottom left shows SMAD4 Arg361 (purple) and SMAD4
Asp537 (orange). SMAD2/SMAD4 complex 3D structure is on bottom right with same
color key.
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Figure 6. Functional assessment using phosphorylation data and experimental validation
a) Protein and phosphoprotein (pTyr1068 and pTyr1173) levels in GBM and LUAD samples

with mutations in EGFR from the Ala289 cluster (red), the Leu858 cluster (green), non-
clustered (blue), and wild type (purple). b) Ligand-independent activity of the mutant EGFR.
Bar plot shows normalized relative intensities of pPEGFR/EGFR from the western blots
below. NIH3T3 clone2.2 cells were transiently transfected with wild type (WT) or mutant
EGFR constructs were cultured in 0.5% calf serum for 24h before stimulating with EGF
(50ng/ml) for 10 minutes. EGFR autophosphorylation was analyzed by quantifying
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phosphorylated EGFR (pEGFR, phospho Tyr1068). Tyrosine 1068 of mature EGFR is
equivalent to Tyrosine 1092 of uncleaved EGFR. ¢) NIH3T3 clone2.2 cells were transiently
transfected with wild type or mutant EGFR constructs were cultured in 0.5% calf serum for
21h. A 3h gefitinib (LuM) treatment was started at this time and it was followed by a 10-
minute EGF stimulation.
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Figure 7. Drug-mutation interaction heat maps and structures
a) Number of clusters across gene families and drug classes. Gene families and protein

kinases are determined by the HUGO Gene Nomenclature Committee (HGNC) and the
Gene Ontology (GO) databases, respectively. Protein kinase family is a superset of the
receptor tyrosine kinase family. b) Number of unique mutations involving specific protein
kinases and drugs. ¢) 3D structures displaying drug-mutation clusters for BRAF, EGFR, and
ESR1 with sorafenib, lapatinib, and raloxifene, respectively. Mutations are depicted as
spheres while drugs are represented as green stick models. Black residues represent the
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centroids; however, for the ESR1 cluster, the drug is the centroid. Two views are shown at
different rotations.

Nat Genet. Author manuscript; available in PMC 2017 August 01.



Page 31

Niu et al.

(SaA1IBALIBP pIdE 211908)

J101d909Y
‘aseury| uIg)old
‘Bulureluod
urewop |

sjuafie Alojrewiwreul-nuy paiissejoun  -utjngojfounwiw| 211328 ‘THYIN € v 90TV
S1uabyy Joje|IposeA
‘sjusfy Jejnasenoipre)
‘syusby elwyIAYIY
pauyissejoun -nuy ‘soisableuy aseuld| uIaloid aulsouape ‘£3Ad € v 152V
(SaA1IBALIBP pIdE 211908)
sjuafie Alojrewiwreul-nuy palyissejoun paissejoun 211928 ‘THA € ©v 6v'v
payIsse|oun ‘sio1e|npojA
J101d909y uabouisg
9AI1109]8S {[ep10JalS-UON
‘susbons3 ‘susbonsy
‘sisiuobejuy usbolis3
‘syuaby anndaoenuo)
‘susBourose)
‘sjusBy uoIreAIasuU0D 3UBJIXOJeJ {3U0NISD
Ausuaq auog ‘sjushy ‘|o11sa ‘[o1pe.Isa
paljissejoun ‘eipaw o1wedesodAynuy sl101dadal ‘|ossaqisjAyiaip
1sejU09 Buureluod-auipo]  ‘sjusfy |esnedousw-nuy  auowloy JesjanN ‘TyS3 g g 2197
pauyissejoun
‘(SaAIIeALIBP PIOk 011808) a10idesourwe
sjuafie Alojewiweul-nuY paiIssejoun panIssejoun ‘9118%e ‘97d 6 0T 6v0'S
(sanlreALIap p1oe J1139.)
sjusfie Alojewiweul-nuy pauyissejoun sanasjow 4o 211908 {30V I ST 6818
M
Yoy ‘Bulureluod
(SaA11BALIBP PIOE 211308) urewop
sjusbe Alorewiwepui-nuy (zod) a14 2119%€ TdVIM 8 4" 60T°ST
SaseUly] auISOIAL
paiyissejoun JOGEREN] qiunede] ‘qiuniyeb
's103qIyu 3seuIy BUISOIAL paiisseoun :9seuly| uisiold :qIunopIs :¥4493 14 (¥1) €2 €5€°0¢
syuswiajddng S3SBUIY BUISOJIAL
(seAleALIap p19e J1190R) {SJUBLIINUOIDIA JOGEREN] aulwesoon|b
syuabe Alorewiweul-nuy ‘syuswisjddns Arelaig ‘aseury| ulRold  -p-1A180e-U ‘eggy3 8 (1) 6T 16572
(sanireALIap p1oe J1139.)
syusfe Alojewiwepul-nuy paijisseoun paijisseoun on8de ‘geGdL 1 8¢ ¥58'0TT
paiisseppun sjusby onsejdosunuy 3SeUly UIslold qiusjelos :4vyd 11 (bze) L6 ¥91°200T
seseuly| (seseqerep
SuoIedIysSe|D up1oId 09 pue spunodwo)  suolreIN N ul) SSAUaS0[D
suolrealisse|d HIN yuegbnig saljiwe] ONOH /sBniqa pue ssue anbiun suoleIniA R1NID

Author Manuscript

T alqeL

Author Manuscript

Author Manuscript

Author Manuscript

“uegbnig pue HIN WOJ4 SUCIRIIISSR Bnup pue saljiwe) auab HNOH YlM S1a1sn|o uoneinw-Bnip (G < ssauaso|d Jsisn|o) dol

Nat Genet. Author manuscript; available in PMC 2017 August 01.



Page 32

Niu et al.

(sanirenLIap pioe 91139e)

sjuswiajddns
{SJUSLINUOIDIA

Burureiuod urewop
195-| ‘Buturelu0d
urewop ||

auiwesoon|b

sjuabe Alorewwelyul-nuy ‘syuswialddng Arejaiq adAy unosuoigl4  -p-1A189e-U ‘ZNVON [ g 6v9'C
slonqiyul
(s10mquyut sisaypuAsolq 35e10NpayYy 0D UI7ISBANSO
2UaLII0N N3] ‘SaulwelSIyiue -|Arein|BlAyswAxXoIpAH ‘ueIseAn]y
se Ajuewnd Bunoe jou) ‘syuaby ‘uneIseAlole
solBua|enue/soneLIyISEnUY JlwaIIss|oydINuY pauisseoun “HOONWH 9 9 18L°C
BIpaW payissejoun
1SB41U02 BUlUIRIUOI-3UIPO| ‘syuswisddng
‘(SanITeALIap pIoR 911808) {SJUSLINUOIDIN saselajsues) auolyrein|b
sjuabe Alorewiwe]jul-nuy ‘syuswiajddng Arela1q -S auolyren|o 01uAI0BYIB (TV1SO [ [ 87
sjuswiajddns sunBaju| ‘waisAs
(SanireALIap pIoE 21332€) {SJUSLINUOIDIN wawsaldwo) aujwesoon|f
sjuabe Alorewiwe]jul-nuy ‘syuswiajddng Arela1q ‘sa|ndsjow 4o -p-1A189%e-U ‘XD 1| e I3 1182
aewe.ido}
‘aplwasoiny
payisseoun palIsse|oun ‘sionqiyuj ‘apiwe|ozxoy1a
‘(9dA1 apiwasolny) JanodwAs apuojyd ‘apiwejoziop
sanaINIg ‘slonqiyul wnisse}od Wnipos ‘apiweuaydiojyaip
aselpAyue oluogIe) ‘sal3alnIq ‘sionqiyu| ‘apiwejozuLq
‘(SanirenLIap pIoe 21189e) aselpAyuy d1uogied saselpAyue ‘apiwe|oze1ade
sjuafe Alojewweul-nuY {SJUBS|NAUOINUY aluoge) A0} € € 1£6°C
[esiuniip
payissejoun payisseloun payissejoun ‘wedazelp 'gv € Mg v56°C
payIssejoun
‘(SanIreALIap pIoR 911908) ualiyiwal
sjusfe Alojewweul-nuUY payissejoun paiIssejoun ‘onade ‘NI 9 9 ¥56°C
syuawa|ddng s101dadal
(sanireALIap pioe 91139e) {SJUBLIINUOIOIA uiaoidodi) aulwesoon|b
sjuabe Alojewweyul-nuy ‘siuswia|ddns Arelaiq Alsuap mo -p-1A1908-U ‘9d¥1 % / TS
Allwegisdns
(puebir)
1010€} SIS0J98U
syuawa|ddng Jown] ‘spuebi|
(sanireALIap p1oe 21130€) {SJUBLIINUOIDIN snousfopug aulwesoon|B-p
sjuabe Alorewwelyul-nuy ‘siuswia|ddns Arelaiq ‘sa|ndsjow 4o -|A192e-U 19707AD A A GE6'E
s1ay20|g |auuey)
wnioe) ‘siusby a1eu0.pa|joz
uoljeAIasuo) AlsuaQg ‘ayeuo.past
auog ‘sajeuoydsoydsig ‘areuospiwed
sloje|nfas wsijogelsw  ‘saAndiosainuy ‘sjusby ‘a1euolpueq!
wniofe) ‘susboipuy 21Waed0dAyNUY paiyIsseoun ‘ajeuoIpusfe ‘Sda4 € € 2607
SaSeUId| UISOIAL
saseuly| (seseqerep
suoIfedlysse|D uploid 09 pue spunodwo)  suoleIniN ur) SS9UBS0|D
suoljealysse|d HIN wuegbnig  seljlwed ONOH  /sbhigpuesstes  snbiun  suoieINN RINID

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

available in PMC 2017 August 01.

Nat Genet. Author manuscript:



Page 33

sisiuofejuy pIoy oulwy
AKiorei10x3 ‘siaxo01g
JauueyD wniged
‘sluaby uosuptednuy
‘sjuafy olueWINUY
{SJUBS|NAUOINUY S1UBBY

Niu et al.

sonjewiwege  ABIXUY-NUY ‘saisebeuy payissejoun  unuadeqgeb (T1vO9g v 9 2lSC
s10)daoal syuawa|ddng

Juawa|dwod ‘payipow {SJUBLIINUOIDIA s10)daoal

10 9AITRU ‘Sa|ndsjow Joidaday ‘sjuswajddns Aelaiq auow.oy JesjanN Juadesodl :qyvdd 2z 2z 8092
(sanirenLIap pioe 91139e) saseuaboipAysp

sjuabe Alojewweul-nuy payissefoun |oyod|v onede [ HAV A 6 8092

saseuly| (seseqerep
suoIfedlysse|D uploid 09 pue spunodwo)  suoleIN |\ ul) SSUBSO (D
suolrealysse|d HIN uegbniq saljiwed DNOH /sBniq pue ssue anbiun suolreIniy B®INID

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Nat Genet. Author manuscript; available in PMC 2017 August 01.



	Abstract
	Introduction
	Results
	Intra- and inter-mutation clusters across 19 cancer types
	Significant mutation clusters with cancer type specificity
	Rare and medium recurrence functional mutation discovery
	Validation by protein array and functional experiment
	Mutation-drug networks and clinical implications

	Discussion
	Online Methods
	HotSpot3D and code comparison
	Data preprocessing
	3D proximal pairs analysis
	3D distance calculation
	Significance determination and prioritization
	Variant List Input

	Drug interaction module
	Cancer mutation data set and cancer types
	Identifying mutation and drug-mutation clusters
	Prioritizing clusters with high cluster closeness
	Cluster conservation score
	Cluster validation
	Reverse Phase Protein Array (RPPA) data
	Phosphorylation functional experiments


	Mutation and drug annotations
	Prioritized variant list for functional validation
	Software engineering aspects

	References
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

