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PATH algorithms for identifying conformational transition states provide

computational parameters—time to the transition state, conformational free energy

differences, and transition state activation energies—for comparison to experimental

data and can be carried out sufficiently rapidly to use in the “high throughput” mode.

These advantages are especially useful for interpreting results from combinatorial

mutagenesis experiments. This report updates the previously published algorithm with

enhancements that improve correlations between PATH convergence parameters

derived from virtual variant structures generated by RosettaBackrub and previously

published kinetic data for a complete, four-way combinatorial mutagenesis of a con-

formational switch in Tryptophanyl-tRNA synthetase. VC 2017 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4976142]

INTRODUCTION

Macromolecular crystal structures have been solved and deposited at an exponentially increas-

ing rate ever since the Protein Data Bank (PDB) was established.3 But the number of novel struc-

tures that are being deposited has been decreasing.26 This suggests that increasing numbers of

deposited structures are alternate configurations of macromolecules already in the database. The

current situation lends itself to answering other interesting questions in structural biology, an

important example being what are the intermediate structures that connect different equilibrium

states that have been deposited to the PDB? Of these intermediate states, the most important is the

conformational transition state structure, representing the ensemble of structures with the highest

free energy along the conformational change pathway, and which can furnish information about

the nature of barriers to conformational change processes, and by implication, their rates.

Computational approaches are especially relevant for enzymes where a significant body of

experimental data exists implicating a large-scale and functionally important conformational

change. Geobacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS) is an example.8

It is useful to review two separate areas of our previous work, in order to understand the moti-

vation for this revision of the PATH program. First, we summarize work on the enzymology of

TrpRS and how its catalytic proficiency results from coupling to conformational

changes.7,24,27,39–42 Work on the PATH program was undertaken because of the opportunity it

presented to integrate these enzymological studies with computational analysis of the conforma-

tional transition state ensembles9 and thereby to connect structure to function both directly and

indirectly via computational analysis.

TrpRS enzymology

The accompanying paper8 describes measurement of three, distinct, long-range coupling

energies—between enzyme and active-site Mg2þ ion, between the Mg2þ ion and four residues
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that undergo re-packing associated with domain movement, and between two auxiliary domains

that move relative to one another during catalysis—that each contribute ��5 kcal/mol to

transition-state stabilization during activation of tryptophan by B. geostearothermophilus
TrpRS. The only consistent interpretation of these three coupling energies is that the active-site

pre-organization and high transition-state affinity occur transiently during a large-scale confor-

mational change.8

We began to study the reaction path using molecular dynamics to identify large scale

domain motions.22 However, we could not identify any of the structural features defining con-

formational barriers. Subsequently, we rationalized those qualitative computational results by

solving the crystal structure of an intermediate state in the induced-fit portion of the reaction

path. That structure coincided with the structure predicted by Kapustina et al.23 and that identi-

fied as a transition state structure by earlier versions of the PATH program,24 providing the first

suggestion that PATH might furnish significant new information about the reaction pathway.

The PATH algorithm and the Onsager-Machlup action functional

The PATH algorithm19 rapidly finds the minimum of the Onsager Machlup (OM) action

functional for the energy dissipation in an overdamped system, minimization of which allows

identification of the most probable path taken by a dynamic system experiencing friction.33 We

gained confidence with the PATH algorithm by showing that a trajectory computed over the

entire path including both induced-fit and catalytic stages of the reaction using a version of the

program designed to force a passage through an intermediate state (P. Koehl, personal commu-

nication) revealed that the volume surrounding the substrate tryptophan compressed in two

stages imposing specificity for selecting the correct amino acid.42 The larger compression

occurred near the transition state of the induced fit reaction and the second coincided equally

closely with the transition state for the catalytic transition.42

Throughout these earlier studies, we had observed that at its stationary point the PATH

action calculation estimated three parameters—the barrier height, the energy difference between

initial and final states, and the time to the transition state—that might permit us to compare its

accuracy quantitatively with experimental rate measurements for the 16 TrpRS variants devel-

oped in the combinatorial mutagenesis, paving the way to using computational models to assist

in the identification and interpretation of structural barriers to conformational change. Several

obstacles stood in the way of making quantitative use of the PATH trajectory parameters.

Some of these concerns were conceptual in nature. Others noted, as we had,9 that the sys-

tems spent inordinate amounts of the allotted time in the higher energy state, contradicting sta-

tistical mechanics.18,20,30,35 Skeptics30,35 also pointed out that the value of the Onsager-

Machlup functional arises solely from the random forces acting on the system, thereby making

all paths equally probable. This makes the action surface flat, especially near the conforma-

tional transition state, and therefore minimization of Onsager-Machlup action functional to

identify the most probable path would not be possible. There also was discussion (J. Hermans,

personal communication) of the problem posed by the fact that the conservation of momentum

assumed in the transition state calculation was physically incompatible with the diffusive nature

of the OM action functional.

We addressed some of these questions previously.9 In particular, (a) we used Discrete

Molecular Dynamics14,15,37 with replica exchanges at different temperatures to map the free

energy surface connecting the PreTS and Products states and showed thereby that the OM

action minimization could indeed find a most probable path through an ensemble with a well-

defined representative structure. (b) We showed that conformational changes for three distinct

transitions—the TrpRS induced-fit transition, the myosin VI converter domain power stroke,

and calmodulin calcium release—were all rate-limited by similar transition state ensembles in

which aromatic residues needed to repack. (c) We showed that the transition states identified by

PATH are the same as those generated by other specialized tools for studying this problem,

such as the String method16,34 and ANMPathway.11
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The most important problem with the previous PATH algorithm from our present stand-

point, however, was that regression models using the PATH parameters gave poor correlations

with experimental DGkcat values for the variant TrpRSs. A poor correlation with experiments

meant that even though the dynamic trajectories generated using PATH agreed with other com-

putational methods, its convergence parameters had no real world significance. We address this

problem here, modifying the potential embedded in the Hessian matrix to represent torsional

angle constraints and showing that results with the new Hessian matrix correlate well with

experimental data.

The potential energy function that PATH uses is based on the Anisotropic Network Model

(ANM),1 which has been successful in the study of protein conformational changes.11,31,43

However, as the “ball and spring” model cannot explicitly represent higher-order coupled

atomic motions, it remains too simplistic to represent all relevant aspects of macromolecular

conformational dynamics. Importantly, Na and Song32 showed that when augmented by poten-

tial energy terms to model geometrical and torsional constraints, the ANM potential perfor-

mance approaches that of full potential MD force fields. Further, the conformational change tra-

jectory in the previous implementation of PATH was computed as a function of time. As noted

previously,9,30,35 when the trajectory is computed in this manner, it spends more time in the

more energetic wells compared to the time it spends in the less energetic wells, which contra-

dicts the laws of statistical mechanics. In Ref. 9, we suggested a heuristic approach where this

problem could be avoided by initiating calculation of the trajectory only after the system begins

to be displaced from equilibrium and ignoring the time the system spends near equilibrium.

The problem with this approach is that the minimum displacement from the equilibrium posi-

tion is defined arbitrarily and therefore the calculated trajectory is prone to errors. A more

effective approach is to calculate the trajectory as a function of energy, instead of time.17

In this paper, we describe modifying PATH by augmenting the potential energy function to

include additional interaction energy terms and revising the algorithm to calculate the trajectory

as a function of energy, and removing the part of the trajectory that the system spends near

equilibrium. We validate these algorithmic enhancements by using RosettaBackrub25 to gener-

ate a consistent set of virtual initial and final state structures for wild type and 15 combinatorial

variants8,41 of TrpRS, as inputs to PATH and demonstrating high correlations between the

PATH convergence parameters for this set, the pattern of mutant sites in each variant, and the

corresponding experimental rate data. The comparison takes advantage of the rapid PATH algo-

rithm, using it in the high-throughput mode to establish a potentially useful new window on

protein conformational changes.

Construction of a torsional Hessian matrix and other modifications to PATH are described

in the sections “Addition of a torsional Hessian to PATH” and “Calculating trajectories as a

function of energy.”

ALGORITHMIC MODIFICATIONS TO PATH

Addition of a torsional Hessian to PATH

Macromolecules are typically modeled using complex potential energy functions that include

several different types of interatomic interactions. The most common types of interactions found

in most all atom force fields like AMBER,10 CHARMM,5,6 or Medusa13,44 represent bond stretch-

ing, bond bending, torsional, electrostatic, and Van der Waals potentials. Although these poten-

tials give a complete description of macromolecules, the magnitude of the time steps at which the

forces are integrated to calculate the velocities and atomic positions are in the order of femtosec-

onds. This limits the applicability of these energy functions to study the different kinds of dynam-

ics that macromolecules undergo. This is true specifically in the case of low frequency large

domain motions that are typical of macromolecular conformational changes.1,2,11,38

Coarse grained potential energy functions can partially solve this problem28 because they

may use a subset of atoms, like only the C-alpha (CA) atoms to represent an entire amino

acid2,21 thus increasing the speed of calculation. Further, protein conformational changes are

often rigid-body motions of large domains relative to each other.22 Thus, a simplified potential
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like Elastic Network Model38 or ANM can be used to represent this motion. Also, because the

integration timescale is appropriate for macromolecular conformational changes, ANM is well

suited for studying this problem.

PATH9 currently uses an ANM potential to model interatomic interactions and to calculate

the most probable conformational change pathway between two equilibrium states of a macro-

molecule. It uses a potential energy function1 that models atoms as hard, uncharged spheres and

all interactions between atoms by vibrating springs, which are characterized by the same force

constant, k. The ANM potential energy function is derived from Hooke’s law and it is written as

VANM ¼
kANM

2
x� x0ð Þ2; (1)

where x0 is the structure of the equilibrium state and (x – x0) is the displacement from the equi-

librium state. This simple restoring force can approximate both bond length and bond angle

constraints but cannot distinguish different kinds of interactions by modeling coupled motions

between atoms in macromolecules.

With the ANM potential, PATH trajectories qualitatively explain experimental evidence

that amino acid specificity is imposed in the transition state by showing that the volume sur-

rounding the TrpRS amino acid substrate assumes a minimum in that state.42 However, the all-

atom ANM potential does not accurately describe differences between sidechain and backbone

motions, especially their frequencies. Also since ANM considers all interatomic interactions to

be similar, it cannot provide a complete description of the motion of atoms in sidechains that

may be involved in the conformational barrier. As shown by Na and Song,32 a trajectory from

an all atom ANM model has a correlation of only about 46% to a trajectory generated from a

full MD-like potential Normal Mode Analysis (NMA).

Na and Song show that the correlation between trajectories generated using ANM and full

potential NMA increases rapidly to 79% once the torsional component is added to the potential

energy function. Improvement is minimal for other additional terms until force field dependent

components are added to the potential energy function, which eventually increases the correla-

tion to 88% for sbNMA. Since the torsional terms account for the biggest improvement, are

computationally inexpensive, and do not compromise the speed of PATH calculations, we

decided to incorporate the torsional component into the ANM potential.

To include the torsional potential to the potential energy function of PATH, the potential

has to be expressed in the form of a Hessian matrix. Construction of that hessian matrix is

described in Appendix A.

Introducing approximations to CA only simulations

In the case of CA only PATH simulations, often performed for very large systems to

improve the speed of computation, the potential can be improved by modeling the potential

energy function based on the dynamics of a macromolecule in a full MD potential. Currently,

the ANM potential used for CA atoms assumes that a quadratic function models the energy sur-

face of a macromolecular structure that is undergoing conformational change. It also assumes

that the strength of interactions between any pair of atoms decays exponentially with the dis-

tance of separation between them. But as described in Ref. 21, when the dynamics of

C-phycocyanin was studied using AMBER9410 and the CA pair distance was plotted, it was

observed that the distances could be modeled in two separate regimes and the force constant

for interaction in these two regimes can be calculated using the following empirical equations

kðrÞ ¼ 8:6� 105 kJ mol–1 nm�3 � r � 2:39� 105 kJ mol–1 nm�2 for r < 0:4 nm

128 kJ nm4 mol–1 r�6 for r � 0:4 nm:

(
(2)

The Hessian matrix can then be built by incorporating these force constants into the ANM

potential and weighting them by the mass of the two atoms in an atom pair. We call this

Hessian matrix AMBER-based Mass Weighted Empirical Hessian (AMWEH)
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Calculating trajectories as a function of energy

PATH calculates trajectories between two equilibrium states of a macromolecule as a func-

tion of time. This makes PATH unique when compared with other similar methods like Plastic

Network Model31 or ANMPathway,11 which do not furnish any time-related information and

therefore cannot be used to estimate the (relative) rate of a conformational change reaction.

The trajectory equation9 in PATH can be written as

x tð Þ ¼ aþ 1

sinh C t2 � t1ð Þð Þ
x1 � að Þsinh t2 � tð Þ � x2 � að Þsinh C t1 � tð Þð Þ

� �
; (3)

where C is the force constant, k (for a one dimensional system) or the eigenvalue of the

Hessian (in higher dimensions), x1 and x2 are the states the system is in at times t1 and t2,

respectively, and a is the equilibrium state.

PATH requires that the system be provided with enough time to converge, so that the

structure of the transition state becomes invariant for any additional time provided to the sys-

tem.9 Since PATH assumes two potential energy wells, one for each equilibrium state, there are

two trajectories xl(t) and xr(t) that intersect at the transition state. When the trajectory is calcu-

lated separately in the two wells using Equation (3), the system spends most of its time near

the equilibrium states, taking only a small amount of time to climb the energy barrier to reach

the transition state. Moreover, the system spends more time at equilibrium when the well is nar-

rower (more energetic) compared to when the well is wider (Fig. 1).

This is contradictory to the behavior predicted by statistical mechanics, according to which,

a system spends less time in the more energetic (larger force constant) well compared to a less

energetic (smaller force constant) well. This impedes the ability of PATH to estimate relative

reaction rates correctly.

PATH’s disagreement with statistical mechanics is consistent with previous observations of

groups working with the Onsager-Machlup action functional35 or other similar concepts.18,20

FIG. 1. Simulations were performed with a diatomic system in the 1D heuristic model described in Ref. 9. Coordinates of

the two end states are ðAtom 1 ¼ ð1; 0; 0Þ; Atom 2 ¼ ð�1; 0; 0ÞÞ and ðAtom 1 ¼ ð0:5; 0; 0Þ; Atom 2 ¼ ð�0:5; 0; 0ÞÞ. The

two simulations were identical except for the force constants (k¼ 1 and k¼ 2). The system with the smaller force constant

takes longer to reach the end state once it is displaced from the equilibrium state (indicated by an increase in the energy)

compared to the system with the larger force constant. The energy of the states in the trajectories is normalized relative to

the force constants.
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This was also one of the primary reasons for Ref. 30 to suggest that calculation of most proba-

ble paths by minimizing the Onsager-Machlup action functional may not generate meaningful

pathways. We believe that this disagreement with statistical mechanics occurs primarily because

the system has been provided with more time than it requires to converge. In Ref. 9, we sug-

gested that the time the system spends near equilibrium could be removed from the trajectory

such that the trajectory begins only after the system begins its ascent towards the transition

state (Fig. 2). We based this approach on the observation (Fig. 1) that once the system begins

to move away from equilibrium, it spends less time reaching the transition state from the equi-

librium state in the more energetic well, which restored consistency with statistical thermody-

namics. This heuristic approach removed any excess time that is provided to the system.

However, to accomplish this, we assumed, arbitrarily, that the trajectory began only after

the system was displaced from equilibrium by at least 10% of the total distance between the

equilibrium state and the transition state. Then, we derived the equation for the time to the tran-

sition state in Ref. 9 as

�t ¼ 2:303
�k

; (4)

where �k is the average force constant of the system, which is calculated from the mean of the

eigenvalues of the Hessian matrix.

The arbitrary nature of Equation (4) made it a less convincing solution especially since

other more complete solutions exist,17 where the time dependent Lagrangian is transformed to

an energy dependent Hamilton-Jacobi description. Inspired by this approach, we transformed

the equation to calculate the time to the transition state, �t, into the energy domain, which

resulted in the following equation:

t ¼ 1
�k

X þ 1

2
ln

U xð Þ
U �xð Þ

� �� �
; (5)

where U(x) is the energy of the state x at time t and Uð�xÞ is the energy of the transition state.

The derivation of this equation can be found in Appendix B.

FIG. 2. The same model described in Fig. 1 was used for these simulations. The structures in the trajectory generated with

the new algorithm9 are different from the end states while the one generated with the old algorithm19 resembles the end

states with sharp transitions between states.
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As U(x) 6¼ 0 only when the system moves away from equilibrium, this equation ensures

that the time, t, is counted only when the structure is displaced from equilibrium and it works

for all values of X (Fig. 2).

Calculating mean force constants

Calculation of the mean value of force constants is crucial for calculating the conforma-

tional change pathway with realistic and PATH parameters. In Ref. 9, we calculated the mean

force constant as the mean of the eigenvalues of the Hessian, which is also the mean of the

trace of the Hessian matrix. This mean force constant is henceforth called Trace.

A drawback of this approach is that the eigenvalues that contribute most to the mean are

the larger eigenvalues (high frequency modes). This results in a mean force constant that is far

from the eigenvalues of modes that actually contribute to the overall conformational dynamics

of the protein.

One way to increase the contribution of the smaller (low frequency modes) to the mean

force constant is to use the largest vibrational mode (First Principal Component or FPC) to rep-

resent the force constant of the equilibrium state. Although this is a better representation of the

mean force constant, often the first principal component can account for only a quarter of the

total variation in the structure along the trajectory. Therefore, there are additional modes whose

values have to be included while calculating the mean force constant.

A better approximation to the mean force constant representing all interactions in a system

is a combination of the Trace and FPC methods, which we call Inverse mean (IM) method.

Rather than calculating the mean of the trace of the Hessian, we calculate the inverse of the

mean of the eigenvalues of the inverted Hessian matrix, which is the covariance matrix. Since

low frequency modes have larger eigenvalues when they are calculated from the covariance

matrix, this approach guarantees that the mean force constant has a higher contribution from

low frequency modes. Also, to eliminate contributions from high frequency modes, only the

largest (low frequency) modes that account for 95% variation in the structures along a trajec-

tory are used to calculate the mean. Indeed, we find that 86% of the modes are necessary to

account for 95% of the structural variation.

VALIDATION OF PATH

Calculating experimentally measurable parameters using PATH

Results from PATH were previously validated19 by demonstrating that the distance between

CA atoms in the PATH trajectory remained within the range of experimentally observed values.

We provided more convincing validation9 by comparing the PATH results with other computa-

tional algorithms like ANMPathway, using Replica Exchange Discrete Molecular Dynamics

simulations to map the free energy surfaces linking the two ground states, and showing that

PATH identified the transition state close to the saddle point of that surface.

From our earliest studies of the PATH algorithm, we have been tantalized by the possibil-

ity of validating it definitively, by correlating PATH-derived parameters with experimental

data. Dellago et al.12 and Bolhuis et al.4 provide an in depth description of this problem, using

ideas related to those outlined in our earlier paper.9 They, however, sought to compute rate con-

stants directly from their simulations. Our objective is more modest: to validate the PATH

results by demonstrating correlations of the PATH convergence parameters and experimental

activation free energies. Thus, we do not seek absolute rate calculations but use rate measure-

ments from an extensive set of related variants to establish comparable relative rates. To secure

such validation, we considered values from PATH simulations that can be related to experimen-

tally measured data. There are four such parameters, three of which—the time to the transition

state, the energetic difference between initial and final state, and the barrier height—are pro-

vided directly by the PATH algorithm.

The fourth such value is the Gibbs free energy change associated with the conformational

change itself, whose derivation and relevance to kinetic processes are both less obvious. We
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calculate the free energy difference between the two end states of a macromolecule by calculat-

ing the rate of reaction using the Arrhenius equation

r ¼ Ae�
DU
kBT; (6)

where DU is the difference in potential energy between an equilibrium state and the transition

state and A is the collision frequency.

For a diatomic system, this collision frequency is the frequency of vibration of the interac-

tion between the two atoms, given by the force constant or the eigenvalue of the Hessian

matrix. Based on this assumption, for the whole macromolecule, we can relate A to the mean

force constant of the molecule, �k, as

A ¼ C�k: (7)

Therefore, the Arrhenius equation is rewritten as

r ¼ C�ke
�DU

kBT: (8)

This equation has the same form as the equation for mean first passage time derived in Refs.

29 and 45, according to which the constant C is proportional to the ratio of the determinants of

the Hessian matrices of the transition state and the equilibrium state. In our studies of the

Hessian matrices with the ANM potential, we have always found determinants of the Hessian

matrices to be almost identical for similar structures and that the ratio does not deviate far from

unity. Hence for the purpose of calculating the rate of the reaction, we assume C to be the

same for both the forward and the reverse reactions.

Then, the rates of the forward reaction (l) and the reverse reaction (r) are then written as

rl ¼ C�kle
�

U‡
l

kBT; (9)

rr ¼ C�kre
�U‡

r
kBT: (10)

Since the conformational free energy is a function of the equilibrium constant, Keq, it can be

written as

DGconf ¼ �kBT lnðKeqÞ; (11)

where Keq ¼ rl

rr

� �
. Substituting Equations (9) and (10) into (11), we get

DGconf ¼ �kBT ln
�kl

�kr

� �
þ kBT

U‡
l � U‡

r

kBT
: (12)

As U‡
r � U‡

l ¼ DE

DGconf ¼ �kBT ln
�kl

�kr

� �
� DE: (13)

Or because of the relationship between �k and �t from Equation (4),

DGconf ¼ �DE� kBT ln
�tr

�tl

� �
: (14)

Ideally, the conformational free energy in Equation (14) and how it changes upon mutation

should, in principle, be measurable experimentally. However, because of the difficulty of

resolving ligand-binding and conformational effects we have been able only to estimate this
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value indirectly, from differences in the affinity of different nucleotide-phosphate ligands.36

That procedure gave an estimate of ��3 kcal/mol for the PreTS to Product conformational

change. Such approaches are impractical in the high-throughput mode required to process all 16

TrpRS variants.

The regression analyses discussed below imply that estimates for DGconf are well correlated

with the presence of mutants in the combinatorial series (Fig. 4) and that the overall free energy

change of the conformational change does indeed influence the experimental rate in combina-

tion with the other computationally derived parameters (Fig. 5, Table II). Due to the various

approximations made earlier and the simplification of the potential energy function of PATH, a

good correlation with experimental results can be expected only when other PATH parameters

are included in the comparison with experiments, as developed in “Comparison with experi-

mental results.”

Comparison with experimental results

The parameters that characterize stationary behavior of the PATH algorithm (the mean

transition state barrier-height, hU‡i; the difference between the forward and reverse barrier

heights, DE; the overall free energy change of the conformational transition, DGconf; and the

times to reach the transition state from the reactants and from the products states, (�tl; �tr) all

potentially have physical significance. In the accompanying paper,8 we describe what appears

to be a uniquely suited dataset for this purpose: 16 TrpRS variants involving full combinatorial

analysis of four residues in a broadly conserved molecular switching region—the D1 Switch—

in which the shear of TrpRS domain movement leads to side-chain repacking. Experimental

steady-state and single-turnover kinetic analyses of the four-way factorial design of this set of

mutant proteins furnish an exacting test of correlations because we previously established that

the four mutated D1 switch residues from this motif compose the conformational transition state

for the induced-fit portion of the structural reaction cycle.9

Evaluating PATH convergence parameters for these variants required their atomic coordi-

nates. Crystal structures have been solved in the PreTS state for six variants, including the qua-

druple mutant (T. Williams, personal communication). These structures suggest that the muta-

tions induce minimal structural changes (root-mean-squared deviations (RMSDs)< 0.3 Å).

Reasoning that the important requirement was that all coordinate sets satisfy the same potential

functions, we generated atomic virtual coordinate sets for all 16 variants in the PreTS and

Products forms. Virtual mutations were thus made to the crystallographic coordinates for the

PreTS and Products states (PDB IDs 1MAU and 1I6 K) using the RosettaBackrub algorithm,25

which mutates a given amino acid and, in order to accommodate the new amino acid, alters the

backbone of the protein minimally in the neighborhood of the mutation site. The program gen-

erated 20 structures and ranked them based on a scoring system, from which we chose the

structures with the best scores. In order to generate a wild type structure conforming to the

same potential functions, we reverted the virtual I4V mutant structure to wild type using the

same program. The computationally designed mutant structures differ from the wild type struc-

ture at the mutant sites with an average RMSD of about 0.1 Å (Fig. 3). Further, although devia-

tions are slightly larger for the product state structures, the symmetry across the diagonal in

Fig. 3 implies that the mutations make comparable perturbations to the structures of both states.

These RMSDs indicated that the virtual mutant structures are consistently related to the individ-

ual mutational perturbation at the different sites in the initial and final states. The all-by-all

table of RMSD values provides 256 values and hence is a rich source of information about

mutationally induced structural perturbation, which we have analyzed only to the extent that

the largest contributors to the RMSD are the presence of F26L and Y33F mutations to both

states, which together with their two-way interactions account for 62% of the variation in

RMSD with Student t-test probabilities �10�6. The RMSDs and the structures are available in

pymol session format as supplementary material.46

These coordinate sets were then input to the PATH algorithm to generate parameter sets

corresponding to each virtual variant. We show now that the PATH convergence parameters
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are consistently correlated both with the mutated TrpRS sites (Fig. 4) and with the experimental

DGkcat values of the mutant proteins (Fig. 5).

To help ensure that PATH consistently reflects differences between the virtual structures,

we investigated the correlation between overall free energy difference, DGconf, estimated from

PATH using (14) and the presence of native or mutant side chains at the four mutated sites

(Fig. 4).

FIG. 3. Root mean square differences between virtual mutant coordinates and those of the WT Pre-transition state (upper

triangle) and Product (lower triangle) crystal structures.

FIG. 4. PATH estimates of DGconf (14) are closely correlated with the structural differences between virtual variants.

PATH estimates of DGconf were obtained from the TOR_IM and AMWEH_IM algorithms and scaled by regression meth-

ods to account for differences between the all-atom TOR_IM (all atom) and AMWEH_IM (CA only) Hessians. Their units

and those on the Y axis here are in arbitrary units. The histogram shows coefficients (in the same arbitrary units) for the

regression model relating these DGconf values to the presence or absence of mutated sites in the virtual mutants. The most

important contributor is the four-way interaction between I4 and the three aromatic side chains. The sign of this interaction

indicates that, together, they make the overall DGconf less favorable, which is consistent with the experimental estimate and

with the fact that the mutations were selected by the Rosetta multistate algorithm to reduce the free energy change between

PreTS and Product states. The inset shows that the histogram is virtually identical to that obtained by fitting the TOR_IM

derived DGconf values alone, for which the equal number of data and parameters precludes estimation of errors.
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Three points should be noted: (i) Use of both TOR_IM and AMWEH_IM values introduces

two independent equations per variant and allows an assessment of statistical significance. The

squared correlation coefficient is �0.9, 12 of 16 coefficients are statistically significant, with

P-values for the estimates <0.005. (ii) As with the regressions of experimental DGkcat values

against the mutant sites, regression coefficients emphasize the relative importance of higher-

order interactions. (iii) Statistical significance cannot be assessed for similar histograms for the

remaining PATH-derived parameters because the TOR_IM and AMWEH_IM values are uncor-

related owing to differences in the atomic models (all-atom, CA only) and hence support only

one equation per variant. Their histograms (not shown) nevertheless differ distinctively from

one another, arising from important contributions of opposite sign from different side chains

and also emphasize the importance of high order interactions. As we could not demonstrate

FIG. 5. Regression model predicting experimental DGkcat values using three PATH convergence parameters. Experimental

data are plotted against values predicted using coefficients in Table I.

FIG. 6. Enhanced agreement of PATH convergence parameters with experimental DGkcat values achieved by algorithmic

changes discussed here and in Ref. 9. ANM, the original anisotropic network model used by Franklin et al.;19 AMWEH,

the AMBER-based Mass-Weighted Empirical Hessian;21 Trace, the force constants estimated from the trace of the diago-

nalized Hessian matrix; FPC, the most significant eigenvalue of the diagonalized Hessian matrix; IM, the inverse mean

algorithm described above.
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similar correlations using parameters derived from simpler PATH algorithms (i.e., those whose

parameters were also less well correlated with experimental rate data (see Fig. 6), these obser-

vations suggest that, of the successive algorithms we tested, the revised torsional Hessian

matrix used in the PATH algorithm is uniquely capable of detecting subtle structural changes

and responding with appropriate stationary behavior.

Consideration of a large number of potential regression models between the diverse PATH

convergence parameters and the experimental DGkcat values identified one that appears close to

optimal in requiring only four adjustable coefficients in addition to the constant term. That

model, represented in Fig. 5 and Table I, has a high R2¼ 0.81 and a highly significant F-ratio

test (P< 0.0001), as well as highly significant Student t-test P-values (all <0.0001).

Innovations described in this paper—parameterizing torsional energy terms in the Hessian

matrix and evaluating the trajectory in energy space instead of at different times—have

emerged from a steady search for ways to improve the correlations between PATH parameters

and the experimental kinetics data. It is worth illustrating these algorithmic enhancements by

comparing R2 for the regression model in Table I with values obtained using the same regres-

sion model for the original and several intermediate algorithms (Fig. 6). The improvement evi-

dent in the histogram tells only part of the story, however. As the correlation improves, so do

the Student t-values with corresponding reduction in their P-values. The statistical significance

of the predictors and corresponding confidence in their values also improve markedly. For refer-

ence, the original ANM Hessian used in Ref. 9 (far left in Fig. 6) did not produce any signifi-

cant t-test probabilities using the coefficients in Table I (1>P> 0.4). Using the MWHH_IM

algorithm improved R2 to 0.63 with (0.06> P> 0.005). Adding the torsional potentials

improved R2 to 0.81 with (P< 0.0001 for all values). Thus, improved agreement between pre-

dicted and experimental DGkcat values is associated with increased statistical confidence in the

parameters of the regression model.

CONCLUSION

The enhancements to the PATH algorithm described here increase only slightly the time

taken to compute conformational change trajectories for TrpRS monomer (328 amino acids)

(about 2%). The convergence parameters begin to be verifiable by comparison with experimen-

tal data. The correlations in Figs. 4 and 5 are compared in Fig. 7 with those of Ref. 42.

Correlations along each edge of the triangle relate structural locations, enzyme kinetics data,

and computational parameters to each other. The correlations between structure, experiment,

and trajectory are quite significant, both in the fraction of the dependent variable variance that

can be attributed to the independent variables and the statistical reliability of the coefficients.

The correlations connecting the PATH parameters to the structural and experimental data are

especially important to this diagram as they provide an independent link connecting the struc-

tural changes in the variant proteins to their impact on the experimental DGkcat values.

Moreover, these dual correlations furnish a novel and comprehensive validation that simulated

trajectories can help uncover relevant structural details about transient species that assist the

interpretation of experimental data on protein structure and function.

TABLE I. Regression model relating PATH convergence parameters to experimental DGkcat.

Term Estimate Std Error t Ratio Prob> jtj

Intercept 94.07 16.69 5.64 <0.0001

DG 0.16 0.03 5.43 <0.0001

hU‡i �0.02 0.00 �5.28 <0.0001

ð�Þlnð�tlÞ 17.47 3.22 5.43 <0.0001

DG� ð�Þlnð�tlÞ �1.48 0.26 �5.71 <0.0001
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We also note that this example is perhaps also unique in that for the first time, simulations

can be used in a “high throughput” mode to compare meaningful computational parameters

with experimental and structural data for ensembles of interrelated structures. This work dem-

onstrates that computational analysis can complement experimental analysis of combinatorial

mutants in a comparable time frame to enhance the value of higher-order combinatorial muta-

genesis in identifying and measuring important free energy coupling between distant locations

in conformationally dynamic proteins. The extensive and interconnected coupling patterns in

Fig. 6 should ultimately be even more informative as we begin to be able to interpret functional

coupling at high (i.e., inter-residue) resolution.

Finally, we should mention ways in which the PATH algorithm may be further improved.

The transition state configurations we have encountered all bring aromatic side chains into con-

flict. This conflict is apparent from the fact that the ring structures actually shrink in structures

output by PATH close to the transition states. Building the torsional angle restraints into the

Hessian reduces this pathology to some extent. However, parameterizing the contributions to

the Hessian that would restrain the planarity and size of the ring structures would address that

problem more directly, and judging from the improvement evident in Fig. 6 we would expect

still further improvement upon implementing those restraints.

ACKNOWLEDGMENTS

We acknowledge extensive discussions with J. Hermans, and the provision by T. Williams of

crystallographic coordinates for six PreTS structural variants. This work was supported by the

National Institute of General Medical Sciences, GM40906 to C.W.C.

APPENDIX A: CONSTRUCTION OF THE TORSIONAL HESSIAN MATRIX

The interaction between atoms in PATH9,19 is represented by a Hessian Matrix, HANM, which

is a 3N� 3N matrix in which each element is a force constant for the interactions between a pair

of atoms. These force constants are also the second derivative of the potential energy function. In

the case of ANM, the elements are

FIG. 7. Interrelated statistical correlations that validate the enhanced algorithm provide a way to attribute cause and effect

to physical properties of mutated side chains in combinatorial sets of variant proteins by establishing verifiable computa-

tional models of the trajectories and transition state structures of a coherent set of combinatorial mutants.8
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hij ¼
@2VANM

@xi@xj
; (A1)

where xi and xj are the Cartesian coordinates of the atoms i and j in the macromolecule.

Additional interaction terms can be added to the potential energy function by defining a new

Hessian matrix and the overall interaction matrix is generated by adding the new Hessian matrix

to the old one. Hence, we defined a new Hessian matrix for the torsional interaction, the torsional

Hessian, HTOR, which can be constructed as follows.

Torsional potential energy is the interaction between atoms that are a part of a dihedral angle,

defined between four atoms that are covalently bound in sequence. Torsional potential energy is

mathematically expressed as

VTOR ¼ k/ð1� cos ðnð/� /0ÞÞÞ; (A2)

where k/ is the torsional force constant and /0 is the dihedral angle at equilibrium.

Based on the assumption in Ref. 32, we consider k/ ¼ 1 and n¼ 1,

VTOR ¼ ð1� cos ð/� /0ÞÞ: (A3)

Since the displacement from the equilibrium position is small in the case of macromolecular con-

formational changes, using Taylor’s expansion, for small deviations from equilibrium, (A3) is

written as

VTOR ¼
/� /0ð Þ2

2
: (A4)

Note that this approximation resembles the Hooke’s law potential energy of the ANM but is a

higher-order interaction term because it implicates four, rather than two interacting atoms. Since

the Hessian elements are second derivatives of the potential energy function, we have to calculate
@2VTOR

@xi@xj
, which can be written as

@2VTOR

@xi@xj
¼ @/
@xi

@/
@xj

: (A5)

Consider the four atoms that form the dihedral angle to be a ¼ ðx1; y1; z1Þ; b ¼ ðx2; y2; z2Þ;
c ¼ ðx3; y3; z3Þ, and d ¼ ðx4; y4; z4Þ. Then, the difference between vectors can be computed

as v1 ¼ ðb� aÞ ) ðx2 � x1; y2 � y1; z2 � z1Þ; v2 ¼ ðc� bÞ ) ðx3 � x2; y3 � y2; z3 � z2Þ, and v3

¼ ðd � cÞ ) ðx4 � x3; y4 � y3; z4 � z3Þ. If the normal vectors to the planes containing the vectors

v1, v2, and v3 are w1 and w2, where w1¼ v1� v2 and w2¼ v2� v3, then the dihedral angle / is

/ ¼ cos�1 w1w2

jw1jjw2j

� �
: (A6)

Assuming R ¼ w1w2

jw1jjw2j,

@/
@X
¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
p @R

@X
; (A7)

where X is the Cartesian coordinate.

Then, @R
@X can be calculated as

@R

@X
¼ 1

jw1jjw2jð Þ2
jw1jjw2j

@w1

@X
w2 þ

@w2

@X
w1

� �
� w1w2ð Þ

@jw1j
@X
jw2j þ

@jw2j
@X
jw1j

� �" #
: (A8)
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Since four atoms define each dihedral angle, for every group of four atoms a 12� 12 block

Hessian matrix, hijkl, can be built using Equation (A5) for each pair of atoms in this group. Then,

the 12� 12 block matrix can be assembled into the full torsional Hessian, HTOR, using the proce-

dure for assembling the ANM Hessian, HANM, outlined in Ref. 9.

APPENDIX B: CALCULATION OF TRAJECTORIES AS A FUNCTION OF ENERGY

To calculate the time taken to reach the transition state, we consider a single potential energy

well where the system begins at the equilibrium state and at time �t reaches the transition state.

This can be mathematically written as x2 ¼ �x; x1 ¼ a; t1 ¼ 0 and t2 ¼ �t.
Then, the trajectory equation (3) can be rewritten as

x tð Þ ¼ aþ 1

sinh C�tð Þ
�x � að Þsinh Ctð Þ

� �
: (B1)

Since the system has to be given enough time to converge, �t !1,

xðtÞ � a ¼ ð�x � aÞeCðt��tÞ: (B2)

On squaring both sides

x tð Þ � að Þ2

�x � að Þ2
¼ e2C t��tð Þ: (B3)

In the case of ANM, since U xð Þ ¼ k x�að Þ2
2

, we can rewrite the above equation as

U xð Þ
U �xð Þ ¼ e2C t��tð Þ: (B4)

From (B4), t can be expressed as

t ¼ �t þ 1

2C
ln

U xð Þ
U �xð Þ

� �
: (B5)

As mentioned in Ref. 9 the condition for convergence is not just �t !1 but C�t !1. Hence
�t ¼ X

C, where X is large. Substituting this result in (B5), we get

t ¼ X

C
þ 1

2C
ln

U xð Þ
U �xð Þ

� �
; (B6)

which can also be written as

t ¼ 1
�k

X þ 1

2
ln

U xð Þ
U �xð Þ

� �� �
: (B7)
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