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Abstract

Early diagnosis of autism spectrum disorder (ASD) is critical for timely medical intervention, for 

improving patient quality of life, and for reducing the financial burden borne by the society. A key 

issue in neuroimaging-based ASD diagnosis is the identification of discriminating features and 

then fusing them to produce accurate diagnosis. In this paper, we propose a novel framework for 

fusing complementary and discriminating features from different imaging modalities. Specifically, 

we integrate the Fisher discriminant criterion and local correlation information into the canonical 

correlation analysis (CCA) framework, giving a new feature fusion method, called Supervised 

Local CCA (SL-CCA), which caters specifically to local and global multimodal features. To 

alleviate the neighborhood selection problem associated with SL-CCA, we further propose a 

hierarchical SL-CCA (HSL-CCA), by performing SL-CCA with the gradually varying 

neighborhood sizes. Extensive experiments on the multimodal ABIDE database show that the 

proposed method achieves superior performance. In addition, based on feature weight analysis, we 

found that only a few specific brain regions play active roles in ASD diagnosis. These brain 

regions include the putamen, precuneus, and orbitofrontal cortex, which are highly associated with 

human emotional modulation and memory formation. These finding are consistent with the 

behavioral phenotype of ASD.
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Introduction

Autism spectrum disorder (ASD) is a prevalent and highly heterogeneous childhood 

neurodevelopmental disorder, which is characterized in varying degrees by impairment in 

social interaction, behavior, communication, and cognitive functions [1, 2]. According to the 

2014 community report released by the Centers for Disease Control and Prevention1, 1 in 68 

American children was identified with ASD, an increase of 78% compared to the past 

decade, with boys outnumbering girls by a ratio of 5:1. Some children with ASD may suffer 

from depression or experience behavioral problems during adolescence, and usually require 

continual support as they get older, thus often resulting in immense suffering to the 

individuals and their families. So early diagnosis and medical intervention are tremendously 

important for improving the life quality of patients and their families, as well as for reducing 

the financial burden borne by the society.

Currently, the diagnosis of ASD relies mainly on a series of behavioral-based clinical tests 

that seek to quantify the severity of the disorder. However, a main drawback of these tests is 

that many behavioral phenotypes are associated with numerous other psychological and 

psychiatric disorders [3–5]. Additionally, ASD is in essence a complex disorder and is 

highly heterogeneous, affecting patients in different ways with mild to severe symptoms. 

Therefore, behavioral-based tests can be highly variable when used for diagnosis and 

prognosis.

In fact, some related studies have verified that ASD is highly associated with several 

neuroanatomical abnormalities [3, 6–8]. For example, structural magnetic resonance 

imaging (MRI) based neuroimaging studies show that abnormal structural changes exist in 

ASD patients compared to normal controls [2, 7]. A study found that cortical thickness was 

thinner in the left temporal and parietal regions in adolescents with ASD [9]. Another study 

reported a thicker cortex in the temporal and parietal lobes in younger subjects with autism 

[10]. Also, a plethora of functional MRI (fMRI) studies reveal that ASD is associated with 

functional connectivity changes. For example, some connections are weaker while others are 

stronger in individuals with ASD, compared to typically developing controls [11]. 

Therefore, combining biological information with behavioral examination could assist 

physicians with ASD diagnosis.

A significant amount of effort has been dedicated to investigating the underlying biological 

or neurological mechanisms associated with ASD so that biomarkers can be identified for 

early diagnosis or prognosis of ASD [11–15]. Especially, in recent years, different imaging 

modalities, including MRI [3], fMRI [16, 17], electrophysiology techniques [18], and 

diffusion-weighted MRI [19, 20], have been utilized for ASD diagnosis with relatively high 

1http://www.cdc.gov/ncbddd/autism/freematerials.html
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accuracy. In fact, various imaging modalities usually afford complementary information for 

diagnosis. For example, MRI provides information on different types of tissues in the brain, 

while FDG-PET captures cerebral metabolic rate for glucose. Fusing information from these 

multiple modalities may yield better performance compared with any single modality, which 

has been verified in various studies [3, 21].

As an effective feature fusion technique, canonical correlation analysis (CCA) has been 

widely applied in many fields, including face recognition [22], multi-dimension signal 

processing [23], image pose estimation [24], and neurodegenerative disease identification [4, 

25]. Mathematically, CCA aims to find a set of basis vector pairs that maximize the 

correlation between two different sample sets obtained from two different modalities of the 

same information source. However, CCA can only capture the linear correlation between 

sample pairs in a global manner and hence tends to under-fit the data in the complex 

nonlinear scenarios. Moreover, CCA, as an unsupervised method, does not take advantage of 

the label information, resulting in limited classification performance.

To address these limitations, many variants of CCA have been proposed in the past decades. 

Kernel CCA (K-CCA), a popular nonlinear extension of CCA, maps all the samples into a 

higher (even infinite) dimensional space (referred to as feature space) and then performs 

traditional CCA in the feature spaces based on the so-called “kernel trick” [24, 26]. Thus, a 

nonlinear problem in the original space is transformed to a simple linear counterpart in the 

feature space for discovering the complex correlation inherent in the data. Another example 

is locality-preserving CCA (LP-CCA), which decomposes the global problem into many 

locally linear ones and investigates correlations in small neighborhoods [27]. LP-CCA and 

K-CCA can reveal the nonlinear relationship between data, but both of them do not utilize 

supervised information, which is essential for improving classification. In order to tailor the 

extracted features for classification tasks, Peng et al. [28] proposed the locally discriminant 

CCA (LD-CCA) to simultaneously maximize local within-class correlations and also 

minimize local between-class correlations. Compared with K-CCA and LP-CCA, LD-CCA 

yields better classification performance due to the simultaneous consideration of local 

properties and class discrimination. However, LD-CCA can only capture local 

discrimination based on the local correlation between samples sets, but ignores the global 

discriminating information in data. Besides, it is generally challenging to determine an 

appropriate neighbor size in LD-CCA, just as in many locality-based methods.

To overcome these problems, in this paper we propose a novel feature fusion method, called 

hierarchical supervised local CCA (HSL-CCA), to capture the effective discriminating 

information from different modalities and to alleviate the difficulty of neighbor size 

selection. First, we develop a new supervised local CCA (SL-CCA) model by incorporating 

the Fisher discriminant criterion and LD-CCA into the CCA framework. SL-CCA takes into 

account not only nonlinear information like LD-CCA, but also global discriminant 

information given the Fisher criterion. Second, in order to reduce the influence of the 

neighbor size used to define a local neighborhood, we propose a hierarchical version of SL-

CCA, where SL-CCA is performed using the gradually decreasing neighborhood sizes.
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Fig. 1 shows the pipeline of the proposed classification framework. We first obtain the 

original features by preprocessing of two image modalities (i.e., MRI and fMRI), followed 

by PCA to remove the redundant information. Then, we hierarchically perform SL-CCA for 

fusing features from two modalities. Finally, the fused features are used to train a linear 

SVM (LSVM) classifier. The experimental results demonstrate that SL-CCA tends to 

capture more discriminating features. Note that this hierarchical scheme effectively reduces 

sensitivity to neighborhood size and also greatly improves diagnosis performance.

The rest of the paper is organized as follows. In the “Materials and Preprocessing” section, 

we describe the data acquisition and preprocessing pipeline. In the “Methods” section, we 

introduce SL-CCA and its hierarchical version, HSL-CCA. In the “Experiments” section, we 

demonstrate the effectiveness of the proposed method for ASD patient identification via 

comparison with the related methods, and then analyze the importance of different regions-

of-interest (ROIs) for ASD diagnosis. Finally, we conclude this paper and discuss some 

possible future directions.

Materials and Preprocessing

Subjects

Data used in this study are obtained from an online public Autism Brain Imaging Data 

Exchange (ABIDE) database[29], which was created as a data repository for facilitating 

collaboration across laboratories to help accelerate scientific discovery in autism research. 

ABIDE database consists of various imaging modalities, such as structural magnetic 

resonance imaging (MRI), resting-state functional magnetic resonance imaging (fMRI), 

diffusion tensor imaging (DTI), and so on. In this paper, we use MRI and fMRI data from 54 

ASD patients and 57 normal controls under 15 years of age, scanned at New York University 

(NYU) Langone Medical Center. Mean group ages, in years, were 10.8±2.2 for ASD 

patients and 11.3±2.3 for controls. The sex ratio (male: female) is 47:7 in ASD and 40:17 in 

controls. The details on data collection, exclusion criteria, and scan parameters are available 

on the ABIDE website2.

Data acquisition and preprocessing

For MRI, we used the Freesurfer software suite (version 4.5.0)3 to automatically extract the 

regional morphological features. Skull stripping[30], cerebellum removal, and tissue 

segmentation [31] were performed for each image. The entire brain was parcellated into 94 

ROIs by registering the Desikan-Killiany cortical atlas[32]. Similarly, the subcortical 

structures were parcellated into 37 ROIs by using the subcortical structural atlas[33]. Then, 

we computed the regional mean cortical thickness, the cortical GM and WM volumes, and 

the subcortical structural volumes in the corresponding ROIs as the MRI features.

For fMRI, slice timing correction, motion correction, and global signal regression were 

performed using the Data Processing Assistant for fMRI (DPARSF) software [34]. We then 

parcellated the brain space into 116 ROIs by warping the automatic anatomical labeling 

2http://fcon_1000.projects.nitrc.org/indi/abide/
3http://surfer.nmr.mgh.harvard.edu
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(AAL) atlas [35] to each image using a deformable registration method, called HAMMER 

[36]. For each ROI, we computed its mean time series and performed the band-pass filtering 

(0.01–0.08Hz), for trading-off between avoiding the physiological noise [37], the 

measurement error [38], and the magnetic field drifts of the scanner [39]. Finally, we 

computed Pearson correlation between the mean time series and obtained a 116×116 

correlation coefficient matrix for each subject as the fMRI features.

Methods

In this section, we briefly introduce two related methods, CCA and LD-CCA. Then, we 

describe our proposed method SL-CCA and its extension HSL-CCA.

Canonical correlation analysis (CCA)

Assume  and  are two mean-normalized sample sets from two 

different modalities of the same subject, p and q denote the dimensions of the corresponding 

sample space, and n denotes sample size. The aim of CCA is to find two projection 

directions, wx ∈ Rp and wy ∈ Rq, that maximize the correlation between  and , 

where X = [x1, x2, ···, xn] and Y = [y1, y2, ···, yn] denote the sample matrices, respectively. 

Formally, in CCA we solve

(1)

where Cxy = XYT denotes the between-set covariance matrix, and Cxx = XXT and Cyy = 

YYT denote two within-set covariance matrices.

When the within-set covariance matrices Cxx and Cyy are non-singular, the solution of CCA 

can be obtained by computing the following generalized eigen-problem.

(2)

Let Wx = [wx1, wx2, …, wxd] and Wy = [wy1, wy2, …, wyd] denote two projection direction 

matrices, where the vector pairs  correspond to the first d largest generalized 

eigenvalues in Eq. (2). For any sample pair (x, y) from the two modalities, we can obtain the 

fused feature as follows:

(3)
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More details about the derivation and solution of CCA can be found in [22, 40].

In practice, we often need to deal with the small sample problems where the dimensionality 

of features is larger than the sample size, as in ASD diagnosis. In this case, the within-set 

covariance matrix Cxx or Cyy is singular. We therefore need to apply PCA to reduce the 

dimension of the original samples and then perform CCA in the PCA-transformed space 

[22]. It can be theoretically verified that the loss of discriminating information is minimal if 

the transformed space preserves sufficient information, as given by a high eigenvalue ratio. 

This strategy is also suitable for some variants of CCA, including SL-CCA and HSL-CCA, 

which will be introduced below.

Although CCA has been widely used as an important feature fusion technique, it uses only 

the linear correlation between two different modalities and does not use data label 

information, which result in limited recognition performance of CCA.

Locally discriminant CCA (LD-CCA)

In order to improve the performance of CCA in classification tasks, LD-CCA incorporates 

local discriminative analysis into CCA. Specifically, the between-set covariance matrix Cxy 

in Eq. (1) is replaced by C̃xy which is defined as the sum of local within-class covariance 

matrices penalized by the sum of local between-class covariance matrices. LD-CCA aims to 

find two sets of projection directions wx ∈ Rp and wy ∈ Rq that maximizes the correlation of 

within-class k-NN samples and minimizes the correlation of between-class k-NN samples. 

Mathematically, the objective function can be written as follows:

(4)

where C̃xy = Cw − ηCb. Cw denotes the sum of local within-class covariance matrices, while 

Cb denotes the sum of local between-class covariance matrices, and η is a balancing factor 

between Cw and Cb. Cw and Cb are defined as follows:

(5)

where NI(xi) and NE(xi) denote the within-class and between-class k nearest neighborhoods 

of xi, respectively. For example, NI(xi) is the set of samples which are the most similar to xi 

within the same class, while NE(xi) is the set of samples which are the most similar to xi in a 

different class. NI(yi) and NE(yi) are similarly defined.

Compared with CCA, LD-CCA affords two advantages: (1) it can deal with the nonlinearity 

due to locality modeling; (2) it encodes class information. Nevertheless, LD-CCA has also 

some limitations: (1) it only utilizes the local correlation to indirectly reflect the local class 
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difference, but ignores the global discriminating information; (2) its performance is 

influenced by the neighbor size. However, it is still a challenging problem to determine an 

appropriate neighbor size in most locality-based methods [27, 28].

Hierarchical supervised local CCA (HSL-CCA)

In this section, we present a hierarchical variant of CCA, called HSL-CCA, to improve LD-

CCA in two aspects. First, we propose a new feature fusion method, called supervised local 

CCA (SL-CCA), by incorporating the local correlation information and the Fisher 

discrimination information into the CCA framework. Its model can be formalized as follows:

(6)

where  and  respectively denote the between-class scatter matrices of the sample sets X 
and Y, which are defined as in [41].

(7)

where U = [Uij]n×n and Uij = 1/nc if xi and xj belong to the c-th class (c=1,2); Uij = 0, 

otherwise. nc denotes the size of the c-th class.

The objective function in Eq. (6) comprises two parts. One part is the same as LD-CCA, 

where the local within-class correlation is maximized and the local between-class correlation 

is minimized. By doing this, we can extract the nonlinear discrimination features as LD-

CCA. The other part is similar to Fisher criterion that maximizes the global between-class 

scatter matrix and minimizes the global within-class scatter matrix. As a consequence, the 

extracted features are very compact for the same class and also well-separated for different 

class. In other words, the features extracted by SL-CCA may capture more discriminative 

information due to the simultaneous consideration of local and global supervising 

information.

However, as a locality-based method, the performance of SL-CCA is significantly affected 

by the neighborhood size k. With a large k, the neighborhood covers a large number of 

samples, resulting in a loss of local information. With a small k, samples from a single class 

may be falsely separated into multiple clusters.

Fig. 2 shows that the effect of the value of k on SL-CCA. On one hand, when the value of k 
is very large (Fig. 2 (b)), although the data in the same class is more compact and the data in 

the different class is more scatter to some degree, it is still not enough to distinguish the two 

classes very well. The reason is that the neighbors of each point almost include the whole 

sample set, which causes the local preserving very weak. On the other hand, when the value 

of k is very small (Fig. 2 (c)), the local preserving is enhanced, which means the data in the 
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local neighbor is very compact. However, from a global view, all the data in the same class 

may not be compact very well.

In order to reduce the influence of the neighborhood size and further improve diagnosis, we 

adopt a hierarchical version of SL-CCA, called hierarchical supervised local CCA (HSL-

CCA), by sequentially performing SL-CCA and gradually decreasing the neighborhood size. 

In this processing, the samples from the same class will become more concentrated and also 

the samples from different classes will become better separated with the neighborhood size k 
gradually reducing from a large value to a small one. Fig. 2 (e–f) intuitively shows the 

process of HSL-CCA. We can see from Fig. 2 (e–f) that the data in the same class gradually 

become compact with the value of k gradually reducing from a large value to a small one. 

The reason is that the global effect of the same class gradually becomes weak in the process, 

while it is opposite of the local effect of the same class, which cause the data in the same 

class gradually getting together and the data in the different class gradually scatter.

Experiments

In this section, we evaluate the proposed method based on data scanned at NYU Langone 

Medical Center. We employ six different metrics to evaluate its diagnostic power for ASD. 

Next, the influences of the neighborhood size k and the number of hierarchical layers are 

investigated. Finally, we perform feature weight analysis to understand the importance of 

each ROI in ASD diagnosis.

Comparison for ASD diagnosis using different feature fusion methods

We perform extensive experiments on ASD diagnosis and compare HSL-CCA with several 

related methods, including SVM, PCA-1, PCA-2, CCA, K-CCA, LD-CCA and SL-CCA. 

For SVM, we combine MRI and fMRI for the subsequent classification. For PCA-1, we 

firstly use PCA on the combined MRI and fMRI features, and then use Linear SVM to 

classification. For PCA-2, we perform PCA based on the two sets of original features 

respectively, and then concatenate them for the subsequent classification [42]. For K-CCA, 

we map all the original features into a high-dimensional space and then perform 

conventional CCA. The other methods have been described in the “Methods” section. 

Features extracted by each method are concatenated into a vector. Finally, linear SVM 

(LSVM) based on the LIBSVM toolbox4 with default parameters was used for 

classification. Three layers were used for HSL-CCA, where the number of the layers is 

determined by searching in the range from two layers to eight layers.

For comprehensive evaluation, we adopt seven different statistical measures, namely 

classification accuracy (ACC), standard deviation of ACC (STD), sensitivity or true positive 

rate (TPR), specificity or true negative rate (TNR), precision or positive predictive value 

(PPV), negative predictive value (NPV), and F1 score (F1)5. High values for these scores 

reflect good performance. 10-fold Cross Validation (CV), repeated 100 times, was used 

during evaluation. To be specific, all subject samples are partitioned into 10 subsets (each 

4http://www.sie.ntu.tw/~cjlin/libsvm/
5https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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subset with a roughly equal size), and each times all samples within one subset are 

successively selected as the testing data, while the remaining samples in the other nine 

subsets are combined together as the training data to perform feature selection and 

classification. Finally, we repeated the process 100 times and reported the average values. 

Here, it is worth noting that PCA was performed before the cross-validation among CCA, 

LD-CCA, SL-CCA and HSL-CCA and determined dimensions based on the cumulative 

contribution rate (in our experience, the cumulative contribution rate is 0.98). Table 1 shows 

the performance of different methods, where MRI and fMRI indicate that only the 

corresponding single modality was used. In addition, the classification accuracy of train 

data, denoted using ACC(T) in the second column of Table 1, is also listed for analyzing the 

overfitting issue.

From the results shown in Table 1, we have the following conclusions: (1) among all the 

competing methods, K-CCA has the serious overfitting issue while HSL-CCA is affected in 

a very less degree; (2) among all the compared methods, HSL-CCA has the lowest value of 

STD, which means HSL-CCA is very steady; (3) compared with the single modality 

methods (MRI or fMRI) and PCA, both CCA and its variants achieve better diagnostic 

accuracy due to multimodal feature fusion; (4) SL-CCA performs better than LD-CCA by 

incorporating the Fisher discrimination criterion; (5) HSL-CCA achieves the best 

performance for all diagnostic metrics, such as ACC, TPR and so on. The reason is that it 

not only inherits the advantages of SL-CCA but also reduces the sensitivity to the parameter 

k by using the hierarchical strategy.

Effect of parameter k

To our best knowledge, the performance of many locality-preserving methods is sensitive to 

the neighborhood size k. Also, determining the optimal k is a challenging problem.

Fig. 3 (a) shows the influence of k on the classification accuracy of LD-CCA and SL-CCA. 

We can observe that both curves fluctuate significantly, implying that these methods are 

sensitive to k. Therefore, we have to determine a proper k using grid search at the cost of 

tremendous computational load.

Fig. 3 (b) shows the performance variation of HSL-CCA with respect to the number of 

layers. The parameter k is set as 40 in the first layer and reduces by 5 for each successive 

layer. As can be seen, HSL-CCA not only reduces parameter sensitivity, but also improves 

accuracy.

The most discriminative features for ASD diagnosis

We analyze the weight of each feature to determine features that are important to 

classification. Given that wi (i = 1,2, ···, r) denotes the projection matrix (or weight matrix) 

of the i-th layer, the weighting vector v = (v1, v2, ···, vp)T is defined as
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(8)

where p denotes the number of the features, and vj (j = 1,2, ···, p) is the weighting value of 

the j-th feature, reflecting its contribution on classification. A larger vj indicates a larger 

contribution of the j-th feature, and vice versa. The operator abs (·) denotes the absolute 

value. Column vector 1 consists of unit elements, and its dimension is equal to the row size 

of w1.

To HSL-CCA, we computer the weight value of each feature according to Eq.(8) in each 

experience and get the average weight distribution from all 100 times runs. Fig. 4(a) and (b) 

show the average weight distribution of single-modality feature from MRI and fMRI, 

respectively, where the horizontal axis denotes the weights and the vertical axis denotes the 

corresponding percentage values. From the figure, we can see that the percentages of 

features with large weights are low for both MRI and fMRI. In other words, only limited 

features capture strong discriminating information for ASD diagnosis. For example, we find 

that all the weight values corresponding to the features from cortical GM volumes are small, 

implying that the features from cortical GM volumes contain weak discriminating 

information. In addition, most inter-regional connections seem unimportant for ASD 

classification.

We list in Fig. 5 the top 15 regional features with the higher selection frequency based on 

their weight values. Specifically, for each run, we got the top 15 regional features with the 

large weight values. Then, we counted the frequency of these selected regional features from 

all 100 runs. Finally, the top 15 regional features with the higher frequency are selected. Fig. 

5 (a) and (b) shows the result of LD-CCA and HSL-CCA respectively. As can be seen from 

Fig. 5, the selected features, no matter using LD-CCA or HSL-CCA, include the regional 

subcortical GM volume, the regional subcortical WM volume, and cortical thickness, 

indicating the spread of morphological abnormalities over the whole brain in ASD patients. 

In addition, most of the selected regions, such as Putamen, Entorhinal cortex, Medial 

orbitofrontal, Caudal middle frontal, and Frontal pole, are associated with episodic memory, 

social cognition and emotion processing. These findings are in agreement with the fact that 

ASD is a behavioral- and language-related neurodevelopmental disorder. The features 

selected by HSL-CCA can potentially be used as biomarkers to aid ASD clinical diagnosis.

Similar to the process we do in Fig. 5, we also graphically show in Fig. 6 the connectogram 

of the most discriminating connections involving the top 15 selected interregional features, 

where the same colored points denote neighboring regions and each connection denotes the 

correlation relationship between two regions [43]. These connections are selected based on 

the classification results, thus implying they are discriminative. The edges in this figure 

indicate the importance of this edge. A thicker line indicates the higher frequency and the 

larger weight. To be specific, we got the top 15 interregional features with the larger weight 

values in each experiment. Then, we counted the frequency of these selected interregional 
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features from all runs and got the top 15 interregional features according to the higher 

frequency. Because the weight value reflects the contribution for accurate classification, a 

thicker line indicates the higher frequency and a greater contribution to the discriminative. 

Fig. 6 (a) and (b) shows the result of LD-CCA and HSL-CCA respectively. For the 

abbreviations of the regions in Fig. 6, please refer to Table 2.

It can be clearly observed in Fig. 6 that pairs of regions (i.e., links in the connectogram) that 

contribute to accurate ASD classification are not restricted to the same hemisphere or lobe, 

but also across hemispheres and all lobes, indicating the spread of morphological 

abnormalities over the whole brain in ASD patients. On the other hand, we can see that most 

regions with the strong connections locate in the front part of the brain, such as frontal lobes, 

parietal lobes, occipital lobes and temporal lobes, most of which are highly correlated with 

the perception of emotion, the interpretation of sensory information, language performance 

and sports coordination. Contrarily, the regions located in the posterior of the brain, such as 

basal ganglia and cerebellum lobes, have sparse and weak connections, and most of them are 

highly correlated with exercise, smell, and hearing. These findings are also in agreement 

with the behavioral phenotype of ASD.

Based on the above analysis, we obtain the following conclusions: (1) There indeed exists 

some biomarkers which exhibit remarkable differences between ASD patients and normal 

controls; (2) Although the spread of morphological abnormalities covers whole brain in 

ASD patients, only a small part of morphological measures carry strongly discriminative 

information for ASD diagnosis; (3) The regions that enormously contribute to accurate ASD 

classification usually have close relationships with human emotional modulation and 

memory formation, which are in good agreement with the behavioral phenotype of ASD. 

Furthermore, we found most of the above findings are reported in the existing literatures and 

relevant to ASD. For example, it is reported that structural or histological abnormalities of 

the putamen may underlie the pathologies of ASD [44]. This is highly consistent with our 

findings.

Conclusion

We have proposed a novel feature weighting and fusion method, called HSL-CCA, to 

effectively identify ASD patients from healthy controls. Compared with CCA and its 

existing variants, the difference of HSL-CCA lies in two aspects: (1) a new feature fusion 

model, called SL-CCA, is designed to simultaneously model the correlations between 

sample pairs, local neighborhoods, and between-class discrimination information; this 

improves the discriminative power of the extracted features; (2) a hierarchical strategy is 

adapted to reduce the sensitivity of SL-CCA to the neighbor parameter. Hierarchical strategy 

is another important innovation in this work. Locality has significant influence on the 

proposed method. However, it is difficult to find a proper parameter for k nearest neighbor-

based in original high-dimensional space through just one step. Therefore, we propose this 

hierarchical strategy which tries to find effective parameter by multiple steps. After each 

step was finished, the inherent data structure can be well discovered as shown in Fig. 2. In 

such a way, this parameter can be continuously optimized such that a better performance can 
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be achieved. The experimental results demonstrate that the proposed method can 

significantly improve diagnostic performance.

Furthermore, we find that the regions, which are selected for accurate classification, have a 

close relationship with episodic memory, social cognition and emotion processing. The 

conclusion is in line with the behavioral phenotype of ASD, which is associated with several 

impairments of interaction, language, behavior, and cognitive functions. Our analysis also 

reveals the percentage of the selected regions is much lower in the whole brain, hinting that 

physicians only need to pay attention to some special regions in ASD diagnosis.

Lastly, note that HSL-CCA can be easily extended for diagnosis of other highly 

heterogeneous neurodevelopmental disorders, such as Alzheimer’s disease, Parkinson 

disease, depressive illness, and so on. Of course, findings in this study are still preliminary 

and require further study in the future. In our next work, we plan to extend HSL-CCA to 

more than two modalities.
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Fig. 1. 
Overview of the proposed classification framework.
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Fig. 2. 
Diagram of the data distribution under different k. (a) the original distribution. (b) the 

distribution with a large k. (c) the distribution with a small k. (d~f) the distribution when k 
gradually decreases from large to small.
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Fig. 3. 
Classification accuracy with respect to (a) parameter k in SL-CCA and LD-CCA (b) the 

number of layers in HSL-CCA.
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Fig. 4. 
The distribution of the weighting factor of each feature.
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Fig. 5. 
Top 15 regional features with largest weight values in (a) LD-CCA and (b) HSL-CCA
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Fig. 6. 
Connectogram of the most discriminating connections in (a) LD-CCA and (b) HSL-CCA
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Table 2

Abbreviations of the regions

FRO: frontal IFGoperc: Inferior frontal gyrus (opercular)
OFCsup: Orbitofrontal cortex (superior)
MFG: Middle frontal gyrus

PreCG: Precentral gyrus
OLF: Olfactory
REC: Gyrus rectus

PAR: Parietal ANG: Angular gyrus
PoCG: Postcentral gyrus

IPL: Inferior parietal lobule

OCC: Occipital PCG: Posterior cingulate gyrus PCUN: Precuneus

TEM: temporal STG: Superior temporal gyrus
TPOmid: Temporal pole (middle)
ITG: Inferior temporal
PHG: ParaHippocampal gyrus

TPOsup: Temporal pole (superior)
HES: Heshl gyrus l
HIP: Hippocampus
HES: Heschl gyrus

BG: basal ganglia CAU: Caudate
PUT: Putamen

CAL: Calcarine fissure and surrounding cortex
PAL: Pallidum

DIEN: Diencephalon THA: Thalamus

CER: cerebellum III-Cb:Lobule III of cerebellar hemisphere
X-Cbf: lobule X of cerebellar hemisphere (flocculus)

IV–V-Cb: lobule IV, V of cerebellar hemisphere
VII-VER: Lobule VII of vermis
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