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Abstract

Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring 

increased risk for late onset Alzheimer’s disease (AD). These conditions are also related 

pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists 

of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also 

involved in neuropathology of several other chronic neurodegenerative diseases, and are under 

intense investigation in the aftermath of TBI as potential contributors to the risk for developing 

AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and 

dependent on injury severity, age-at-injury, and length of time between injury and 

neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery 

after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid 

states related to age and central and peripheral vascular health. In this regard, dysfunction of the 

aging neurovascular system could be an important link between TBI and chronic 

neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like 

pathology which is amplified in the context of aging. Thus with advanced age and vascular 

dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein 

aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we 

discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of 

Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is 

involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated 

by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize 

that in the fields of TBI- and aging-related neurodegeneration protective strategies should include 

preservation of neurovascular function.
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1. Goal of review

To discuss concepts and published research relating to disordered APP metabolism in the 

framework of traumatic brain injury (TBI) and aging as dual risk factors for development of 

late-onset Alzheimer’s disease (AD). The pathology of TBI is complex and dependent on 

multiple factors including injury severity, age-at-injury, and time between TBI and 

neuropathological evaluation. In this regard, the main pathological culprit underlying the 

link between TBI, aging, and chronic neurodegenerative disease is not well defined. 

Accumulations of amyloid-β (Aβ) peptide and hyper-phosphorylated tau (p-tau) protein 

occur in AD, and their presence is required for neuropathological diagnosis of the disease. 

However, similar aggregates are also detected in many aged cognitively normal people 

(Mufson et al., 2016; Price and Morris, 1999) and after TBI. Extracellular plaques of Aβ are 

documented acutely and chronically after severe TBI (Ikonomovic et al., 2004; Johnson et 

al., 2012; Roberts et al., 1991, 1994; Smith et al., 2003) as well as repetitive mild TBI 

(rmTBI) (Roberts et al., 1990; Stein et al., 2015). In the aging injured brain, Aβ may 

participate in a vicious cycle involving neuronal, synaptic, and cerebral vascular dysfunction 

and neuroinflammatory reaction (Cotman et al., 1996; Ramlackhansingh et al., 2011). 

Intracellular aggregates of p-tau are also detected after TBI and are currently designated as 

the defining pathology of chronic traumatic encephalopathy (CTE) (DeKosky et al., 2013; 

Gandy et al., 2014; Geddes et al., 1999; McKee et al., 2009; Omalu et al., 2005; Schmidt et 

al., 2001). Because brain accumulation of Aβ is the earliest biomarker change seen in the 

preclinical phase of AD (Jack et al., 2012), and is central to the amyloid cascade hypothesis 

of AD (Hardy and Selkoe, 2002), in this review we focus mainly on Aβ as a 

neuropathological link between TBI, aging, and AD.

2. Evidence linking TBI and AD

2.1. TBI as a risk factor for AD

TBI is considered a risk factor for AD, either as a precipitating event or by accelerating 

development of the disease (reviewed in (Lye and Shores, 2000; Van Den Heuvel et al., 

2007; Vincent et al., 2014)). A link has been established between history of moderate or 

severe TBI with loss of consciousness (LOC) and AD (Mortimer et al., 1991) but the effect 

of outcomes varied among reports and some studies did not confirm this finding. This could 

be due to differences in TBI severity, age at the time of injury, and length of the injury-to-

assessment interval, factors that are difficult to confirm in self-reported TBI (undocumented 

in medical records). For example, a study of 6645 subjects 55 yo and older with self-

reported head trauma found no significant association between TBI with LOC and risk of 

dementia (Mehta et al., 1999). Similarly, TBI with LOC was not associated with dementia or 

AD neuropathology in three cohorts of patients segregated by duration of LOC, although an 

association was observed between history of TBI and Lewy body pathology (Crane et al., 

2016). The use of self-reported, undocumented TBI, inclusion of a unique case cohort not 
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representative of general population, and missing neuropathology data in some cohorts (e,g., 

diffuse plaques which are of principal interest in the pathology of severe TBI) complicates 

the interpretation of these reports. In contrast, self-reported TBI was associated with greater 

frequency of Aβ plaques in injured compared to age-matched uninjured subjects (Abner et 

al., 2014). A study of 79 healthy controls and 69 mild-moderate TBI patients with a short 

(1–2 years) follow up reported no association between TBI and amnestic mild cognitive 

impairment (MCI) or dementia (Rapoport et al., 2008). However, in a longer (5–7 years) 

follow up study of 164,661 trauma (TBI and non-TBI) patients older than 55 years and 

without baseline dementia during hospitalization, dementia was more prevalent after TBI 

(8.4%) compared to non-TBI trauma (5.9%) (Gardner et al., 2014). Moreover, risk of 

dementia was significantly associated with both age-at-injury and severity of injury, 

underscoring the importance of inclusion and accuracy of this information in these types of 

studies. After moderate-severe TBI, risk of dementia was increased in patients with age-at-

TBI > 55, while mild TBI was a greater predictor of dementia in subjects with age-at-TBI > 

65 (Gardner et al., 2014). Future studies should assess more precisely the influence of age at 

injury, time interval between TBI and assessment, and severity of injury on risk of dementia. 

Of importance, many studies fail to factor comorbid states such as peripheral or central 

vascular disease in the analyses. Does a history of hypertension or hyperlipidemia, stroke 

and ischemia influence risk for dementia after TBI? Insight into this question could prove 

invaluable for long term treatment of TBI patients if such a connection is made.

2.2. The spectrum of Aβ and tau pathology after TBI

2.2.1. Human studies—Aβ is the main component of amyloid plaques which are 

morphologically complex lesions (Dickson, 1997; Thal et al., 2015). In the earliest 

(preclinical) stages of AD, Aβ plaques are diffuse (Mufson et al., 2016) and composed 

predominantly of the longer Aβ42 form, comparable to Aβ plaques detected acutely in about 

30% of people with severe TBI (Horsburgh et al., 2000; Ikonomovic et al., 2004; Roberts et 

al., 1994) (Fig. 1). In contrast, many chronic survivors of severe TBI, especially at advanced 

age, show widespread distribution of diffuse and neuritic Aβ plaques that are similar to those 

in pathologically confirmed AD (Johnson et al., 2012). The Aβ precursor protein (APP) also 

accumulates after TBI (Gentleman et al., 1993a; Graham et al., 1995; Ikonomovic et al., 

2004; McKenzie et al., 1994; Roberts et al., 1991, 1994; Smith et al., 2003), and increased 

amyloidogenic (Aβ-producing) processing of APP has been postulated as a major cause of 

brain accumulation of Aβ (Thinakaran and Koo, 2008; Turner et al., 2003). Other factors 

contributing to Aβ deposition include impaired enzymatic degradation of Aβ (Johnson et 

al., 2009; Miners et al., 2008), alterations in brain efflux systems (Hawkes et al., 2014; Iliff 

et al., 2012), apolipoproteins (Castellano et al., 2011), and receptors involved in Aβ 
trafficking and clearance (Deane et al., 2004a, 2004b). Accordingly, in TBI patients with Aβ 
plaques, there is increased brain concentration of physiologically soluble (monomeric and 

oligomeric) Aβ1–42 peptide (DeKosky et al., 2007), which could be related to reduced 

cerebral spinal fluid Aβ concentrations detected after TBI (Kay et al., 2003), similar to what 

occurs in AD patients (Blennow et al., 2015) (Fig. 1E). Aβ may be acutely neurotoxic (Emre 

et al., 1992; Smith et al., 1998) and could initiate a cascade of pathophysiological events 

leading to more advanced AD pathology and dementia later in life (Roberts et al., 1994). 

The outcome of these pathological changes, particularly in the aging brain, is progressive 
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impairment of neuronal function, inefficient repair of damaged synapses, and cognitive 

dysfunction.

In contrast to severe TBI, rmTBI has been connected more closely to tau than Aβ pathology. 

For example, a histological study of autopsy brains from boxers with dementia pugilistica 

(DP) reported tau pathology in the absence of Aβ plaques (Corsellis et al., 1973). However, 

Roberts and colleagues re-examined the same cases using antigen retrieval methods and Aβ 
immunohistochemistry and demonstrated widespread Aβ plaques in all of the DP cases 

(Roberts et al., 1990). Importantly, both Aβ and tau pathology in DP cases differ from the 

classic Aβ plaques and neurofibrillary tangles (NFT) of AD. In DP, Aβ plaques are mainly 

diffuse and difficult to detect using standard histological techniques (Roberts et al., 1990), as 

in severe TBI (see Section 3.2). In addition, tau-immunoreactive “NFT” in DP have different 

laminar distribution patterns than those in AD (Hof et al., 1992). Geddes and colleagues 

suggested that after rmTBI tau pathology may precede Aβ plaques, based on their findings 

of intracellular tau aggregates with a perivascular distribution and absence of Aβ plaques in 

four autopsy brains (Geddes et al., 1999). This finding was replicated by others (McKee et 

al., 2009; Omalu et al., 2005; Schmidt et al., 2001) and deep sulcal and perivascular 

distribution of tau-immunoreactive neurons and astrocytes has been designated the key 

pathological characteristic of CTE, providing the basis for its current neuropathological 

staging (McKee et al., 2015). Accordingly, CTE was defined as a “tauopathy”, however new 

research demonstrated Aβ plaques in 52% of CTE cases (Stein et al., 2015), which exceeds 

the reported 30% incidence of Aβ plaques in severe TBI. The incidence of Aβ plaques after 

rmTBI may be greater, because not all who suffer rmTBI develop CTE. Collectively, these 

observations demonstrate overlap in the pathology of severe TBI, rmTBI (including CTE), 

and AD, and emphasize that polypathology, rather than just tauopathy or amyloidopathy, 

more accurately underlies the chronic neuropathological course of TBI (Turner et al., 2016; 

Washington et al., 2016). In this regard, evidence is emerging that other proteins, such as 

alpha-synuclein and TDP-43, can accumulate in the brain after TBI (Crane et al., 2016; 

Johnson et al., 2011; McKee et al., 2010).

2.2.2. Animal studies—Experimental studies of TBI-induced Aβ accumulation/toxicity 

as a risk of AD pathology have been methodologically diverse and often have produced 

conflicting results (Bird et al., 2016). These studies have been challenging, mainly because 

the amino acid sequence of the Aβ peptide differs between humans and commonly used 

experimental animals such as rats and mice. However, several animals produce Aβ with an 

amino acid sequence identical to that in humans and have utility in studies of the TBI-AD 

connection. After non-impact head rotational acceleration injury in pigs, Aβ accumulation 

was observed in injured axons and plaque-like structures (Smith et al., 1999). In aged guinea 

pigs, fluid percussion injury (FPI) resulted in diffuse Aβ plaques, and immunoreactivity to 

APP and tau increased with more advanced age over longer survival periods in this model 

(Bates et al., 2014). To study human Aβ response in brain injured mice, many investigations 

focused on transgenic mouse models of amyloidosis where APP is continually over-

expressed, producing supra-physiologic brain concentrations of APP and Aβ. Brain injury 

experiments using these models produced varying outcomes. In Tg2576 mice (Hsiao et al., 

1996), rmTBI at 9 months of age (prior to Aβ plaque formation in this model) increased 
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brain Aβ concentrations and Aβ plaque deposition at survival intervals up to 16 weeks 

(Uryu et al., 2002). In contrast, PDAPP mice (Games et al., 1995) with cortical impact brain 

injury at 4 months of age (prior to Aβ plaque formation in this model) had acute, transiently 

increased brain Aβ concentration (Smith et al., 1998). In aged PDAPP mice (24 months old, 

with robust plaque pathology), severe CCI injury resulted in fewer Aβ plaques, particularly 

in the hippocampus ipsilateral to injury compared to the contralateral hippocampus 

(Nakagawa et al., 2000). This “regression” of Aβ plaques could be due to extensive neuropil 

loss in the hippocampus, because unlike the rmTBI model, severe CCI injury induces a 

profound cortical cavitation lesion. Using the PSAPP transgenic mouse model of AD 

(Holcomb et al., 1998) and moderate-severe controlled cortical impact (CCI) injury at three 

months of age (time of Aβ plaque pathology onset in this transgenic model), Tajiri and 

colleagues observed greater Aβ plaque load six weeks after injury which also produced 

significant cell loss in the hippocampus (Tajiri et al., 2013). Using 5–7 month old 3× 

transgenic mice which over-produce both human Aβ and human tau (Oddo et al., 2003), 

Brody and colleagues (Tran et al., 2011) reported that severe CCI resulted in axonal 

accumulation of Aβ and tau. Interestingly, blockade of Aβ accumulation in this model did 

not affect tau immunoreactivity, leading the authors to suggest independent courses of these 

two AD pathologies after TBI (Tran et al., 2011). Another study used 3×Tg mice at ages 

prior to plaque deposition and reported that CCI injury produces acute increases in both 

insoluble (fibrillar) and soluble (oligomeric) Aβ, while changes in tau were not examined 

(Washington et al., 2014). The use of animal models in research of tau changes after TBI has 

been reviewed extensively by Abisambra and Scheff (Abisambra and Scheff, 2014). 

Collectively these animal studies demonstrate that formation of AD-like pathology after TBI 

is dependent on animal model, type and severity of injury, age at injury, and length of 

survival period. Furthermore, transgenic models over-expressing APP/Aβand/or tau may be 

more suitable for studies of individuals with genetic predisposition for neurodegenerative 

diseases. To avoid confounds associated with transgene-driven APP overexpression, TBI 

studies by our group (Abrahamson et al., 2013, 2006, 2009) and others (Webster et al., 2015) 

utilized a human Aβ knock-in mouse model (hAβ KI mice) where APP expression is under 

control of the endogenous promoter. CCI injury in hAβ KI mice consistently produced 

significant increases and accumulation of Aβ and phosphorylated tau (Fig. 2).

3. Effect of aging on Aβ-induced risk for developing AD after TBI

3.1. The “two-hit” hypothesis of Aβ toxicity

The two-hit hypothesis has been formulated separately in the fields of TBI and AD, to 

explain the pathogenic role of Aβ. Related to TBI, Smith and colleagues (Smith et al., 1998) 

argued that neurons have a potential or latent vulnerability to Aβ toxicity at a given brain 

concentration (“first hit”) and that only after a “second hit”, such as TBI, is this potential 

manifested. Accordingly, “Aβ is necessary but not sufficient to cause neuronal death until a 

second pathological process potentiates its neurotoxicity” (Smith et al., 1998). In the context 

of AD as a chronic clinical-neuropathological sequela of TBI, amyloidogenic APP 

metabolism plays a role in both immediate (primary) and delayed (secondary) effects of 

TBI, while brain aging-related dysfunction (and non-Aβ-related secondary injury processes 
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resulting from TBI) could be a second insult exacerbating these pathological pathways and 

contributing to other pathologies, such as tau, and clinical dementia onset.

3.2. Aging as a modifying factor in the relationship between TBI and AD

In younger subjects with severe TBI, accumulation of Aβ does not fully replicate the 

pathology seen in AD dementia patients. Diffuse Aβ plaques are detected shortly after 

injury, when neuritic Aβ plaques are absent or rare (Gentleman et al., 1997; Graham et al., 

1995; Ikonomovic et al., 2004; Roberts et al., 1991). In addition, the acute phase after severe 

TBI is not associated with prominent cortical tau pathology (Ikonomovic et al., 2004). 

However in aged subjects with TBI and longer survival periods, widespread Aβ plaques 

(both diffuse and neuritic) and classic NFT can be detected (Johnson et al., 2012). Aβ and 

tau changes are also seen in some professional athletes with rmTBI, however these two 

pathologies can present with different proportions and time of onset. For example, rmTBI 

can produce a pathological feature of CTE which is characterized primarily by tau changes 

(McKee et al., 2015), while in aged people with same type of injury tau pathology frequently 

co-presents with Aβ plaques (Stein et al., 2015), more typical of AD. Thus, aging can 

modify the chronic post-TBI course by providing a second insult that drives the 

neuropathological outcome to more closely resemble the neuropathology of AD. Differential 

time course of induction and progression of Aβ and tau pathologies after severe TBI or 

rmTBI may be also influenced by genetic susceptibility and epigenetic mechanisms. The 

effect of these multiple factors on pathological mechanisms contributing to patient’s 

outcome after TBI is beginning to be understood. Advanced age is also a significant factor 

contributing to impaired recovery after TBI (Coronado et al., 2005; Czosnyka et al., 2005; 

Hukkelhoven et al., 2003) including increased risk for developing AD/dementia. This is 

particularly important in the context of growing aged populations of civilians and Veterans 

(Ortman et al., 2014), greater numbers of geriatric patients with chronic survival after head 

trauma (Adams and Holcomb, 2015), and increasing burden of elderly TBI patients on the 

health care system (Thompson et al., 2006). Recently, there is an indication of reduced 

inpatient mortality after TBI (Maxwell et al., 2015). Though encouraging from the 

standpoint of acute medical care, this will increase the number of aging TBI survivors at risk 

for developing chronic neurodegenerative diseases and dementia towards the end of their 

life. Notably, age alone is not a significant predictor of TBI outcome (Joseph et al., 2014), 

and aging-related comorbid states such as cerebrovascular disease may be superimposed on 

or work in synergy with TBI to worsen neurological outcomes (Plassman and Grafman, 

2015).

4. Neurovascular unit and the TBI-AD link

The relationship between altered vascular responses after TBI and risk for developing 

chronic neurodegenerative diseases is not well understood (Logsdon et al., 2015). Defining 

the molecular mechanisms or vulnerable cell types which drive vascular impairment in TBI 

patients could facilitate treatment interventions aimed at preventing or ameliorating chronic 

pathology and neuropsychological impairment. Specifically, maintaining the functional 

integrity of cerebral neurovascular unit (NVU) after TBI is critical, and perhaps equally 

important as current neurocentric “neuroprotection” strategies (Logsdon et al., 2015), for 
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preventing chronic accumulation of toxic proteins and for promoting the restoration of 

neuronal homeostasis and functional recovery. Cerebrovascular consequences of TBI are in 

part determined by the type of TBI and include cerebral vasospasm, hemorrhage (epidural, 

subdural, subarachnoid, and intraparenchymal), and vasogenic edema all of which can result 

in brain ischemia. TBI involves complex changes in cerebral blood flow (CBF), with some 

areas (typically proximal to the site of TBI) showing profound hypoperfusion and other 

areas (typically distal or contralateral to the site of TBI) showing hyperemia (Abrahamson et 

al., 2013; Akbik et al., 2016). As discussed below, accumulations of Aβ peptides (both 

oligomeric and fibrillar assemblies) affect cellular components of the NVU and can foster 

secondary injury processes including activation of cell death pathways (apoptosis), oxidative 

stress, and inflammation. These effects are likely exacerbated by aging, contributing to the 

risk of AD.

4.1. Endothelial cells

Tight junctions between endothelial cells of blood vessels form the blood brain barrier 

(BBB) at the interface between the vasculature and brain parenchyma. Endothelial cells also 

function as a conduit for molecules to access the brain through receptor mediated transport. 

In the context of Aβ, the receptor for advanced glycation end products (RAGE) is an 

important mediator of Aβ transport from the vasculature into brain parenchyma (Zhao et al., 

2015a; Zlokovic, 2011). Dysfunction of endothelial cells in TBI and aging results in BBB 

breakdown and increased brain penetrance of toxic molecules (Price et al., 2016). Similarly, 

receptor-mediated transport of toxic molecules such as Aβ (via low density lipoprotein 

receptors) out of the brain is dependent on endothelial cells, disruption of which leads to 

accumulation of Aβ. Zlokovic and colleagues (Zhao et al., 2015b) demonstrated that 

phosphatidylinositol-binding clathrin assembly protein (PICALM, a genetic factor linked to 

AD (Harold et al., 2009) expressed in endothelial cells (Baig et al., 2010)) is an important 

mediator of LRP-bound Aβ transcytosis and clearance from the brain. Because enhancement 

or restoration of PICALM function could counteract detrimental effects of Aβ accumulation 

at the NVU, it will be important to define changes in PICALM expression after TBI and 

during aging.

Endothelial cells can be affected by high concentrations of Aβ in the brain, such as in AD 

(Kelleher and Soiza, 2013) but also after TBI (DeKosky et al., 2007). Moreover, endothelial 

cell aging likely increases their susceptibility to toxic effects of Aβ (Brandes et al., 2005). 

This toxicity occurs via stimulation of cell death pathways involving caspase-3 and 

caspase-8, TNF-related-apoptosis-inducing-ligand (Ghiso et al., 2014; Xu et al., 2001), 

ASK1-JNK/p38 apoptotic signaling pathways (Hsu et al., 2007), death receptors DR4 and 

DR5 (Ghiso et al., 2014), oxidative stress pathways, and intracellular calcium ion overload 

(Koizumi et al., 2016). Additional pathways involve altered endothelial nitric oxide synthase 

(eNOS) and nitric oxide (NO) production (Suhara et al., 2003), and disruption of vascular 

proliferation (Grammas et al., 1995), potentially through effects on vascular endothelial 

growth receptor (Patel et al., 2010). Specifically, age-related changes in eNOS and NO 

production (Barton et al., 1997) could potentiate Aβ-induced impairment in endothelium-

dependent vasodilatation after TBI.
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Endothelial cells produce endothelin-1 (ET-1), a potent vasoconstrictor that is upregulated 

by Aβ (Palmer et al., 2012) and could contribute to vascular impairment in aging and AD 

(Love and Miners, 2016), but also after TBI. Aβ can upregulate at least one of the enzymes 

that regulate production of ET-1, endothelin-converting enzymes 1 and 2 (ECE-1 and 

ECE-2; (Palmer et al., 2009)), which interestingly also can degrade Aβ (Eckman et al., 

2001). Love and colleagues (Palmer et al., 2009) demonstrated upregulation of ECE-2 

mRNA and protein as well as increased activity of ECE-1 in AD brain tissue. This could be 

detrimental, through enhanced production and vasoconstrictor activity of ET-1, but also 

protective through degradation of Aβ. ET-1 is also upregulated acutely after TBI (Armstead 

and Kreipke, 2011), however its suppression through receptor pharmacology (Kreipke et al., 

2010) or through mRNA silencing (Petrov, 2009) can restore CBF in TBI models. Since 

both endothelial cells and pericytes express ET-1 receptors, ET-1-induced changes in the 

NVU function might be mediated by both cell types (Dore-Duffy et al., 2011).

In addition to enhancing ET-1 induced vasoconstriction (Paris et al., 2003), Aβ could also 

impair CBF via loss or uncoupling of NO signaling (Austin et al., 2013). In an aged rat 

model of chronic brain hypoperfusion, de la Torre and colleagues reported that eNOS 

inhibition impaired behavioral outcome, leading these authors to conclude that eNOS (and 

NO production) might be a critical factor in maintaining at least a certain degree of cerebral 

perfusion even in the compromised state (hypoperfusion) (de la Torre and Aliev, 2005). This 

is relevant to aging and AD, where cerebrovascular impairment with hypoperfusion is 

related to brain accumulation of Aβ which is both toxic to endothelial cells (Thomas et al., 

1996) and produces vasoactive effects (Iadecola, 2004; Townsend et al., 2002). Our work in 

the hAβ KI mouse model, which has little if any fibrillar Aβ but produces increased 

concentrations of physiologically soluble (monomeric and oligomeric) human Aβ after TBI, 

provides additional evidence for vasoactive effects of Aβ. CCI injury produced significantly 

greater impairment of CBF in hAβ KI mice compared to their wild type counterparts 

(C57Bl/6) (Abrahamson et al., 2013). This suggests that compared to murine Aβ, soluble 

human Aβ has stronger vasoconstriction effects after TBI.

4.2. Pericytes

Pericytes are components of the NVU (Winkler et al., 2014) and important regulators of 

BBB formation and maintenance, neurovascular coupling, and clearance of molecules, 

including soluble Aβ, from the brain (Bell et al., 2010; Winkler et al., 2014). Pericyte cell 

death, migration, and altered phagocytic and metabolic activity is reported in a wide variety 

of pathological conditions, including TBI and AD (for reviews see (Castejon, 2011; Winkler 

et al., 2014)). The effects of experimental TBI on pericytes is complex and dependent on the 

TBI model used and length of survival after injury. An ultrastructural study in adult rats with 

closed head injury demonstrated that within hours after injury pericytes migrated away from 

vessel cell walls in the vicinity of the lesion (Dore-Duffy et al., 2000). It is unclear whether 

this is a protective response or if the loss of capillary-associated pericytes further contributes 

to BBB breakdown and subsequent vasoactive edema after TBI. In mice subjected to a more 

severe, penetrating CCI injury model, pericyte cell death was observed at three days post 

injury in the ipsilateral hippocampus and perilesional cortex (Choi et al., 2016) whereas at 

five days post injury pericyte proliferation was detected in perilesional cortex (Zehendner et 

Ikonomovic et al. Page 8

Ageing Res Rev. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2015). The complex response of pericytes to TBI requires further characterization, 

particularly in aging brain where these cells are involved in BBB disruption. Using an in 

vitro model of accelerated senescence, Yamazaki and colleagues (Yamazaki et al., 2016) 

observed an association of endothelial cell and pericyte senescence with breakdown of the 

BBB. This idea is supported by Zlokovic and colleagues (Montagne et al., 2015) who 

demonstrated BBB breakdown in the hippocampus of aged people. Moreover, pericyte 

senescence could potentiate TBI-associated BBB breakdown which can persist lengthily 

after injury (Hay et al., 2015). Pericytes undergo constriction after ischemia (Hall et al., 

2014), and under pathological conditions such as TBI and AD, their dysfunction could 

contribute to chronic changes in neurovascular coupling. In AD, molecular signaling 

between pericytes and other cell components of the NVU is compromised (Winkler et al., 

2014) and pericyte loss is accelerated, likely related to disrupted Aβ clearance (Halliday et 

al., 2016). In support of this, an association between pericyte loss and accumulation of 

soluble Aβ was demonstrated in transgenic APPswe mice (Sagare et al., 2013). Whether a 

similar relationship between pericyte changes and Aβ accumulation exists in chronic TBI 

needs to be investigated and may identify novel mechanisms contributing to risk for AD 

after TBI.

4.3. Astrocytes

Astrocytes exhibit changes in gene expression and phenotypic changes in the presence of 

oligomeric and fibrillar Aβ (Hu et al., 1998; Mulder et al., 2012). This is exemplified in 

their association with classic Aβ plaques in AD (Dickson, 1997; Thal, 2012; Wisniewski and 

Wegiel, 1991) where they may have a role in Aβ degradation (Wegiel et al., 2001) and glial 

scarring (Nagele et al., 2004). The relation between astrocytes and TBI-induced changes in 

Aβ is not well understood, particularly in the acute stages after severe TBI in young adults 

when diffuse Aβ plaques are predominant. A study examining pathology in frontal cortex 

biopsy samples from a subject with DP demonstrates a close correspondence between the 

laminar distribution of Aβ plaques, tangles, and GFAP-immunoreactive astrocytosis (Saing 

et al., 2012). A particularly striking feature of this case study is the conspicuously greater 

association of astrocytes with blood vessels in the DP case compared to cases with either 

AD of frontal temporal dementia, suggesting interplay between Aβ, astrocyte activation, and 

cerebral vasculature in brain injury. In addition, perivascu-lar clustering of tau-

immunoreactive astrocytes (and neurons) is a pathological feature of CTE. Astrocytes play 

critical role in the maintenance of the BBB through vasoactive endothelial growth factor 

signaling mechanisms (Argaw et al., 2012) and interactions with extracellular matrix 

proteins. Astrocytic regulation of the BBB responds to, and could mediate, leukocyte 

trafficking (Lecuyer et al., 2016). Astrocytes are also involved in neurovascular coupling and 

functional hyperemia, in part through glutamate or ATP signaling-induced release of 

vasoactive substances, including arachidonic acid metabolites such as 20-HETE (Howarth, 

2014). With age, astrocytes increase expression of glial fibrillary acidic mRNA and shift to a 

pro-inflammatory phenotype (reviewed in (Garwood et al., 2016)), and exhibit signs of 

oxidative damage and expression of the senescence associated secretory phenotype 

(Garwood et al., 2016; Simpson et al., 2010). Astrocytic dysfunction could result in impaired 

Aβ clearance, increased release of pro-inflammatory molecules, and enhanced leukocyte 

trafficking at the BBB which all relate to neuroinflammatory processes (discussed in Section 
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5.6) and could contribute to AD pathology with aging and after TBI. The relation of these 

factors to functional changes of the NVU in aging and TBI needs to be investigated.

5. Role of Aβ and aging in primary and secondary effects of TBI and risk of 

AD

Primary pathology of TBI results from mechanical forces. Severe and penetrating brain 

injury causes immediate cell lysis with release of intracellular ions, neurotransmitters, and 

peptides/proteins, axonal damage and disconnection. Dysfunction of neurovasculature, 

including disruption of the BBB and consequent influx of peripheral proteins and immune 

cells into brain parenchyma is another important consequence of severe TBI. In rmTBI, the 

effects of mechanical forces are more subtle but nevertheless result in axonal and vascular 

pathology. Secondary injury processes occur following primary injury and develop over a 

longer timescale, and include oxidative stress, excitotoxicity, activation of cell death 

pathways, and neuroinflammation. In the aging injured brain, these secondary injury 

processes are exacerbated, and recovery processes (synaptogenesis and angiogenesis) are 

compromised. Thus, secondary injury effects are likely important mechanistic connections 

between TBI and AD, particularly in the aging brain (see schematic in Fig. 3), and they can 

be modified by genetic and epigenetic factors. In the following sections we discuss 

pathological consequences of primary and secondary TBI effects in the context of altered 

Aβ metabolism and the aging brain, and how this can contribute to increased risk for AD 

later in life.

5.1. Diffuse axonal injury

Mechanical forces of TBI disrupt intra-axonal cytoskeletal structure and increase axolemmal 

permeability with subsequent pathological influx of Ca2+ ions and activation of caspases, 

calpain-mediated spectrin proteolysis, and mitochondrial damage (Buki et al., 2000; Buki 

and Povlishock, 2006). Axonal swellings, a pathological hallmark of diffuse axonal injury 

(DAI) visualized histologically as axonal bulbs (retraction balls), accumulate cell organelles, 

vesicles, and proteins. Among the proteins normally undergoing fast axonal transport, APP 

accumulates within hours after TBI in axonal swellings, where it co-localizes with Aβ 
(Smith et al., 2003). Accordingly, axonal APP immunoreactivity is considered a reliable 

marker of DAI (Gentleman et al., 1993b; Stone et al., 2000) and precedes the appearance of 

silver staining positivity, a marker of neuronal/axonal degeneration (McKenzie et al., 1996; 

Sherriff et al., 1994). APP immunoreactive axonopathy is also seen in long-term survivors of 

blast TBI (months to years), in a pattern described by Koliatsos and colleagues as spheroids 

and varicosities with perivascular distribution in cortical white matter (Ryu et al., 2014). 

Thus, axonal injury results from multiple forms of TBI and involves an interplay between 

brain injury and APP/Aβ that are likely amplified, or at least persist, with aging (Chen et al., 

2009).

The relationship between axonal accumulation of APP/Aβ and parenchymal Aβ plaque 

deposition after TBI is not clear. APP-immunoreactive deposits are prevalent in areas of 

axonal injury (Graham et al., 1996; Ikonomovic et al., 2004) and APP-immunoreactive 

swollen axons associate with Aβ plaques at least acutely after TBI (Ikonomovic et al., 2004; 
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Smith et al., 2003, 1999) (see Fig. 1). This suggests that injured axons may be the source of 

Aβ in plaques, however in an autopsy study of subjects with remote brain injuries (three 

years prior to death), lack of widespread plaque pathology despite axonal accumulation of 

Aβ led Smith and colleagues to suggest that TBI-induced plaques may regress over time 

(Chen et al., 2009). Interestingly, APP/Aβ deposition is more frequently seen in aged people 

who suffer a TBI, most typically as a consequence of a fall, the leading cause of head injury 

in the elderly (Faul and Coronado, 2015), thus more advanced age may exacerbate AD 

pathological processes after TBI.

There have been significant recent advances in detecting and monitoring axonal injury and 

Aβ deposition in living TBI patients, using imaging techniques typically applied in clinical 

studies of aging, MCI, and AD: MRI of axonal injury and connectivity (diffuse tensor 

imaging (DTI) and high definition fiber tractography) (MacDonald et al., 2007, 2011; 

Presson et al., 2015) as well as amyloid PET (Eisenmenger et al., 2016; Gatson et al., 2016; 

Hong et al., 2014; Kawai et al., 2013; Mitsis et al., 2014; Scott et al., 2016). Several of these 

clinical analyses replicate data from histopathology studies. Kawai and colleagues (Kawai et 

al., 2013) reported [C-11]PiB retention in 27% (3/11) of imaged patients, reminiscent of the 

percent of severe TBI cases with histological evidence of Aβ plaques. Jack and colleagues 

(Mielke et al., 2014) found that among the MCI subjects undergoing [C-11]PiB PET 

imaging in the Mayo Clinic Study of Aging, those with self-reported TBI had greater PiB-

PET retention. In a study of long-term survivors of moderate-severe TBI, increased PiB-PET 

was associated with DTI evidence of altered connectivity involving the posterior cingulate 

cortex (Scott et al., 2016), a cortical area vulnerable to Aβ accumulation in AD. It will be 

important to use these imaging modalities in conjunction with imaging measures of vascular 

dysfunction to assess the relation between amyloid lesions and CVD after TBI, particularly 

in the aging brain as has been investigated in non-TBI subjects (Marchant et al., 2013).

5.2. Synapse loss

As discussed above, DAI disrupts axonal transport (both retrograde and anterograde) which, 

in addition to accumulation of proteins in axonal swellings, results in disconnection/

deafferentation (see (Povlishock and Katz, 2005) for review). The time course of this 

process differs between experimental animals and humans and is associated with alterations 

in synapses (Povlishock et al., 1992). While axonal disruption can be extensive after TBI, 

Povlishock and colleagues pointed out that “the amount of degenerating nerve terminals far 

exceeds the number of identified damaged fibers” (Povlishock and Katz, 2005) underlining 

the importance of synapse degeneration in TBI. Detection of synapse degeneration/loss in 

TBI can be confounded by ongoing restorative processes including synapse regeneration, a 

phenomenon that could reflect brain compensatory response or an aberrant response to loss 

of synapses. Experimental studies by Cotman and colleagues revealed that this process is 

active in the hippocampus after brain injury (Cotman et al., 1981) and can be influenced by 

aging. This is most clearly demonstrated in the entorhinal cortex lesion (ECx) model. After 

complete unilateral ECx, greater loss of synapse density in the outer molecular layer of the 

dentate gyrus and slower synapse replacement was observed in aged compared to young rats 

(Hoff et al., 1982). Loss of synapses is a structural correlate of cognitive impairment in AD 

(Scheff and Price, 2006), and it could contribute to increased risk for dementia after TBI, 
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particularly chronically with aging. When synapses are quantified in clinical groups with no 

cognitive impairment, MCI and mild AD, synapse loss occurs in a stepwise fashion in some 

neocortical areas (inferior temporal gyrus and posterior cingulate cortex (Scheff et al., 2015, 

2011)) while in others (e.g., precuneus) synapse loss is seen only in mild AD (Scheff et al., 

2013). Synapse loss chronically after experimental TBI might recapitulate regional 

vulnerability patterns seen in AD. For example, cortical impact injury produces secondary 

injury with extensive synapse loss in the underlying hippocampus, a region vulnerable to 

synapse loss in AD (Scheff et al., 2005). The role of Aβ in synapse loss after experimental 

TBI remains to be investigated. We demonstrated that CCI injury produced greater loss of 

pre- and post-synaptic markers in hAβ KI mice compared to wild type counterparts 

expressing endogenous (mouse) Aβ (Fig. 4). This suggests that human Aβ oligomers play a 

role in synapse degeneration after TBI, similar to what occurs in AD (Walsh et al., 2002). 

Advanced age, particularly >65 years involves synapse loss (Masliah et al., 2006, 1993), and 

this could contribute to late-onset AD dementia in some aging survivors of TBI since any 

significant synapse loss could lower the threshold for clinical manifestation of AD.

5.3. Oxidative stress

Detrimental effects of reactive oxygen species (ROS) due to mitochondrial leakage or 

accumulation of Aβ have been posited to underlie oxidative damage and cellular dysfunction 

in aging (Indo et al., 2015) and AD (Swomley and Butterfield, 2015), respectively. Studies 

by Scheff and colleagues demonstrate an association between oxidative stress and loss of 

synaptic proteins in the presence of Aβ pathology in preclinical and prodromal AD (Scheff 

et al., 2016). Although the cause and effect relationship between ROS and A in cellular/

synaptic dysfunction is still a matter of debate in the field of neurodegenerative disorders 

(Mattson, 2011), both variables likely influence outcome, including risk for AD, after TBI. 

ROS production increases after TBI and could contribute to DNA damage, protein and lipid 

peroxidation, mitochondrial dysfunction and cell death (Hall, 2015). At the level of the 

NVU, pathological levels of ROS can induce cell death and disrupt the BBB (von Leden et 

al., 2016). In aging, mitochondria dysfunction and reductions in antioxidant enzymes 

increase oxidative stress at the NVU, in part through peroxinitrite formation (van der Loo et 

al., 2000) resulting from the interaction of endothelial cell derived NO and superoxide. 

These mechanisms could be exacerbated in the presence of Aβ or, conversely, promote brain 

accumulation of Aβ. The connection between Aβ and oxidative stress after TBI was 

examined in nine month old Tg2576 mice (prior to plaque deposition in this model) and wild 

type littermates subjected to rmTBI. In this study, Trojanowski and colleagues (Uryu et al., 

2002) detected increased Aβ concentrations and deposition, increased levels of lipid 

peroxidation, and cognitive impairment in transgenic but not wild type mice (Uryu et al., 

2002) and suggested that brain Aβ accumulation and oxidative stress could work 

synergistically after TBI to increase the risk for AD (Uryu et al., 2002). Collectively, ROS 

appear to be pathologically active in TBI, aging, and AD and should be targeted by therapies 

aiming to break the link between brain injury and AD.

5.4. Apoptosis

Apoptosis is an important cell death mechanism in TBI (reviewed in (Bramlett and Dietrich, 

2015)). Pro-apoptotic molecules such as cytochrome-c and apoptosis inducing factor are 
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released from damaged mitochondria and activate caspases in injured axonal segments, 

contributing to cytoskeletal damage. Increased Aβ production after TBI could contribute to 

the induction of apoptosis through caspase activation (Allen et al., 2001; Nishimura et al., 

2002; Uetsuki et al., 1999) which could, in turn, promote amyloidogenic processing of APP 

(Gervais et al., 1999). Enhanced caspase cleavage of APP after TBI or in aging leads to Aβ 
over-production and could contribute to the pathological link between TBI and AD (Stone et 

al., 2002; Zhao et al., 2003). Interestingly, Koliatsos and colleagues reported that in subjects 

with no cognitive impairment (NCI), there is little if any evidence of apoptosis in the 

absence of Aβ pathology, however apoptosis is present in NCI cases with Aβ plaques (a sign 

of pre-clinical AD) and is markedly increased in AD brains, (Troncoso et al., 1996). 

Although unexplored, the implications of these observations are that TBI patients who 

develop Aβ plaques could exhibit greater neuronal loss, and with aging this could lower the 

threshold for clinical manifestation of AD. We investigated, albeit indirectly, the effects of 

caspase-cleaved APP and human Aβ on outcome after TBI (Abrahamson et al., 2006), and 

observed increased levels of APP, caspase-cleaved APP, and Aβ monomers/oligomers after 

severe CCI injury in hAβ KI mice. Pan-caspase inhibition immediately after CCI injury 

reduced levels of both caspase-cleaved APP and Aβ and improved histological outcome 

(Abrahamson et al., 2006), suggesting that targeting caspases after TBI could reduce injury-

induced AD-like pathology. Aging, when superimposed on TBI, could enhance apoptotic 

response to brain injury and this could impair neurological outcome. In support of the notion 

that aging can exacerbate injury-induced neuronal degeneration, FPI produced higher 

number of TUNEL positive neurons in aged rats when compared to juvenile rats (Sun et al., 

2013).

5.5. Neuroinflammation

Aging is associated with a shift to a pro-inflammatory state (Godbout and Johnson, 2009; 

Sandhir et al., 2008), enhanced microglia reactivity (Yu et al., 2002), and microglia 

senescence (Neumann et al., 2009; Streit et al., 2008). Microgliosis and reactive astrocytosis 

accompany amyloid lesions in AD, and they are potentially involved in Aβ-related 

neurodegeneration after TBI. Astrocyte signaling mechanisms are activated after TBI, and 

are associated with heterogeneous morphological changes determined in part by injury 

severity (reviewed in (Burda et al., 2016)). Van Eldik and colleagues observed that closed 

head injury produced a delayed but enhanced and persistent astrocytic response in hAβ KI 

mice with the PS1 mutation compared to wild type mice (Webster et al., 2015). Moreover, 

greater plaque load was detected in hAβ KI/PS1 mice after TBI compared to sham-operates, 

and the degree of astrocyte activation was also greater in injured transgenic mice compared 

to transgenic sham operates and injured wild type mice. These results suggest a relation 

between injury-induced Aβ changes and astrocyte activation after TBI. These processes 

could contribute to clearance of cell debris and neurovascular remodeling (Burda et al., 

2016) and involve several receptors including toll-like receptors (TLRs) and RAGE. 

Astrocytes are capable of internalizing and metabolizing Aβ (Wyss-Coray et al., 2003), 

possibly through Aβ binding to the low density lipoprotein receptor-related protein 1 (Thal, 

2012). After TBI astrocytes release inflammatory mediators including cyclo-oxygenase-2 

and metalloproteinases, also active in AD (Phillips et al., 2014), and could play a role in 

sequestering toxic Aβ.
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Microglia have the potential to be beneficial or detrimental after TBI, depending on their 

polarization/characterization as M1 (pro-inflammatory) or M2 (immunosuppressive), 

reviewed in (Loane and Kumar, 2016). Different phenotypes of microglial activation and 

related neuroreparatory versus neurotoxic processes need to be explored in relation to Aβ 
changes after TBI. In adult hAβ KI mice subjected to CCI injury we observed a rapid 

(hours) and sustained (weeks) increase in microglia immunoreactive for ionized calcium 

binding adaptor molecule 1, and the course of this reactive process corresponded to 

increased accumulation of human Aβ and loss of synaptophysin immunoreactivity in the 

cortex and hippocampus (Abrahamson et al., 2009). Similarly, more pronounced microglia 

reaction and more sustained memory impairment after closed head injury were reported in 

hAβ KI/PS1 mice compared to wild-type mice (Webster et al., 2015). Recent research 

supports combined effects of TBI and aging on microglia function. Aging can affect 

microglia function after TBI (Lourbopoulos et al., 2015), possibly reflected by 

morphological changes (Harry, 2013), which could influence outcome at different stages of 

recovery (Hefendehl et al., 2014; Norden et al., 2015). For example, in the aging brain the 

microglia profile changes into a primed (inflammatory) state which involves an exaggerated 

cytokine (IL-1β) response and increased expression of inflammatory (IL-1β, TNF-α) as well 

as immune (MHC II) markers, similar to what occurs after TBI and in AD (reviewed in 

(Norden et al., 2015)). Furthermore, aging impairs the ability of microglia to internalize Aβ, 

despite their preserved ability to adhere to Aβ fibrils both in situ (plaques) and isolated in 

vitro (Floden and Combs, 2011). Aging-related impairment in Aβ clearance from brain may 

explain greater vulnerability to neurodegenerative processes after injury in the aging brain 

(Harry, 2013). Animal studies also demonstrate that after TBI, peripheral monocyte 

infiltration and activation is greater in aged mice (Morganti et al., 2016). Thus, inflammatory 

processes activated after TBI may be exacerbated by aging-related pathophysiology and this 

could result in chronic neuroinflammation conferring greater risk of developing AD later in 

life.

6. Summary and conclusions

There is substantial evidence linking TBI to increased risk for AD and supporting a role for 

disordered APP metabolism and aging in this relationship. It is also becoming clear that both 

severe TBI and rmTBI involve complex polypathologies, with Aβ and tau changes occurring 

in different proportions at different time points after injury, and can also include aggregates 

of other proteins linked to chronic neurodegenerative diseases (e.g., TDP-43, alpha-

synuclein). In this regard, future studies should strive to explore a wider array of 

aggregation-prone molecules, and employ more diverse assessment approaches to investigate 

pathological molecular changes not readily detectable in routine diagnostic neuropathology 

workups (e.g., soluble Aβ and tau oligomers). Studies of TBI should also define the time 

window of opportunity for treatments prior to advanced age when risk is greater for 

sustained accumulation of pathological protein aggregates, neuronal degeneration, and 

cognitive and behavioral changes. These treatments should aim to suppress prolonged 

accumulation of Aβ and tau, and also prevent or attenuate pathological effects of these 

molecules on cellular components of the NVU. Ideally such strategies would supplement 
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neuroprotection-focused therapies and advance the efforts to break the link between TBI and 

AD.
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Fig. 1. 
A–D: Brain tissue sections from a temporal cortex biopsy resected 12 h after severe TBI in a 

39-year old subject from the University of Pittsburgh Brain Trauma Research Center 

(BTRC) were processed for immunohistochemistry using antibodies against the Aβ 
precursor protein (APP; polyclonal antibody anti-6, Athena), Aβ (antibody clone 10D5, 

Elan), and p-tau (antibody clone PHF-1, P. Davies, Albert Einstein College of Medicine). 

After severe TBI, APP accumulates in axons in the white matter (A), in cell bodies of 

pyramidal neurons in the grey matter (B), and Aβ deposits in diffuse Aβ plaques (C and 

inset). Rare profiles of phosphorylated tau (p-tau) immunoreactive fibers are detected in the 

gray matter (D; brown color is p-tau immunoreactivity, blue color is hematoxylin 

histological counterstain). E: Aβ1–42 peptide (Aβ42) concentrations (ELISA, Biosource) in 

cerebral spinal fluid (csf) from severe TBI patients (from the University of Pittsburgh 

BTRC; average age = 35.8 ± 15.7, range 17–65) at one, two, and three days after injury and 

from end-stage AD patients (from the University of Pittsburgh Alzheimer’s Disease 

Research Center; average age = 76.3 ± 10.2, range 63–91) are similarly reduced relative to 

levels in csf from cognitively normal control subjects (average age = 56.8 ± 14.5, range 25–

78). *p < 0.05, **p < 0.01, ***p < 0.001 (Bonferroni multiple comparison post hoc test). 

Abbreviations: Aβ, amyloid-β; APP, Aβprecursor protein; p-tau, phosphorylated tau.
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Fig. 2. 
Immunohistochemical analysis of hippocampus CA1 (A–F; I–L) and pericontusional 

somatosensory cortex (G, H) in human Aβ knock-in mice free of TBI (Naïve; A, C, E, G, I, 

K) and two weeks after severe controlled cortical impact injury (CCI; B, D, F, H, J, L). 

Tissue sections were immunoreacted with antibodies recognizing amyloid precursor protein 

(polyclonal anti-APP antibody CT695, Biosource; A, B), Aβ peptide (polyclonal anti-Aβ42 

antibody, Millipore; C, D), Aβ oligomers (antibodies clones NU1/NU2, generous gift from 

W. Klein, Northwestern University; E, F and G, H), total tau (polyclonal anti-Tau antibody, 

Dako; I, J), and phosphorylated tau (biotinylated antibody clone AT8, Thermo, p-tau; K, L). 

Each marker is detected at low levels in naïve mice and prominently after CCI injury.
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Fig. 3. 
Flow diagram illustrating concepts discussed in the current review, including the interaction 

between TBI and aging in relation to neurovascular dysfunction as precursors to, or risk 

factors for AD. In addition, genetic predisposition and epigenetic factors can influence 

pathways toward recovery or chronic pathology. Abbreviations: Aβ, amyloid-β; BBB, blood 

brain barrier; CBF, cerebral blood flow; CVD, cerebrovascular disease; NVU, neurovascular 

unit; TBI, traumatic brain injury.
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Fig. 4. 
Confocal microscopy analyses of dendritic spines double immunolabeled using antibodies 

against spinophilin (polyclonal anti-spinophilin antibody, Millipore; green, A–D) and 

phalloidin (f-actin probe, Thermo; red, A–D) and presynaptic terminals immunolabeled with 

anti-synaptophysin antibody (polyclonal anti-synaptophysin antibody, Thermo; green, E–H) 

in the hippocampus of naïve (uninjured) wild type mice (line C57Bl/6, A, E) and naïve 

(uninjured) human Aβ (hAβ) knock-in mice (C, G) compared to CCI injured wild type mice 

(B, F) and hAβ mice (D,H) with 21 days survival. Blue fluorescence is DAPI counterstain. 

CCI injury results in loss of both spinophilin/phalloidin positive dendritic spines and 

synaptophysin positive presynaptic terminals, and the extent of this loss is greater in hAβ 
mice when compared to wild type mice.
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