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ABSTRACT
Genomic heterogeneity of bacterial species is observed and studied in experimental
evolution experiments and clinical diagnostics, and occurs as micro-diversity of natural
habitats. The challenge for genome research is to accurately capture this heterogeneity
with the currently used short sequencing reads. Recent advances in NGS technologies
improved the speed and coverage and thus allowed for deep sequencing of bacterial
populations. This facilitates the quantitative assessment of genomic heterogeneity, in-
cluding low frequency alleles or haplotypes. However, false positive variant predictions
due to sequencing errors and mapping artifacts of short reads need to be prevented.
We therefore created VarCap, a workflow for the reliable prediction of different types
of variants even at low frequencies. In order to predict SNPs, InDels and structural
variations, we evaluated the sensitivity and accuracy of different software tools using
synthetic read data. The results suggested that the best sensitivity could be reached
by a union of different tools, however at the price of increased false positives. We
identified possible reasons for false predictions and used this knowledge to improve
the accuracy by post-filtering the predicted variants according to properties such as
frequency, coverage, genomic environment/localization and co-localization with other
variants. We observed that best precision was achieved by using an intersection of at
least two tools per variant. This resulted in the reliable prediction of variants above
a minimum relative abundance of 2%. VarCap is designed for being routinely used
within experimental evolution experiments or for clinical diagnostics. The detected
variants are reported as frequencies within a VCF file and as a graphical overview of
the distribution of the different variant/allele/haplotype frequencies. The source code
of VarCap is available at https://github.com/ma2o/VarCap. In order to provide this
workflow to a broad community, we implemeted VarCap on a Galaxy webserver, which
is accessible at http://galaxy.csb.univie.ac.at.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Genomics, Microbiology
Keywords Experimental evolution, Variant calling, Microbial populations, Variant frequencies,
SNPs, InDels, Structural variations, Galaxy, Next Generation Sequencing, Chlamydiae

INTRODUCTION
The genotyping of heterogeneous populations of one prokaryotic species is an increasingly
important method to address microbiological questions regarding population composition
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Figure 1 The dynamics of a bacterial population. Alternate alleles arise over successive generations.
They encounter positive or negative selection and bottlenecks, which shape the diversity landscape of a
population over time.

and dynamics under prevalent selective pressures. This approach is, for example, used in
experimental evolution (EE) experiments (Barrick & Lenski, 2013) and studies of host—
pathogen systems (Gardy et al., 2011; Bos et al., 2011; McElroy, Thomas & Luciani, 2014).
Recent developments in Next-Generation-Sequencing (NGS) technologies allow for
sequencing at high coverage within a short timeframe, however limited to short read length.

The classical approach of assembling genomes out of short DNA reads preferably recon-
structs the most abundant genotype into genome contigs and scaffolds. In order to retrieve
haplotype frequency information, reads need to bemapped onto the assembly or a reference
genome. Variant calling is then performed on the alignment of the reads. The predicted
variants can be phased into haplotypes or alleles if a whole haplotype reconstruction is not
possible due to insufficient linkage of the variant sites. The variant prediction, however,
can lead to false positives due to sequencing errors, such as InDels and substitutions. The
reads may be misplaced during mapping due to their short length and thus can lead to
false positive variant calls (Li, 2014). Sequencing errors can be partially reduced by quality
filtering and error correction (Yang, Chockalingam & Aluru, 2013). As a consequence, the
substitution error rate for Illumina could be decreased below one percent while InDel
homopolymer errors showed to accumulate logarithmically with the length of the stretches
(Minoche, Dohm & Himmelbauer, 2011) and can thereby be reliably identified.

In evolving populations, we expect a heterogeneousmix of variant alleles (Fig. 1).Most of
the genotyping studies of prokaryotes so far have been done by resequencing of clonal bac-
terial cultures (Maharjan et al., 2013; Blount et al., 2012). The technique of deep sequencing
of non-clonal populations, named Pool-seq, was mainly done for metagenomic profiling
of communities (Qin et al., 2010) and only to a minor extend for the characterization of
allele frequencies (Eyre et al., 2013; Khan et al., 2011; Köser et al., 2012; Pulido-Tamayo et
al., 2015). The genotyping of non-clonal variants in heterogeneous populations, however,
remains challenging (DePristo et al., 2011; Nielsen et al., 2011; Kofler & Schlötterer, 2014;
Pulido-Tamayo et al., 2015).

In order to get a most complete picture of the different haplotype or allele frequencies, it
is fundamental to use Pool-seq and exploit high coverage sequencing data to detect all types
of variants, which are SNPs, InDels and structural variations (SV). One way to deal with
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this is to integrate several variant calling software tools, which utilize different approaches
for the detection of the different kinds of variants.

Commonly used tools to identify SNPs are SAMtools/bcftools and GATK (Li et al., 2009;
McKenna et al., 2010). These tools were developed with the assumption to detect variants
within diploid organisms, which limits their detection power for haploid prokaryotes.
Therefore we also considered the more generic tool VarScan2 (Koboldt et al., 2012), which
can predict SNP frequencies in low and high coverage data and some specialized tools
for variant prediction within high coverage data, such as LoFreq-Star (Wilm et al., 2012),
Breseq (Barrick et al., 2014) and FreeBayes (Garrison & Marth, 2012). Here we used Lofreq-
Star, as a previously published evaluation showed it to be superior to Breseq in terms of
sensitivity (Wilm et al., 2012).We also evaluated FreeBayes which is widely used in Pool-seq
experiments for eukaryotes with known pool size but can also analyze a bacterial population
with unknown pool size. The tools all work on read alignments ormpileup files and use read
and mapping quality scores as well as strand bias filters to reliably detect SNPs. In addition
SAMtools/bcftools and VarScan2 and FreeBayes can also be used to identify small InDels.
Pindel (Ye et al., 2009) uses a pattern growth algorithm to detect small and large InDels
from 1 bp up to 10 kb. Large InDels and structural variations (SV), such as translocations,
duplications and inversions, are detected by Breakdancer and Delly (Chen et al., 2009a;
Rausch et al., 2012), as they make use of insert size deviations, paired end information and
split read information to find variations larger than 300 bp. As an alternative, Cortex_var
(Iqbal et al., 2012) does not rely on mapped reads but uses de novo assembled contigs,
which are compared to each other or to a reference in order to identify most kinds of
variants. All those approaches have been designed for different degrees of zygosity, ranging
from diploid genomes to multiploid populations with low abundant genotypes.

The genotyping of prokaryote populations in experimental evolution experiments is
typically based on many NGS datasets with high coverage. There is therefore a demand for
fully automated software for read mapping and variant calling, which is both sensitive and
accurate, aware of low abundant subpopulations, and which considers all possible types of
variants. To the best of our knowledge, no such software workflow has been published so
far. In this study we have evaluated variant callers on synthetic data in order to determine
and compare their sensitivity and accuracy. This allowed us to develop and validate VarCap,
a workflow for accurate and sensitive genotyping of prokaryotic populations. Finally, we
applied VarCap to a long-term experimental evolution experiment of a bacterial symbiont
of amoebae.

METHODS
Creating synthetic variant genomes
Ideally, the organism selected for simulation should exhibit generic properties that make
the results applicable for most prokaryotes. In our simulation and evaluation of the variant
detection prototype, however, we decided to pick the non-model organism Protochlamydia
amoebophila. It offered the unique opportunity to experimentally validate variant predic-
tions immediately during the software development. In addition, P. amoebophila exhibits
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typical properties as its genome size of 2.4 Mb is close to one of the main peaks in the bacte-
rial and archaeal genome size distribution (Koonin & Wolf, 2008). For validation purposes,
we additionally used 6 different organisms that we selected to represent the diversity of
prokaryotic genomes regarding G + C contents and genome size.

Variant datasets were created by randomly inserting different types of variants into refer-
ence genomes downloaded from the NCBI Refseq database (Pruitt et al., 2012) (Table S1).
We used a SNP/InDel ratio of 10 for small InDels and 20 for all InDels, as SNP/InDel ratios
for bacterial genomes were often reported between 15 and 20 (Moran, McLaughlin & Sorek,
2009; Chen et al., 2009b). We also included large InDels, because large insertions hereby
also mimic the process of horizontal gene transfer. As structural variations are reported
to be crucial for bacterial genome evolution, we also added few translocation, duplication
and inversion sites to challenge the detection software.

We created mixed types of datasets containing 135 variations, as well as datasets contain-
ing one specific type of variant. The 135 variants of the mixed type dataset consisted of 100
SNPs, 10 small InDels, 10 large InDels and five translocations, five duplications (including
one double duplication) and five inversions (Set: sim_135VAR, Table S1).

The 100 SNPs were placed as single SNPs and mutation hotspots. Therefore, the SNPs
were positioned as single seeds, to which the other SNPs were randomly assigned with
decreasing probability. The maximum number of SNPs within a hotspot was four, which
were randomly placed within a distance of 4–60 bases. The size of the large InDels was
randomly chosen between five and 2,000 nucleotides, while the size of translocations,
duplications and inversions varied from 300 to 2,000 nucleotides. The datasets harboring
only one type of variant contained either 100 SNPs, 100 small InDels, 100 large InDels,
50 translocations, 50 duplications or 50 inversions (Sets sim_100SNP, sim_100IndS,
sim_100IndL, sim_50ITX, sim_50DUP, sim_50INV).

ALFSim is a genome evolution simulator and was used (Dalquen et al., 2012) to simulate
the evolution of more distantly evolved subpopulations. Therefore, coding and intergenic
nucleotide sequences according to the genome annotation were extracted from the genome
reference fasta file. This extracted sequences served as input for ALFSim. From the ALFsim
output, we selected a simulated subspecies having a nucleotide dissimilarity of 0.8%
resulting in 21,000 SNPs, 100 InDels and three duplications. The resulting fasta file was
used for read simulation, construction of a heterogeneous population and prediction of
variants.

Sequencing read simulation
We used SimSeq (https://github.com/jstjohn/SimSeq), version from 4.12.2011, (Earl et
al., 2011) and pIRS (Hu et al., 2012) for the simulation of 100 nucleotides (nt) paired end
Illumina reads. The reads were simulated with an insert size of 250 nt and an insert size
standard deviation of 10, 20 and 30%. For pIRS we used the supplied error model, while for
SimSeq the updated empirical error models for forward and reverse strand were used
(hiseq_mito_default_bwa_mapping_mq10_1_Corrected.txt, hiseq_mito_default_bwa_
mapping_mq10_2_Corrected.txt).We simulatedminor allele frequencies (MAF) bymixing
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simulated reads from the original reference with simulated reads from the variant datasets.
We created MAF of 40, 20, 10 and 4%.

Sequence read processing and mapping
The quality of the simulated reads was determined using FastQC (v0.10.0, Patel & Jain,
2012). The quality filtering and trimming of the simulated and the sequenced readswas done
by Prinseq-lite (0.19.5, Schmieder & Edwards, 2011) and Trimmomatic (0.32, Bolger, Lohse
& Usadel, 2014) and applied with the following settings: first a sliding window with size 10
removed any bases with lower quality than 20 starting from the 3′ side by cutting off the
read part containing the low-quality bases. The sliding window approach has the advantage
that low quality bases are also removed within the read and not only at the end (which is
done, if read trimming is done only from the 3′ of 5′ end). We removed all reads shorter
than 40 nt. To remove low quality reads, we discarded any read with an average Phred
score below 30. Only read pairs were kept. These reads were mapped against the reference
genome using bwa-mem (bwa-0.7.5a, Li, 2013; Li & Durbin, 2009) with standard settings
and stored as bam files. For conversions from sam to bam files and from bam to fastq files
(as Cortex_var input), we used SAMtools (0.1.18, Li et al., 2009) and Picard Tools (v1.92,
http://picard.sourceforge.net/).

Mapping artifacts
In order to emulate mismapped reads due to an incomplete reference genome, we mapped
reads that were generated from an updated (newly assembled) reference genome back to
the older and about 20 kB shorter version and to the current version. This dataset did not
contain any simulated variants.

Variant calling
In order to assess true and false positive variant detection rates, artificial non-clonal
populations containing SNPs, InDels and SV at abundances of 40%, 20%, 10% 5%
and 2% were simulated. We used SAMtools/bcftools (0.1.18, Li et al., 2009), GATK-
lite (Genome AnalysisTKLite-2.2-8, McKenna et al., 2010), VarScan2 (2.3.6, Koboldt
et al., 2012), LoFreq (0.6.1, Wilm et al., 2012) and LoFreq2 (lofreq-star 2.0.0 beta 1,
https://github.com/CSB5/lofreq). For the detection of small InDels we used VarScan2
and Pindel (024t, Ye et al., 2009). For large InDels and structural variations (SV) we used
Pindel which is described to work well between on variations between 1 and 1,000 nt,
breakdancer (breakdancer-1.1_2011_02_21, Chen et al., 2009a) and delly (0.0.11, Rausch et
al., 2012) (both start calling SV at 300 nt). Additionally, we used the assembler cortex_var
(CORTEX_release_v1.0.5.14, Iqbal et al., 2012), which can detect variations by comparing
assembled contigs to a reference genome sequence. The sensitivity and precision of the
combined workflow were calculated as: sensitivity = TP/(TP + FN), and precision =
TP/(TP+ FP). The TP, FP and FN are measured per variant, giving e.g., a SNP and a large
deletion event the same weight.

Setting the minimum abundance for a variant
In order to call a variant, it has to be present within a minimum count of sequencing reads.
Some variant callers need a variant to be present on 4–8 reads, so we set eight reads as the
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minimum absolute abundance (MAA). However, as read coverage slightly varies along the
genome, we also used minimum relative abundance (MRA), which is the percentage of
variant reads compared to the total coverage. So, a MAA of eight reads corresponds to a
MRA of 2% at 400× total coverage.

Examining the similarity of repetitive regions
We used the edit distance in order to measure the similarity of repetitive regions. The
edit distance measures the similarity of two sequences by counting the differences between
them. This difference can be a substitution, insertion or deletion of a nucleotide. Therefore,
an edit distance of one means that two sequences differ in either a substitution, insertion
or deletion of a nucleotide.

Analysis of a long-term experimental evolution experiment
We applied the VarCap workflow to a long-term experimental evolution experiment
in order to evaluate its performance on Illumina PE data. Two independent laboratory
cultures of the amoeba symbiont Protochlamydia amoebophila were subjected to NGS
sequencing using the Illumina Genome Analyzer II platform (100 bp PE reads, 250 bp
insert size, 3,000× coverage, 250 bp insert size) about nine years after its genomewas initially
sequenced by Sanger sequencing (Horn et al., 2004) (SRA: SRR5123091). For analysis, the
obtained Illumina reads were randomly split into replicate read packages with 250-fold
coverage each and utilized to detect variant sub-populations at different abundances.

PCR verification of variations
To verify the variations at positions 1339224, 1339720, and 1338568 in the genome of P.
amoebophilawe amplified the region 1338371-1339843 by PCRusing the primers LS0003 5′-
AGCTGCATCATTTATCTTCTAG-3′ and LS0004 5′-ATCAGTCCACCTACTATCATG-3′.
The obtained 1,472 bp fragment was cloned into the pCR4-TOPO vector (Invitrogen).
Subsequently, 16 of the obtained colonies were picked, and the presence of variations in
the cloned amplicons was checked. Clones were sequenced by Sanger sequencing with the
primers T3 and T7. Similarly, 14 putative variations in a repetitive region between positions
1533689 and 1534636 were assessed using the primer pair LS0005 5′-TCTCTAGCTCT
TTCGCAAATTG-3′ and LS0006 5′-CAGTGTTTAACTGGCTGAAAC-3′.

A Galaxy instance of VarCap
We simplified the use of VarCap for non-experts to a 3-step process facilitated by ourGalaxy
server (Afgan et al., 2016): (I) Create account and login, (II) Upload your data to Galaxy
and (III) Run the VarCap workflow. After the workflow is finished, the user is informed
via Email notification. The results are viewable at and downloadable from the website. The
output files consist of a VCF file with a detailed description of the variants as wells as
two PDF files, which contain overview information about variant and total coverage and
frequency information.
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RESULTS
Determination of methods capable of sensitive detection of low
abundant variations
Evaluation strategy
At the moment, there is no software tool or method that could detect all different types
of variants simultaneously which are relevant for prokaryotic genomes. Therefore, we
separately evaluated variant detection tools for SNPs, InDels and structural variants (SV).
Representative methods for these three targets were selected according to their underlying
methodologies. In order to identify the variant calling tools that most sensitively and
reliably detect low abundant variant, we initially utilized our most basic variation model
(sim_135VAR). It incorporates examples of the typical and expected types of variations
in microbial genomes, located in typical distances to each other. From these results, we
constructed a preliminary software framework, which was used as basis for the further
evaluations and improvements.

SNPs
Among the many available SNP calling software tools we have compared LoFreq-Star,
Varscan2, GATK, SAMtools/bcftools, FreeBayes and Cortex_var. All of these tools, except
Cortex_var, rely on the mapping of reads to a known reference. Cortex_var, instead, de
novo assembles variant reads into contigs and thereby detects SNPs. SAMtools/bcftools
and GATK were only designed for homozygous and heterozygous genomes (Yost et
al., 2013), whereas LoFreq-Star, Varscan2 and Cortex_var should be able to detect low
frequency variants from high coverage sequencing data. Variants were simulated at minor
allele frequencies (MAF) of 40%, 20%, 10% and 4% and evaluated at minimum relative
abundance (MRA) cutoffs of 20%, 10%, 5% and 2% accordingly. This means that ideally
all variants present at and above those frequencies should be detected. AtMRAs of 20% and
10%, variants were detected by all SNP calling software tools at a similar sensitivity (Fig.
2A). According to the expectations, the detection rate of GATK and SAMtools/bcftools
was worse compared to the other programs when the MRA was reduced to 5%, 2% and
1% (Fig. 2A). At a low MRA of 1% LoFreq-Star shows less sensitivity than Varscan2. This
is to be expected, as LoFreq-Star generates its own detection threshold based of coverage
and quality to avoid FP and therefore detects no variants below that threshold (Fig. 2A).
The price of the higher sensitivity of Varscan2 at MRA of 1%, however, comes at the
price of elevated FP variant predictions. FreeBayes was able to detect variants at all MRAs
with similar sensitivity (Fig. 2A). However, we observed FP at MRAs of 2% and 1% and
therefore did not include this tool in further analysis.

InDels
Varscan2 and Pindel were used for the detection of small InDels, and Pindel, Breakdancer,
Delly andCortex_var for the detection of larger InDels. For small InDels, theMSA approach
used by Varscan2 should perform at a similar rate as the pattern growth algorithm used
by Pindel. Pindel, however, is designed to detect InDels from 1 to 10,000 bp as it uses a
mapping/pattern growth/split read approach. Therefore, it should be able to detect the
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Figure 2 Analysis of the detection rate of variants with regard toMinimumRelative Abundance
(MRA), variant type and different variant calling software. It shows the detection rate of different SNP
(A), InDels (small denotes small InDel, B) and SV callers (C) with respect to the MRA frequencies of 20,
10, 5, 2 and 1%. For Breakdancer, Pindel, Delly, and Cortex, two values are given: detection rate of all
InDels and specific detection rate for deletion or insertion only.

positions of small and large InDels with base pair precision. Breakdancer and Delly are
designed for the detection of InDels larger than 300 bp. They use paired end read infor-
mation for InDel detection, therefore the position of the large InDels may not be reported
at bp resolution. Cortex_var is expected to be less sensitive because of the de-novo assembly
approach, however it can supplymore information than themapping approaches, including
e.g., position, length and sequence of an insertion.

The detection rate of InDels showed little effect to different MRA values (Fig. 2B)
(except SAMtools/bcftools, see discussion above). Instead, the sensitivity is related to the
methodology underlying the software.We observed that Varscan2 can only detect very short
InDels (1 bp) with the same sensitivity as Pindel, which detected all sizes of InDels with
high precision. According to our expectations Breakdancer should have a diminished
detection rate for large insertions, as it only considers information about insert size deviation
of paired reads and regions with an increased number of anomalous read pairs. We found,
that it detects 100% of all large deletions but misses all insertions. As expected, the assembly
method used by Cortex_var performs inferior compared to the others. However, it was
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one of the only two tools that were able to detect large insertions. It detected one third of
the large insertions and reported the inserted sequence, while Pindel detected the position
of large insertions at a higher rate, but without revealing any details.

Structural variations (SV)
For the detection of SV, we used Pindel, Breakdancer and Delly, and we added Cortex_var
specifically for inversion detection These programs differ slightly in their methodological
approaches. We expected Delly to be superior to Breakdancer because of the additional
split read alignment. Moreover, we expect a limitation of Pindel at larger rearrangements,
because the pattern growth algorithm is used within defined limits (up to 10 kb). All tools
should be able to detect inversions; however, they are reported as being harder to detect
than other SVs. Breakdancer and Delly detected SV, like duplications and transpositions,
regardless of theMRAwith high sensitivity (>90%).As expected, the detection rate of Pindel
is lagging behind (80%) according to of the suggested internal limits of 10 kb. However,
the pattern growth method of Pindel was more precise in terms of position and length of
the SV as it always hit the exact starting position while Breakdancer and Delly can be off
up to 70 bases (Fig. 2C). We additionally found that large InDels were called at the sites of
translocations events (Fig. 2C). This is not entirely unexpected, as a translocation consists
of an excision and the consecutive insertion of the excised genomic fragment. The excision
can also be seen as a deletion of a fragment and is therefore a partial detection of a more
complex type of variant.

Inversions, however, could only be detected at a minor fraction as break positions by
Pindel (70% as break positions) and as inversion by Cortex_var (10%) (Fig. 2C inv).

Selected software tools for VarCap
We use LoFreq-Star and Varscan2 for SNPs and Varscan2 and Pindel for small InDels
for composing VarCap because they showed similar sensitivity although using different
methodological approaches. For larger variants or SV, we observed that a combination of
pattern growth, split read and paired end read information approaches, which are used
by Pindel, results in high sensitivity. This method works well within defined limits (1–10
kb). By using only paired end information (Breakdancer), it is possible to detect larger
variants at the cost of a lower length limit (300 bp) and a coarser resolution of the variant
position. Cortex_var, however, was inferior in sensitivity but revealed more information
about the detected variants by using a de-novo approach. This information can be used to
correctly identify the type, position, length or sequence of the variant. Therefore, we use
Pindel, Breakdancer and Cortex_var for large InDels and Breakdancer, Delly, Pindel and
Cortex_var for SV.

Due to the different variant calling abilities of the different tools at low frequencies,
we combined different tools to increase the sensitivity (Fig. 3A). Beyond sensitivity, we
also monitored the precision of the different tools for each type of variant in order to
avoid methods that have excessive numbers of FP (Fig. S1). As a consequence, Cortex_var
was used to predict InDels and inversions but not for SNPs as it accumulated many false
positive SNPs in certain areas at low frequencies. We also discontinued to use FreeBayes
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Figure 3 Detection capabilities of different tools at low frequencies. (A) shows the variant types that
were successfully detected by the different software tools while (B) shows the post filtering steps to elim-
inate false positives. The post filtering step generates 2 output files: one file includes the union of all vari-
ants, while the other contains the intersection of variants (except break positions (BP) and large insertions,
which are also reported as single calls).

for SNP calling, as it showed low precision at MRAs of 2% and 1%. Taking together all
selected software tools, we were able to detect all variants, except inversions, at a MRA of
down to 2% with high sensitivity (Fig. 4).

VarCap—a variant calling workflow with high sensitivity and
specificity
False positives due to sequencing errors
False positives occur due to sequencing errors, which are typically present at and below a
rate of 1%, therefore we expect them to cause FP calls at and below this relative abundance.
In order to study the influence of sequencing errors on different software detection tools,
we analyzed seven differentially composed samples and focus on MRAs of 2% and 1% as
this seems to be the critical boundary for FP prediction (mono_02-07). At a MRA of 2%
we observed a false positive rate for SNPs, small InDels and Duplications of 0.5 to 1 FP per
Megabase (Mb) (Fig. S2B: MRA 2). At a lower MRA of 1%, we observed an increase in FP
(Table 1). At an MRA of 1%, we could nearly completely find all types of variants, except
inversions, which we could identify at a rate of 95%. However, the false positive rate for
SNPs increased to 80 FP perMb, while the FP rate for other variants stayed below one FP per
Mb (Figs. S2A, S2B: MRA 1). This clearly demonstrates that false positive SNPs are caused
by sequencing errors, while the other types of variants stayed at the low rate (∼1FP/Mb).

In order to get more insights about the other FP, we examined them in detail at both
MRAs. We found that FP of small InDels locate within repetitive regions of the genome.
These regions are almost identical areas of the genome at a size that is longer than the insert
size of the reads and have an edit distance of three or less. Due to their similarity, variant
reads can be mapped to similar regions and cause FP calls there.

In order to evaluate how MAA and coverage influence the FP rate, we simulated
sequencing coverage from 80 to 1600× (using the sim_135VAR dataset) and used MAAs
from four to 20 to remove FP from the unfiltered variant predictions (Fig. 5). For each
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Figure 4 Average detection rates and standard deviation of all callers for variants simulated at a MAF
of 4% and aMRA cutoff of 2%. The variant detection rates are shown in percent for all variants (ALL),
only SNPs (SNP), only InDels (IND), duplications and translocations (ITX/DUP) and inversions (INV).
The results show the expected sensitivity of VarCap, as we use a MRA of 2% as a default setting to avoid
false positives.

Table 1 Detection sensitivity and precision of the combined workflow for a different number of
callers and at different simulated minor allele frequencies (MAF) andminimum relative abundance
(MRA) cutoffs. The table shows the numbers for the observed true positives (TP), false negatives (FN),
false positives (FP), sensitivity and precision of the combined workflow at MRAs of 10, 5, 2 and 1% under
the requirement that either one or two callers (Min Caller) had to confirm each variant.

20 10 139 2 0 0,986 1
10 5 137 4 0 0,972 1
4 2 138 3 0 0,979 1

1

4 1 141 0 1,238 1,000 0,102
20 10 135 6 0 0,957 1
10 5 133 8 0 0,943 1
4 2 133 8 0 0,943 1

2

4 1 135 6 0 0,957 1
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Figure 5 Influence of total coverage andMAA on FP rate. The table numbers show the FP per Megabase
in context to coverage and MAA while the different colors indicate the corresponding MRA levels. We
simulated MAFs of 20, 10, 4, 2 and 1% (using the sim_135VAR dataset) and detected at MAA cutoffs from
four to 20 bases to support a variant.

coverage/MAA setting. we report the resulting calculatedMRA.We report the FP rate as FP
per Mb, as with this normalization step we are independent of the genome size. Otherwise
a 4 Mb sized genome would produce twice as many FPs as a 2 Mb genome. We detected,
that it is necessary to use an MAA cutoff in addition to an MRA cutoff to avoid FP calls at
lower coverages (Fig. 5, see FP counts at MRA2 at coverage 160×).

FP due to mismapped reads
Mismapped reads have been reported as the cause of FP (Li, 2014). Therefore, incomplete
reference genomes lead to reads getting mapped to similar regions and cause FP calls there.
To review this finding at aMRA of 2%, wemapped reads without variants back onto an arti-
ficially shortened reference genome. We observed∼180 FP SNPs/75 FP per Mb which were
present at different abundances (20%, 8%, 3%) and grouped into hotspots (Fig. 6A). False
positive variants were not observed when mapping the reads to the correct reference
(Fig. 6B). This finding strongly supports our assumption that wrongly mapped reads cause
FP variant calls. A closer investigation of the relevant regions revealed the presence of
neighboring break positions, which may indicate both: either a larger structural variation
or mismapped reads due to an incomplete reference genome.

To identify possible false positives due to mismapped reads, we implemented the follow-
ing filtering steps: As suggested in prior discussion of this topic (Li, 2014) we used the cover-
age information at the variant sites to tag possible false positives. However, coverage infor-
mation alone is too coarse for the resolution of low frequent FP. Therefore, we additionally
monitor break positions that flank or reside at the variant positions to identify regions with
mismapped reads. As all FP were present as small clusters or hotspots, we tagged regions
that hosted more than 4 SNPs within a sliding window at the double length of the insert
size and were accompanied by a break position (BP) as possible FP causing regions. With
the application of these filters we could identify and exclude the FP calls (Fig. 6C).

A closer look at inversions revealed that they were mostly not identified as inversions,
but the start and the end point of the inversion were marked as break positions (Table S2).
Break positions occur because only one read of a pair can be mapped, leading to an
accumulation of only forward or reverse reads. They indicate a larger sequence difference
between the reads and the reference and are therefore a more general indicator of a larger
structural variation. Therefore, these calls represent a partial resolution of the variant.
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Figure 6 Coverage plots of simulated and re-sequenced data. The simulated reads without variants were
mapped back to an incomplete reference (A) and the complete reference (B). The blue circles denote the
total coverage along the genome while the green diamonds show the coverage of the FP variants and the
red circles the total coverage at the FP positions. As a comparison, we show the coverage distribution of
sequenced reads against the complete reference in orange in the background of (B). The coverage peaks at
1,220,000 and 2,150,000 are due to additionally mapped mitochondrial reads. The light blue and orange
lines show the average coverage distribution along the genome. A total of 149 of 154 of the FP from 6A
could be tagged and filtered by the properties coverage (COV), within repetitive region (REP), within SNP
accumulating region (SAR) and located close to a break position (BP) as shown in (C), the remaining five
were single calls and thus eliminated by the constraint of two callers per variant.

In order to identify and exclude false positives we apply the following filters: to avoid FP
SNP calls caused by sequencing errors we apply a MRA of 2%. To avoid FP due to reads
mapped to repetitive regions, we mask nearly identical regions according to the properties
described above within the reference genome and tag variants that are found within these
regions. In order to resolve FP that are caused by incomplete detection of the true variant
type, we prioritize larger over smaller variants. Therefore, we assign smaller variants to
larger ones, if they describe a component of the whole variation; for example, large InDel
at excision site of translocation.
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Performance of combined post-processing and filtering in VarCap
We observed that a gain in variant calling sensitivity decreased the precision. Therefore, we
added a post-filtering step to the workflow in order to eliminate possible FP. We incorpo-
rated a post-processing step for each variant that aims to eliminate FP due to sequencing
errors, repetitive regions, partially detected variants and mismapped reads due to reference
incompleteness. As a consequence of the dissimilar variant detection rates of somemethods,
we decided to use more than one tool for each type of variant. In order to gain precision
and robustness, for high confidence variants, we required an intersection of predictions
per variant. Therefore, a variant call had to be supported by at least two different tools.
This step further contributed to an improved precision at lowMRA cutoffs (1%), while the
detection rate was only slightly diminished (Table 1). This finding is backed up by a recent
publication, which made a similar observation regarding the intersection of different tools
(Kofler et al., 2016).

Genotyping of diverse synthetic prokaryotic populations
Detection rates in different genomes
Genomes exhibit different properties, such as G + C content and size, which could
potentially affect the sensitivity and accuracy of variant calling. Therefore, we evaluated our
variant callingworkflowon six different genomes. These organisms consisted of five bacteria
and one archaeon, with differingG+C content ranging from 26 to 72% aswell as a differing
genome size ranging from0.68 to 8.66Mb. Theworkflowwas usedwith aMRAof 2% aswell
as at a MAA of eight reads supporting a variation. In concordance to our previous results
we could detect most of the (simulated) variants (>90%). However, at a MRA of 2% we
could not observe any dependency onG+C content or genome size while theMAA of eight
reads resulted in fewer variant detections at high G + C content and genome size (Fig. 7).
This observation confirmed our previous observations to use aMRA as a general minimum
cutoff for variant detection as it showed little influence to different genome properties.
This, however, does not remove the need for a fixed MAA in case of low coverage regions.

Detection rates in a distantly evolved population
More distantly evolved populationsmay lead to a higher number of variants if they are under
positive selection. This could affect the sensitivity of variant calling. Therefore, ALFSim
(Dalquen et al., 2012) was used to simulate a more distantly evolved population by integrat-
ing evolutionary changes (SNPs, InDels and duplications) into the P. amoebophila genome.
The evolved genome showed a similarity to the reference around 99%, as it contained
around 21,000 SNPs, 100 InDels and three gene duplications.

We evaluated the sensitivity of the variant calling by VarCap at a low abundant
subpopulation of 4%. We used a MRA of 3%, 2% and 1% as well as a MAA of eight reads
(equals a MRA of 2% in a 400× covered genome). Depending on the minimum abundance
requirements, we were able to detect between 90% and 99% of all SNPs, between 74%
and 94% of all InDels and two out of three duplications. The true positive detection rate of
SNPs increased to 98%, while the false positive rate remained below 0.3% when lowering
the MRA from 3 to 2%. However, if we lowered MRA further to 1%, we increased the TP
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Figure 7 Detection rate of variants in various genomes at minimum absolute and relative abundance.
The observed percentage of True Positives is shown for six organisms with differing GC content (A) and
genome size (B). The total coverage is at 400×, the coverage of the subpopulation containing 135 variants
is at 16×. No False Positives were observed at the MAA of eight and MRA of 2%.

rate to 99% while augmenting the FP rate close to 400 FP/Mb (Fig. 8A). At a MRA of 2%
we could locate most FP within repetitive regions and recent duplications (Fig. 8B), while
at a MRA of 1% we detected mainly FP caused by the sequencing error rate (Fig. 8B). At
a MRA of 2%, we were able to detect over 90% of all InDels including all small InDels
(size = 1), without experiencing false positives (Fig. 8A). With regard to duplications we
were able to find two of them at most MRAs, while missing out the shortest one constantly
(Fig. 8C SV(DUP)). These findings confirm that we are able to achieve a high accuracy
even if the evolved genomes are rather dissimilar. However, a novel finding was that also
recent duplications can lead to wrongly placed reads as they are similar to repetitive regions.
Therefore, we also included tagging of duplicated regions as possible regions for FP calls
into our workflow.
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Figure 8 Observed detection rates of variants which were simulated using a genome evolution soft-
ware (ALFSim) and detected at different minimum abundances. Simulated variants included SNPs,
small InDels (INDELS), large InDels (INDEL) and structural variations (SV) as duplications (DUP). (A)
shows the sensitivity at MRAs of 3%, 2% and 1%. (B) shows the False Positives for SNPs as counts per
Megabase at the different MRAs. At these minimum abundances, no FP for InDels and SV were detected.
(C) shows the FP per Megabase after filters have been applied. SNP, Single nucleotide polymorphism; IN-
DEL, Large InDels; INDELS, Small Indels (<10nt); SV(DUP), Duplication.

Detecting variants in a real bacterial population after long term
cultivation
In order to predict variant frequencies within an evolving population, the variant calling
workflow was applied to a long-term cultivation experiment of P. amoebophila. Different
MRA cutoffs from 20% to 2%were used and revealed that variants were present at frequen-
cies down to 2% (Fig. 9A, outer rings). Variants within repetitive regions (Fig. 9A, inner
connective lines) were tagged for further inspection. At a MRA of 2% we observed a total
number of 71 variants, which comprised of 34 SNPs, 20 InDels and 17 structural variants.
The SNPs and small InDels were annotated using SNPEff (Cingolani et al., 2012). This
revealed, that around 83% of them were situated within coding regions (Table S3). At a
MRA of 2% we could find three InDels present at a MAF of 2% and one InDel at a MAF of
3%, which were located within homopolymeric regions of length 10 or longer (Table S4).
Thus, those InDels were tagged as probable FP for further manual inspection.
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Figure 9 Prevalence of variants within a long-term culture with respect to their MRAs. (A) shows the
prevalence of variations at MRAs of 20%, 10%, 5% or 2%, which are visible in the four differently colored
outer circles and the presence of repetitive regions within the reference genome (inner connective lines).
(B) shows a more detailed view of the number of variations found at MRAs of 20%, 10%, 5% and 2%.

For the validation of the variant calling prototype of VarCap we picked three variations
for further analysis that were present at abundances of 4%,11% and 28%, accordingly. We
performed PCR of the regions surrounding the three variants, cloned the fragments into
vectors and picked 16 clones of each variant for Sanger sequencing (Table 2, Files S1–S2).
We were able to detect all three variants and thus could confirm the predictions of the
VarCap software.
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Table 2 Experimental validation of a subset of the predicted variations. Three variant positions at dif-
ferent frequencies were amplified by PCR, cloned and Sanger sequenced for validation.

Position Frequency Clones total Clones supportive Sanger confirmed

1,338,568 28 16 6 Yes
1,339,720 11 16 2 Yes
1,339,224 4 16 1 Yes

DISCUSSION
Population genomics of microbes is most powerful if we meet the challenge of detecting
all types of genomic variations even at low frequency. We therefore developed, evaluated
and validated VarCap, a workflow that allowed us to reliably identify variants even within
low abundant alleles.

Increasing sensitivity
We tested the capabilities of the relevant variant calling tools and observed substantial sensi-
tivity differences between the different methods. In order to improve the overall sensitivity,
we decided to integrate different tools for variant detection into a combined workflow, in
which every variant can be detected by more than one caller.

Increasing precision
As more tools are likely to introduce more errors, we also optimized the overall precision.
Detecting sequencing errors and mismapped reads was key to control the rate of false
positives. When dealing with sequencing errors, we observed that for SNP detection aMRA
cutoff of 2% was sufficient to keep a safety margin to false positives appearing at a MRA
cutoff of 1%. Although we found, that a relative abundance cutoff (MRA) is superior to an
absolute cutoff (MAA). We also observed that a MRA cutoff leads to FP if the read coverage
is too low (<200×). Therefore, we also apply a fixed MAA cutoff of 8 reads to remove
FP at low coverage positions. This implies, that for detecting a subpopulation present at a
MAF of >2% we need a minimum sequencing coverage of 400×. Sequencing experiments
should therefore aim for at least 500× to account for reads removed by quality filtering
and fluctuations in coverage along the genome.

We could not detect any FP InDels within our simulated data but detected several spuri-
ous InDels in homopolymer regions of the re-sequencing experiment. These are probably
sequencing/PCR artifacts that are not introduced by read simulators. Based on our findings
InDels below aMRA of 10% should be tagged as potentially false positive if they are located
within a homopolymeric region (>8 bases).

Mismapped reads can occur within repetitive regions, undetected duplications, or
incomplete reference genomes. Therefore, we flag repetitive regions greater than the insert
size in order to mark variants appearing within these regions for further inspection. Unno-
ticed duplications or incomplete references cause reads to get mapped to similar regions,
which can be observed by higher coverage and/or variant accumulation within these areas.
In order to overcome false positives by misplaced reads, we removed variants that at least
fulfill two of the four following rules: (I) Either variants lie within regions with a coverage
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of 20% above the average and/or (II) if there is a break position detected at or within read
length of the variant site and/or (III) if they lie within a repeat region and/or (IV) if more
than five variants lie within the length of one insert size. The efficiency for FP removal
for each rule may differ among experiments as they dependent on organism, experiment
setup, sequencing and reference quality. Therefore, we strongly suggest to use all rules in
combination for a most flexible removal of FP predictions due to misplaced reads.

Intersection of predictions
We remove FP caused by sequencing errors, Fp due to homopolymer errors and FP due
to misplaced reads for all variant calls generated by the different tools. Furthermore, for
extracting high confidence variants, we performed an intersection of different tools per pre-
dicted variant. Therefore we requested each variant to be confirmed by at least two callers,
except for break positions, inversions and large insertions. Inversions and large insertions
are harder to detect than other variants. Therefore, an intersection would further decrease
their count. Break positions, on the other hand, do not lead to FP predictions. They just
indicate problems inmapping, which can be due to structural variants or incomplete/distant
references.

Limits of variant detection
We observed that insertions and especially inversions were harder to detect than the
rest of the variations. This is not unexpected, as current methods for their prediction need
sufficient support by reads, whichmay get lost at low frequencies. In the simulated evolution
data, we missed the shortest duplication constantly. This may be related to a combination
of callers working at their operational limits (300 bp) and a diverging evolution of the
duplicated sequence due to newly introduced SNPs.

According to our results, we could establish rules for filtering out errors and help with
the interpretation of different types of variations (e.g., SNP, duplications). Using these
rules, we have built a fully automated workflow that reliably predicts rare variants in deep
sequencing data.

CONCLUSION
We created VarCap, a fully automated workflow that allows scientists to rapidly predict
variants within high coverage, short read paired end sequencing data. VarCap automatically
performs quality filtering, mapping, variant calling and post-filtering of the predicted vari-
ants. VarCap can be used for single organism as well as multi organism experiments as long
as fASTA references are provided for the involved organisms (inmultifasta format). In order
to allow a broad community to use VarCap, we implemented VarCap within our Galaxy
server, which is publicly available at http://galaxy.csb.univie.ac.at. VarCap includes default
parameter settings, derived from our evaluation experiments, to keep it as simple as
possible for the user. The estimated runtimes for 2×0.5/1/2 Gb sized samples are around
35/70/150 min (Fig. S3) on an 8 core/32 Gb RAM virtual machine. The output of VarCap
is a VCF file with a detailed description of the variants and two PDF files, which give a
graphical overview of variant coverage and their frequency distribution. VarCap is designed
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to predict different allele frequencies in experimental evolution experiments, and it is able
to detect and report the frequencies of multiple genotypes within clinical samples e.g.,
multiple infections.
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