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Abstract

INTRODUCTION—Drug safety researchers seek to know the degree of certainty with which a 

particular drug is associated with an adverse drug reaction. There are different sources of 

information used in pharmacovigilance to identify, evaluate, and disseminate medical product 

safety evidence including spontaneous reports, published peer-reviewed literature, and product 

labels. Automated data processing and classification using these evidence sources can greatly 

reduce the manual curation currently required to develop reference sets of positive and negative 

controls (i.e. drugs that cause adverse drug events and those that do not) to be used in drug safety 

research.

METHODS—In this paper we explore a method for automatically aggregating disparate sources 

of information together into a single repository, developing a predictive model to classify drug-

adverse event relationships, and applying those predictions to a real world problem of identifying 

negative controls for statistical method calibration.

RESULTS—Our results showed high predictive accuracy for the models combining all available 

evidence, with an area under the receiver-operator curve of ≥ 0.92 when tested on three manually 

generated lists of drugs and conditions that are known to either have or not have an association 

with an adverse drug event.

CONCLUSIONS—Results from a pilot implementation of the method suggests that it is feasible 

to develop a scalable alternative to the time-and-resource-intensive, manual curation exercise 

previously applied to develop reference sets of positive and negative controls to be used in drug 

safety research.
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1. Introduction

An adverse drug reaction (ADR) is a response to a drug which is noxious and unintended at 

a dose that is normally used in humans [1]. ADRs may be distinguished from “adverse 

events” by the identification of a causal relationship to a drug [2]. Approximately 3.6% of all 

hospital admissions are caused by ADRs [3] and 16.88% of patients experience an ADR 

during hospitalization [4]. An older, well cited, publication by Lazarou et al. found that of 

hospitalized patients 6.7% had a serious ADR, 0.32% of which were fatal [5]. Medical 

decision making could be better informed if the level of certainty regarding potential ADRs 

were known.

The product label is a primary method for the drug manufacturer to communicate with 

health providers about the potential effects of drug exposure. However product labels can be 

difficult to read; one label can list many potential adverse events of which not all have the 

same probability of occurring [6], and one active ingredient can be included on multiple 

labels which can provide inconsistent information [7]. In addition to product labels, 

researchers can find ADR information from spontaneous adverse event reporting or 

published peer-reviewed literature (e.g., case reports, summaries from randomized clinical 

trials, and non-interventional observational studies).

Spontaneous reports have been successfully used to detect rare events and to stimulate 

hypotheses about potential associations that warrant further evaluation, but underreporting 

and other biases can limit their utility [8]. While generally providing more detailed 

information than individual spontaneous reports, published case reports also tend to be a 

very limited representation of an unknown fraction of similar events that occur. Clinical 

studies conducted prior to regulatory approval can identify important safety information 

about a drug [9] but are generally focused on drug efficacy in a very well-defined but 

restricted subset of subjects who will eventually have access to the treatment.
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There is increasing attention to the application of non-interventional observational studies – 

using retrospective data from administrative claims and electronic health records or 

prospective data collected in clinical registries – for post-approval medical product safety 

surveillance [10]; however the quality of evidence from these studies is still an active area of 

methodological research [11–14].

Given the wide range of data types, populations, and quality issues, great effort is needed in 

order to summarize the relationship between a drug and condition. In this paper we explore 

automating of assembling evidence from disparate sources into a single repository, 

summarizing it, and applying that knowledge to a real world problem of identifying negative 

controls for statistical method calibration.

In 2014, members of the Observational Health Data Sciences and Informatics (OHDSI, 

http://ohdsi.org) [15] community published a proposal to develop an open-source framework 

to store all relevant sources of pharmacovigilance evidence in a single system [16]. The 

method would merge the evidence sources into a single evidence database and standardize 

the terminology leveraging the Observational Medical Outcomes Partnership (OMOP) 

Vocabularies [17]. One specific purpose for stitching this information together is to use the 

information as a ‘gold standard’ in evaluation of study designs and produce their operating 

characteristics. A pilot version of this method has since been implemented into a system 

named the Largescale Adverse Effects Related to Treatment Evidence Standardization 

(LAERTES) [18–20].

The evidence base integrates evidence about the potential relationship between drugs and 

health outcomes of interest (HOIs) from spontaneous reports, scientific literature, and both 

American and European product labeling. Spontaneous reporting evidence was from the US 

Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS) and 

included counts of reports and proportional reporting ratio (PRR) scores [21, 22]. Evidence 

from the scientific literature was processed in two ways: the first leveraged Medical Subject 

Headings (MeSH) tags in a method described by Avillach et al. [23] and the second used 

relationships semantically tagged Medline abstracts via natural language processing from 

SemMedDB [24]. These two methods are additionally stratified by Medline publication 

types: clinical trials, case report, and all other abstracts (i.e., of type Meta-Analysis, 

Comparative Study, Multicenter Study, or Journal Article). Finally, American product labels 

are parsed by a method developed by Duke et al. [7] and ADRs mentioned in European 

labels are provided by the PROTECT project [25]. Table 1 provides additional details on the 

evidence sources currently included in LAERTES.

Using evidence available in LAERTES, we wanted to quantify the relationship between a 

drug and an HOI. We performed a quantitative assessment of the predictive accuracy of the 

evidence base for discriminating between known positive drug-condition causal 

relationships and drugs known to be unassociated with a condition. This machine-learning 

experiment has direct application for the research community; information on the 

relationship between a drug and HOI (particularly ones that have no association) can be used 

to evaluate pharmacovigilance research study designs and produce their operating 

characteristics. Measuring a study design’s operating characteristics through drug-HOI pairs 

Voss et al. Page 3

J Biomed Inform. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ohdsi.org


that should have no association, and using those characteristics to calibrate statistics 

produced during the study is a recommended practice [12]. Currently, this is a manual 

process. Specifically, the calibration requires identifying drug-condition pairs that are known 

not to have a relationship. An automated method for bringing together and quantifying ADR 

evidence would greatly accelerate the generation of drug-HOI pairs needed for calibration 

purposes. In this paper, we propose that the automation of data processing and classification 

of its evidence can greatly reduce the manual curation currently required to develop 

reference sets of positive and negative controls to be used in drug safety research.

2. Materials and Methods

2.1. Loading Evidence Items into LAERTES

Each evidence item was identified by a drug-HOI pair and loaded into LAERTES with a 

label indicating the source and its “type” (Table 1). For example, “MEDLINE MeSH 

ClinTrial” represents a clinical trial report from MEDLINE that uses the Avillach et al. [23] 

method to identify ADRs. Each piece of evidence was also tagged with a label indicated 

“modality”, i.e., whether the evidence supported a positive or negative association. A piece 

of evidence was also quantified by one of two possible “statistic” values – 1) count (e.g. the 

number of Medline abstracts that support the drug-HOI association) or 2) the proportional 

reporting ratio of the drug-HOI (used only for spontaneous reports). All this information is 

stored in LAERTES in a single table that contains a key for the drug-HOI pair, the type of 

evidence (e.g. FAERS Report Count), the modality, the evidence figure (e.g. count of 

reports), and a URL that can be used to see more details about the underlying evidence 

items. This overall generic structure within LAERTES allows for disparate sources to be 

included and then queried once the data was extracted, transformed, and loaded.

2.2. Terminology Mapping

Table 1 discusses the differences in how evidence on drugs and HOIs are communicated. 

Incoming evidence from source databases to LAERTES ranges from free text (e.g. 

“ALLOPURINOL”) to coding vocabularies (e.g. MeSH Unique ID: D000493 for 

Allopurinol). However, working across evidence sources in this manner is difficult. 

Standardizing to specific terminologies is critical to enabling evidence from disparate 

sources to be meaningfully comparable by using a common language to relate drugs and 

HOIs. For this purpose we depend on the OMOP Vocabulary which contains a library of 

terminologies (e.g., RxNorm, National Drug Code [NDC], Systematized Nomenclature of 

Medicine-Clinical Terms [SNOMED-CT], etc.) and provides the relationships between them 

[17]. The OHDSI collaborative does not generate any of the terminology standards, but 

instead leverages existing sources and aggregates the terminology concepts and relationships 

into one common vocabulary model as part of the OMOP Common Data Model. LAERTES 

relies on content within the OMOP Vocabulary to standardize drugs to RxNorm and 

standardize conditions to SNOMED-CT. The LAERTES record for each evidence item 

included a single drug and HOI concept pair (e.g. “omeprazole – anaphylaxis”).

In translating evidence from the sources, we found data at varying levels of granularity; for 

example, one source might provide evidence at the ingredient level (e.g. “omeprazole”), 
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while another might provide similar evidence at the clinical drug level (e.g. “omeprazole 10 

MG”). When a drug concept in an evidence source was mentioned at the ingredient or 

clinical drug level, it was translated through the OMOP Vocabulary to the RxNorm concepts 

at the same level. Since evidence for drug-HOI pairs could be at either the ingredient or 

clinical drug level, we aggregated evidence to individual ingredients for further analysis. 

This aggregation was straightforward using the clinical-drug-to-ingredient relationships 

from RxNorm, as available in the OMOP Vocabulary.

The various evidence sources provided HOI concepts using three different terminologies. 

The Medline source used the MeSH terminology. SemMedDB used UMLS concepts that 

represented concepts in MeSH, MedDRA, or SNOMED. Both strategies for parsing 

American and European product labeling used MedDRA. The mapping process used 

relationships in the OMOP Vocabulary to map from the source terminologies to SNOMED. 

Sometimes this resulted in evidence for very similar HOI concepts that resided at different 

levels of the SNOMED “is a” hierarchy. For example, if a source used MeSH to represent 

the concept “Myocardial Infarction” it might be mapped to the SNOMED concept 

“Myocardial Infarction”, while the same concept from a source that used MedDRA might be 

mapped to the highly similar child concept “Acute Myocardial Infarction”. In using the 

evidence base for this study, each HOI was defined as the aggregate evidence from the 

concept itself and all its descendant concepts. For example, the concept of “Myocardial 

Infarction” was considered to be representative of all of its children concepts including 

“Acute Myocardial Infarction” and “Acute Subendocardinal Infarction”.

2.3. The Reference Sets

Two existing manually-created reference sets were used to train an automated classifier for 

ADR signal detection and estimate its accuracy using cross-validation: the OMOP Reference 

Set [26] and the Exploring and Understanding Adverse Drug Reactions (EU-ADR) 

Reference Set [27–29]. These were chosen because their drugs and HOIs were already 

translated in OMOP Vocabulary concepts. They provided the ground truth that served as the 

basis for understanding LAERTES performance and defining an algorithm for prediction.

The OMOP Reference Set, initially developed in 2010, contains 4 HOIs each with its own 

positive and negative control drug set. The 4 HOIs are acute kidney injury, acute liver injury, 

acute myocardial infarction, and gastrointestinal bleed, which were all originally chosen to 

provide a spectrum of adverse events or likelihood of being the focus of ongoing drug safety 

surveillance [30]. The OMOP Reference Set positive controls list started from product labels 

that listed the HOIs of interest in the “Black Box Warning” section, the “Warnings and 

Precautions”, or “Adverse Reactions” sections [26]. The list was further defined using an 

independent literature review of randomized trials or observational studies, as well as 

systematic literature review provided by Tisdale et al. [31]. These same information sources 

were also used to define the negative controls. In this case, by assuming that a lack of 

evidence across all of the sources for a given drug-HOI association indicated that no 

association exists. Across the 4 HOIs in the OMOP Reference Set there are 165 positive 

controls (drugs that are known to cause an HOI, ground truth is 1) and 234 are negative 

controls (drugs that are known to not cause the HOIs, ground truth is 0).

Voss et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The EU-ADR Reference Set, initially developed in 2012, has 10 HOIs (liver disorder, acute 

myocardial infarction, renal failure acute, anaphylactic shock, erythema multiform, mitral 

valve disease, neutropenia, aplastic anemia, rhabdomyolysis, and gastrointestinal 

hemorrhage) each with its own positive and negative control set. The HOIs chosen for this 

reference set were considered important from a pharmacovigilance and public health 

perspective [27]. The process of generating the positive and negative controls for this 

reference set started slightly differently than for the OMOP Reference Set. The originating 

team started by looking for drugs with enough exposure in the EU-ADR database network 

[27, 32]. Following this, a literature review was conducted to find associations between the 

initial drug list and the HOIs of interest. If more than 3 citations could be found in 

MEDLINE for a drug-ADR association then, it was considered for a positive control. If 

there were no literature citations and no World Health Organization (WHO) Vigibase® 

mentions of the drug-HOI pair then, it was considered as a negative pair. All final drug-ADR 

pairs for the EU-ADR Reference Set went through a manual review. In total, there are 93 

positive and negative controls across the 10 HOIs in the EU-ADR Reference Set; 43 are 

positive controls and 50 are negative controls. EU-ADR also has one HOI that only has 

negative controls, mitral valve disorder.

Both the OMOP and EU-ADR Reference Sets were translated to standard OMOP 

Vocabulary concepts; RxNorm for drugs and SNOMED for conditions. The definitions for 

the drug-HOI pairs can be found in Appendix A. Our hypothesis was that a composite 

summary of evidence from LAERTES can be predictive of negative and positive controls in 

OMOP and EU-ADR Reference Sets that were manually generated. In addition, we 

hypothesize that using all the evidence sources to predict the reference sets will have 

improved performance over the individual sources independently.

While the OMOP and EU-ADR Reference Sets were used for training and testing the pilot 

method, an additional reference set called the Arizona Center for Education and Research on 

Therapeutics (AZCERT) dataset [33, 34] was utilized in a validation manner. The 

CredibleMeds group, which manages the AZCERT list, focuses on programs to reduce 

preventable harm from medication. That AZCERT dataset used for this study focused on 

two HOIs: Torsade De Pointes (TDP) and QT Prolongation. We used the OMOP Vocabulary 

to define what condition concepts in LAERTES would relate to these HOIs. Specifically, we 

used SNOMED concepts 314664-“Long QT syndrome” and 4135823-“Torsades de pointes” 

and their children to define this HOI. 4008859-“Prolonged QT interval” was also associated 

to “Long QT syndrome” for this work; “Prolonged QT interval” is considered a 

measurement in the OMOP Vocabulary but is relevant for this reference set. The AZCERT 

drugs considered associated to QT prolongation and TDP were downloaded from 

CredibleMeds® (https://www.crediblemeds.org/) in July 2015 and the OHDSI USAGI 

concept mapping program [35] was used to associate the ingredients to OMOP Vocabulary 

RxNorm ingredients. This mapping can be found in Appendix B. Of the 182 drugs, only 

three did not have mappings in the OMOP Vocabulary, most likely due to no or recent 

approval in the US: dihydroartemisinin & piperaquine, ivabradine, and panobinostat.
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2.4. The Drug and HOI “Universe”

A subset of drugs and HOIs were chosen to be the “universe” for this analysis. The term 

“universe” in this paper refers to the ingredients and HOIs for which sufficient evidence 

exists to suggest that medication safety issues would have been known and reported at the 

time of the current experiment. Operationally, we included drugs for which the ingredient or 

HOI had at least one FAERS evidence item, one Medline evidence item (either from the 

Avillach method or SemMedDB), and one evidence item from either EU or US product 

labels. Another way to say this is to remove evidence that is lacking in at least one of 

FAERS, Medline, or product labels (e.g. FAERS has the ingredient “bees wax” however this 

does not appear in Medline so it cannot exist in the universe). This step was taken because 

an HOI or drug that showed up in only one source might indicate a lack of clinical 

experience. For example, a novel topic may appear in FAERS but take a while to start 

showing up in literature. Also, a novel drug may show up in product labels fairly quickly and 

not the other sources. In either case, the limited available evidence was not considered in the 

experiment because we thought that the lack of evidence available in the other sources 

would likely be due to novelty.

The evidence for drugs was only reviewed at the ingredient level. For example, SPLs are at 

the clinical drug level however that is too specific for the other sources therefore we translate 

all drug mentions to ingredients. Only ingredients across the three sources are part of the 

universe.

For HOIs, all concepts tagged from incoming sources were considered as well as their 

ancestor concepts as identified through the OMOP Vocabulary relationships. This would 

give a higher level term within the Vocabulary more potential opportunity to contain enough 

evidence assuming it will have more descendants than its children concept). Aggregation of 

conditions concepts in this manner allows evidence at a low-level concept to be rolled-up 

into more general concepts based on the SNOMED hierarchy. This is important because 

different source’s HOIs will be mapped at different levels of granularity and the OMOP 

Vocabulary hierarchy enables synthesis of the evidence at each level of detail.

2.5. Statistics

Logistic regression was used to build multivariate models on the LAERTES data that could 

discriminate between positive and negative controls. Regularization with a Laplace prior on 

the regression coefficients was used to allow the model to perform parameter selection.

2.6. Building Classification Models

Models that predicted drug-HOI associations were built using the evidence provided by each 

source in LAERTES as predictors. Referring to sources listed in Table 1, the following is a 

discussion on how features (predictor variables) were constructed for each drug-HOI pair. 

Each predictor was finally scaled by dividing by its standard deviation.

• FAERS:
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– The FAERS proportional reporting ratio (PRR) for the drug-HOI pair 

was the geometric mean of all PRR values assigned to the drug-HOI 

pair (which included all children condition concepts to that HOI).

– FAERS report counts were summed across the counts for the drug-HOI 

pair (which included all children condition concepts to that HOI). The 

natural log of the total was taken to address the positive skew found in 

the count data.

• Medline:

– Avillach Method [23]: Evidence for the drug-HOI pair from the three 

Medline MeSH sources was treated as discrete count data (the number 

of articles).

– SemMedDB Method [24]: Evidence from the drug-HOI pair from the 

three Medline SemMedDB sources was summarized as a categorical 

variable (1 if present else 0 if no evidence existed). SemMedDB was 

treated as categorical because testing found some of the drug-HOI 

counts were erroneously inflated because of a terminology mapping 

issue from this source to the Vocabulary (this programming bug only 

affected this source). In addition, Medline SemMedDB sources were 

also broken out into positive and negative modality, making a total of 

six pieces of evidence from SemMedDB. SemMedDB is the only data 

source currently to make use of the negative modality.

• Product Labels:

There can be many product labels per ingredient in both the US (parsed 

using Duke et al. method [7]) and EU (parsed using the and 

Pharmacoepidemiological Research on Outcomes of Therapeutics by a 

European Consortium (PROTECT) method [25]) that for the most part all 

say the same thing; therefore an evidence count here is not appropriate. 

Instead a categorical variable was used to indicate that evidence existed for 

the drug-HOI pair.

2.7. Evaluation

As a first step, we evaluated the performance of our approach within the OMOP and EU-

ADR Reference Sets separately. To prevent overly optimistic performance metrics due to 

overfitting, we utilized leave-pair-out cross-validation [36]. In leave-pair-out cross 

validation, for every combination of a positive and a negative control in a reference set, a 

model is fit using all data except the left-out pair and then evaluated on its ability to rank the 

left-out pair. We then compute an overall predictive accuracy across all folds (all pairs of 

negative and positive controls) as the area under the receiver-operator curve (AUC); 95% 

confidence intervals for the AUC were computed to account for uncertainty due to random 

error [37].

The second step consisted of evaluating the generalizability of the combined model by 

fitting the model on the combination of the OMOP and EU-ADR Reference Sets, and using 
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the AZCERT for evaluation. In AZCERT, only drugs that were labeled as “Risk of TdP” or 

“Conditional Risk of TdP” were considered confident ADR associations while other drugs 

under “Avoid in congenital long QT” and “Possible Risk of TDP” seemed to reflect less 

confident associations, or ones that were likely only under certain conditions, and therefore 

were eliminated for consideration in this analysis. When the list was narrowed there were 77 

drugs left of which only ivabradine was unmapped to a Vocabulary concept. When 

comparing these 76 mapped drugs 55 were in the LAERTES universe. These 55 served as 

the positive controls and all other drugs in the LAERTES universal set, excluding the “Avoid 

in congenital long QT” and “Possible Risk of TDP” drugs from AZCERT, were used to see 

if the model’s predicted probabilities could discern between them and the AZCERT-

identified positive controls. Because some of these negative controls could in reality be 

positive controls that were not catalogued in AZCERT, we also assessed AUC and the raw 

counts assuming 1% of the negative controls were misclassified in both the best-case 

scenario (the 1% highest ranked negative controls according to our algorithm were 

misclassified) and the worst-case scenario (the 1% lowest ranked negative controls 

according to our algorithm were misclassified). The full AZCERT Reference Set can be 

found in Appendix C. Additionally, Figure 1 depicts both the first step and second step of 

evaluation of our models built.

2.8. Software and Tools Used

The LAERTES data was stored in a PostgreSQL database v9.3 however the SemMedDB and 

Medline of the extract, transform, and load (ETL) processes used MySQL v5.5. A Virtuoso 

server v6.1 was used for Resource Description Framework (RDF) graphs that provided the 

link out data to source content. All LAERTES content was stored in an Amazon AWS cloud 

server running Ubuntu 14.04 in order to provide scalability as well ease team participate 

across geographies and organizations (including both public and private sector participants). 

All analyses were conducted in R version 3.2.1 [38] using the Cyclops package [39].

3. Results

The summary statistics of the state of LAERTES at the time of the experiment can be found 

in Table 2. For each piece of evidence and modality, Table 2 reports across its columns the 

number of distinct rows, distinct drugs, and distinct conditions. FAERS accounted for a 

34.4% of the summary statistics in LAERTES. There were 2.7 million FAERS records 

within LAERTES, each with a count of reports and a proportional reporting ratio (PRR). 

Medline made up over 2 million rows or 27% of the records. Product labels made up 

220,809 rows or about 3% of the LAERTES records. Across all the incoming evidence there 

were 3,797 distinct ingredients and 9,403 distinct conditions. Focusing on the 

aforementioned “universe” of drugs and HOIs for this analysis, LAERTES provided 

evidence for 992 distinct ingredients and 3,488 distinct HOIs. The reduction was caused by 

the “drug universe” membership requirement that the ingredient or HOI was in FAERS, 

Medline, and product labels at least once. After review of the number of rows per data 

source, we decided not to use the negative modality evidence (Medline SemMedDB Clinical 

Trial, Medline SemMedDB Case Report, Medline SemMedDB Other) as well as positive 
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modality from ‘Medline SemMedDB other’ as these data elements were found to be too 

sparse for building predictive models.

Table 3 shows the number of ingredients, HOIs, and ingredient-HOIs pairs in the OMOP and 

EU-ADR Reference Sets and in the entire LAERTES database, both before and after 

restricting to those items that meet our criterion of minimum amount of data. As discussed 

above, LAERTES drug evidence was included at the ingredient level while HOIs evidence 

was included at the level of a given concept and all of its children concepts in the OMOP 

Vocabulary. For example, product label evidence for 19019271-“Naproxen 375 MG Oral 

Tablet” and 197925-“Hemorrhage of rectum and anus” was associated to the OMOP 

Reference Set item 1115008-“Naproxen” and 192671-“Gastrointestinal hemorrhage”. In the 

OMOP Vocabulary the SNOMED term 192671-“Gastrointestinal hemorrhage” was inclusive 

of 197925-“Hemorrhage of rectum and anus” and 1115008-“Naproxen” was the ingredient 

associated to 19019271-“Naproxen 375 MG Oral Tablet”.

LAERTES contained evidence on 3,797 distinct ingredients with 992 having enough 

evidence to be considered for analysis. There were a potential of 9,403 HOIs and 3,488 were 

considered to have enough evidence for analysis. We refer to the included drugs and HOIs as 

the “LAERTES universe”. Because LAERTES was not designed for specific drug-HOI 

pairs, every permutation of ingredients and HOIs is available for evidence which provides 

over 3 million potential permutations. The OMOP Reference Set had 182 distinct 

ingredients, 151 (83%) of which were included in the LAERTES universe. There were 4 

HOIs listed in the OMOP Reference Set and all 4 (100%) had enough evidence within the 

LAERTES universe. The OMOP Reference Set lists 399 drug-HOI pairs, of which 329 exist 

in the LAERTES universe. For EU-ADR, there were 65 ingredients, 59 (91%) of which were 

in the LAERTES universe. Additionally, there were 10 HOIs in the EU-ADR Reference Set. 

However, 1 HOI (rhabdomyolysis) was missing because it lacked enough evidence due to a 

Vocabulary mapping inconsistency discussed in the Limitations section. The EU-ADR 

Reference Set lists 93 drug-HOI pairs, of which 77 are within the LAERTES universe.

Table 4 provides the predictive accuracy of each evidence type alone as well as the full 

model with all evidence types. However, due to regularization, not all evidence may play a 

role in the model. For example, in the EU-ADR model “Medline Other”, “SemMedDB 

Clinical Trial”, “SemMedDB Case Reports” model coefficients were shrunk to 0 as they did 

not provide additional information to the model). Looking at the predictive accuracy of 

individual pieces of information in the OMOP Reference Set, US product labels were the 

most predictive (AUC=0.87 [95% CI: 0.84–0.91]). For the EU-ADR Reference Set, the 

Medline case reports were most predictive (AUC=0.88 [95% CI 0.81–0.96). For both the 

OMOP and EU-ADR Reference Sets, the model with all the predictors performed better 

than any one single predictor, AUC=0.94 [95% CI: 0.91–0.97] and AUC=0.92 [95% CI: 

0.86–0.98] respectively.

With the results of Table 4 and the EU-ADR demonstrating large predictive power for 

Medline Case Reports, Medline Other, and US product labels, we performed additional 

investigation to validate these findings. Across both cases, out of 36 positive controls, 34 had 

some type of case report, and of the 41 negative controls, 21 had a Case Report and 24 had 
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an “Other” type of report. In addition, the large coefficient for US product labels scoring was 

a bit of surprise for EU-ADR since it was not information used in the original heuristic; 

however, the US product labels data processed by SPLICER has more evidence compared to 

the EU label data processed in PROTECT which was only a subset of drugs. Therefore, US 

labels had more opportunity to be predictive of positive and negative controls. When there 

was at least a label for a drug/HOI combination within the OMOP and EU-ADR Reference 

Sets 83% of the time we had only a US label, 13% of the time there was both a US and EU 

label, and 4% of the time there was an EU but not a US label.

To understand how the reported performance was achieved, we fitted models using the 

reference sets individually and then on both reference sets. Table 5 shows the regression 

coefficients of these overall models. The largest coefficients in the OMOP model were for 

“Medline Other”. The largest coefficient in the EU-ADR model was for Medline Case 

Reports. Table 5 also shows a model built off both the OMOP and EU-ADR set together (the 

last row). The largest coefficients were the Medline Case Reports and US Product Labels.

Figure 2 represents the distribution of predicted probability of drugs being positive or 

negative controls using the model built on the combined OMOP and EU-ADR Reference 

Sets. The plots suggest that the predicted probabilities produced by the algorithm were 

useful for segregating positive and negative controls. For example, the model predicted a 

probability of 1.00 for ketoprofen associated to the HOI of gastrointestinal hemorrhage (see 

Appendix D, OMOP Reference Set) and there is a black box warning for stomach bleed with 

NSAIDs like ketoprofen. For negative controls in the OMOP Reference Set, the model 

indicates a probability of 0.05 associating almotriptan to acute renal failure, which is in 

agreement with the OMOP Reference Set’s choice with this ingredient-HOI pair (both 

LAERTES and the OMOP work found no evidence of published papers, no elevated PRR, 

and nothing on the product label).

Using the model built off both the OMOP and EU-ADR Reference Set to predict AZCERT 

drug-HOI associations, we found that the model was able to separate the ingredients that 

were positive controls from those that were not positive controls. Drugs that are “not positive 

controls” are referred to as negative controls in Figure 2, however technically the AZCERT 

does not provide negative controls and they were inferred from LAERTES. Due to the non-

positive controls being such a large portion of the reference set, there is a bit of imbalance 

between the two classes. Appendix D provides the predicted probabilities. Some positive 

controls do have low predictive probabilities, however most of the negative controls are 

substantially lower. The 865 non-positive controls predictive probabilities range from 0.05 to 

1.00; however, 75% of the non-positive controls are 0.25 or below, while the 55 positive 

controls range from 0.17 to 1.00 and 89% of the positive controls are greater than 0.25. 

Figure 2 shows a fairly high AUC =0.92 (CI [assuming no misclassification]: 0.89–0.95, 

assuming 1% worst case misclassification [about 9 drugs]: 0.79, assuming 1% best case 

misclassification: 0.94) for AZCERT however the AUC has wide bounds for the point 

estimate suggesting some uncertainty in the model. We note that the point estimate bounds 

were calculated differently for AZCERT than the confidence intervals developed for OMOP 

and EU-ADR, however all give a sense of the model AUC range.
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4. Discussion

LAERTES brings together adverse event evidence from spontaneous reports, medical 

literature, and product labels into one database and standardizes the source’s terminologies 

to standard condition and drug vocabularies. In addition to standard terminologies, the 

different types of LAERTES evidence are stored in a standardized structure – a structure that 

is flexible to accept additional future evidence sources (e.g. observational evidence). This 

allowed us to see if a classifier built using evidence from disparate sources can identify 

drugs that cause certain outcomes (positive controls) and drugs that lack evidence for certain 

negative outcomes (negative controls).

The prediction results for the full model suggested that evidence used in aggregate is more 

predictive than the univariate models. This may be suggestive that individual pieces of 

evidence only bring certain amounts of information to the researcher, and if that researcher 

stops at only reviewing one data source they are most likely not getting a complete picture of 

the potential ADR issues. This work found that individual US product labels, Medline data, 

and FAERS counts to be informative for predicting drug-HOI associations in the OMOP and 

EU-ADR Reference Sets. Our results showed fairly high predictive accuracy for the models 

combining all available evidence, an AUC of 0.93 for the OMOP Reference Set, 0.92 for 

EU-ADR, and 0.92 for AZCERT. Another way to interpret this last AUC of 0.92 is if we 

picked a sensitivity of 50% we would achieve a specificity of 97% and a positive predictive 

value of 48% on the AZCERT Reference Set.

Reviewing the predictors found in Table 5 it may seem hard to draw generalizable 

conclusions from coefficients that vary so much between models. However, the reference 

sets themselves were made by different processes and selection of the model coefficients 

reflect this; two different reference sets (OMOP and EU-ADR) made by two different 

groups using two different processes. Additionally, some predictors seem to be more 

predictive than others, for example the US product labels have larger model coefficients than 

the EU product labels. Again the model is reflecting reality; first there are more US labels 

parsed by SPLICER in LAERTES than EU labels from PROTECT and additionally the 

OMOP Vocabulary at the time of analysis had a slight bias towards US centric drugs thus 

making some of the European labels not able to participate.

It is important to point out that there may seem to be a bit of a recursive argument here in 

that the reference sets were built using the same data that LAERTES is using. However, the 

OMOP and EU-ADR Reference Sets were generated manually and while the final model 

generated drug-HOI associations in an automated fashion. One of the main reasons 

AZCERT was included was to help understand if circular argument was an issue for 

LAERTES, however the data was still predictive on this reference set that was not 

necessarily generated in the same manner as the OMOP and EU-ADR Reference Sets.

AZCERT provided an independent reference set, a reference set not used in the development 

of the model. We used other drugs in LAERTES not part of the AZCERT to represent the 

negative controls. Assuming all the drugs in LAERTES not in AZCERT are negative 

controls may not be a correct assumption; AZCERT does not necessarily contain all drugs 
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that cause TDP/QT prolongation meaning that some of the negative controls may actually be 

positive controls. We assume that the list is more or less inclusive of all drugs but still 

calculated confidence interval for the AUC guessing that 1% of the non-positive drugs were 

in fact positive controls (this gives you the best and worst cases if some drugs are 

misclassified). With the model predicting positive controls, even though some of the 

predictive probabilities were low, compared to the non-positive control set, they had higher 

values. The lowest positive control was sevoflurane with a predictive probability of 0.17. 

The lowest performing drug from AZCERT was sevoflurane. Sevoflurane had evidence from 

Medline and FAERS but no information from SemMedDB or product labels. The resulting 

model weighted heavily having a product label, since suvoflurane does not seem to make 

mention of QT prolongation as an issue in either the “Adverse Drug Reactions” or 

“Postmarketing” section of its labels than its predicted probability is lower. The smallest 18 

predicted probabilities from AZCERT do not have an US product label which is deemed 

important in our prediction model.

This work demonstrates the feasibility of using the evidence from disparate sources to select 

positive and negative controls using the automated machine learning process. In its current 

form, the predictive probabilities generated from the final model have been used to find 

suitable negative controls for model calibration (e.g. for a certain condition, asking what 

drugs have a low probability of being associated to it based on the evidence in LAERTES, or 

for a given drug, identifying candidate conditions that are not observed to be associated). 

The candidate negative controls identified through this process still require clinical 

adjudication prior to use, but using the automated procedure to identify the set of candidates 

greatly reduces the required resource without substantially decreasing specificity of the 

controls selected.

Additional future work could include advancing the model built so that it could easily be 

used for drug-HOI prediction. This may need to include weighting of the evidence; we may 

not want to treat all LAERTES parameters as equal. Weighting could add additional 

information about the quality of data received from LAERTES or include our belief on the 

quality of the suggested association. Additionally, a more ambitious goal is to determine if 

an automated ADR prediction method using LAERTES could achieve sufficient 

performance to supplement, or even be a replacement for, the expensive manual evidence 

synthesis effort currently required to investigate pharmacovigilance signals. For example, 

LAERTES holds promise of being a tool to be used directly for signal detection; instead of 

having many places to review evidence each using their own terminology LAERTES could 

provide the “one stop shop” for reviewing the evidence, the accessibility of evidence would 

improve ease of signal review.

5. Limitations

One challenge in the application of the LAERTES data was suboptimal mappings between 

source vocabularies within the OMOP Vocabulary. Specifically mapping to SNOMED 

conditions from different starting source codes can be difficult. Earlier it was described that 

rhabdomyolysis was not in the LAERTES universal set was due specifically to a mapping 

issue (MedDRA concept was mapping to ‘Muscle, ligament and fascia disorders’ instead of 
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‘Rhabdomyolysis’). Mapping within conditions is not straightforward and this area will take 

continued data investigation to uncover where our mapping to the standard terminologies 

could be improved.

In order to improve comparability between drugs, when analyzing LAERTES evidence we 

translated all drugs to their ingredients. One consequence of this decisions is that 

combination drugs will provide evidence all associated ingredients; ‘dapagliflozin 10 MG / 

metformin hydrochloride 500 MG Extended Release Oral Tablet’ would be associated to 

both dapagliflozin and metformin and the evidence associated to that clinical drug will 

appear both for dapagliflozin and metformin. We felt that this was appropriate because even 

though we may have a strong feeling about which ingredient caused the ADE we should not 

assume this. If there is a true relationship, the ADE will show up multiple times in multiple 

evidence sources. In future releases, however, we would like to explore adding information 

on the certainty of the association (i.e. this drug had a direct map to an ingredient or this 

drug was mapped to multiple ingredients) which should in turn help them model make better 

predictions.

As highlighted earlier, future work should include weighting of the evidence. Currently all 

evidence is treated as equal in the model and this is most likely not representative of truth; it 

is intuitive to believe that information from a product label is more likely to represent an 

ADR over a spontaneous report. Additionally, we require the existence of a condition and 

separately of a drug in multiple sources of evidence to be considered to participate in drug-

condition pairs. This forces us only to review drugs or conditions that we are confident there 

is evidence for. To improve the model so that it more closely represents real world scenarios 

we should evaluate our confidence in the evidence sources, allowing that confidence level to 

participate in the model, and exploring consideration of drugs or conditions that may have 

evidence only found in one or two types of evidence sources.

This experiment also heavily relies on the OMOP and EU-ADR Reference Sets. Despite 

extensive efforts by the teams that developed both reference sets to get what they determined 

to be a high quality reference set, it is still possible that not all controls are correctly 

classified [40]. However, both reference sets have been used in multiple studies [41–43]. 

Additionally, it can be argued that the reference sets do not include a diverse enough set of 

conditions reviewed. The HOIs tend to be acute conditions rather than chronic ones like 

diabetes. This problem was also found with the AZCERT reference set where only one 

condition was used for testing the model built on the combination of OMOP and EU-ADR. 

The lack of diversity in the reference sets may limit the generalizability of the results to all 

conditions and this should be taken into account when utilizing the model for prediction.

In preparing for this publication a few limitations became evident with the implementation 

of LAERTES. The knowledge base has the data it needs to allow users to search on 

standardized terminologies and retrieve link outs to evidence sources. However, access to 

this “drill down” data is currently difficult as full access requires programming against the 

OMOP Vocabulary and LAERTES using SQL. There is an experimental LAERTES 

evidence explorer (http://www.ohdsi.org/web/knowledgebaseweb) but it is currently a 

prototype user interface.
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As discussed earlier, there is some evidence in LAERTES that is sparse (e.g. negative 

modality for Medline SemMedDB Clinical Trial) and was not included in our models; there 

may be future opportunity to improve in this area. Also, the team needs to develop 

appropriate views into the data (e.g. a web interface accessing the data in a certain manner); 

however efforts such as publication and application will highlight what views make the most 

sense. Additionally, with some evidence sources there are some Vocabulary mapping that 

should be reviewed. For example, with Medline publications, some of the MeSH terms map 

out into the Vocabulary to many board concepts which then seems to associate tangentially 

associated abstracts to your drug-HOIs of interest. Finally, we do not know how the model 

will perform as the evidence in LAERTES evolves (e.g. additional evidence within a data 

source, changes in the Vocabulary mappings, more data sources added). This paper outlines 

the process for learning a model based on the evidence and the model coefficients most 

likely will change as LAERTES advances. But without applying LAERTES to the “real 

world” it would be impossible to understand where and how to improve upon the tool.

6. Conclusions

The goal of this paper was to use the designed method for gathering evidence implemented 

in LAERTES to explore the relationship between drugs and HOIs. We demonstrated that 

using LAERTES its evidence was predictive of the reference sets, particularly when using all 

the predictors with sufficient data. The model classifier also performed well on AZCERT. 

The method to pull disparate data sources together will only continue to improve as new 

evidence sources are added. As this process implemented to generate LAERTES provides a 

scalable alternative to the time-and-resource-intensive, manual curation exercise previously 

applied to develop reference sets of positive and negative controls used in drug safety 

research.
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HOI health outcomes of interest

EU-ADR Exploring and Understanding Adverse Drug Reactions

AZCERT Arizona Center for Education and Research on Therapeutics

Appendix A – Reference Set Health Outcome of Interest Definition

This file defines the concepts that make up each HOI and each HOI’s associated ingredients 

for the OMOP and EU-ADR Reference Sets. This list represents all HOIs and ingredients in 

the reference sets, however not all were contained in the LAERTES universal set. The 

columns HOI_IN_LAERTES_UNIVERSE and 

INGREDIENT_IN_LAERTEST_UNIVERSE allow one to filter to the HOIs and drugs that 

were used in this study.

APPENDIX_A.xls

Appendix B – AZCERT Associated to Ingredient Concepts

Mapping of AZCERT drugs to the OMOP Vocabulary RxNorm concepts.

APPENDIX_B.xls

Appendix C – AZCERT as a Reference Set for the Predictive Models

Much like the OMOP and EU-ADR Reference Sets, this list shows how AZCERT was 

defined to be used in the model built off of OMOP and EU-ADR. This reference set is made 

up of the drugs identified by the AZCERT as positive controls and compares it to all other 

drugs in the LAERTES universal set.

APPENDIX_C.xls

Appendix D – Prediction Results for OMOP, EU-ADR and AZCERT

Using the model built off the OMOP and EU-ADR Reference Sets it was then used to 

predict the OMOP, EU-ADR and AZCERT. This appendix shows the evidence used within 

the model, if a HOI and drug were either positive or negative controls, and the prediction of 

the model.

APPENDIX_D.xls
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Highlights

• Classifier to discern between drugs causing and not causing a condition.

• Evidence in classifier was highly predictive of reference sets.

• Method to integrate multiple sources of evidence about drugs and conditions.

• Two manually-created reference sets of drug-condition pairs trained an 

automated classifier.
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Figure 1. 
Graphical depiction of how the reference sets are used and how the models were training and 

tested. Leave-pair-out cross validation was used to evaluate the models built independently 

on EU-ADR and OMOP reference sets. The third model was trained on the combination of 

both the EU-ADR and OMOP reference sets and then tested using the AZCERT as the test 

set.

Voss et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Histograms of predicted probabilities with AUCs for positive and negative controls in the 

various reference sets, using the model trained on both OMOP and EU-ADR Reference Set.

Values: AUC (Lower Bound AUC-Upper Bound AUC)

*calculated by assuming a 1% of the negative controls were misclassified.

OMOP: Observational Medical Outcomes Partnership, EU-ADR: Exploring and 

Understanding Adverse Drug Reactions, AUC: area under the curve
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TABLE 1

Description of LAERTES Sources

Data Source Description

FAERS Proportional Reporting Ratio
(FAERS PRR)

Data files from the FDA Adverse Event Reporting System (FAERS) Latest Quarterly
Data Files website [44] were used to generate evidence. The FAERS drug/outcome
pairs were standardized from free text drug names and outcomes in MedDRA
Preferred Terms to RxNorm OMOP concepts and MedDRA condition OMOP
concepts. In addition, the MedDRA condition concepts were mapped to SNOMED-
CT concepts based on the OMOP mappings available in the OMOP Vocabulary. The
ETL process also included logic to remove duplicate adverse drug event reports [22].
The PRR metric generated by work by Van Puijenbroek, EP et al. [21]. The FAERS
data currently available in LAERTES covers Q4 2004 through Q4 2014.

FAERS Report Count
(FAERS Report Count)

Similar to FAERS PRR except a count of reports is provided for each drug-condition
pair.

Medline MeSH Clinical Trials
(MEDLINE MeSH ClinTrial)

Looking for ADRs in MeSH terms for clinical trials in Medline. The process to
identify ADRs was leveraged from Avillach et al.[23]. The Avillach method using
MeSH tagged publications from Medline looked for adverse drug reactions based on
the co-occurrence of a drug and an adverse event on the same citation. The source
of the data used was directly from the National Library of Medicine and gathered
from 1946 until September 2015.

Medline MeSH Case Reports
(MEDLINE MeSH CR)

Similar to MEDLINE_MeSH_ClinTrial except for case reports.

Medline Mesh Other
(MEDLINE MeSH Other)

Similar to MEDLINE_MeSH_ClinTrial except for it reports on things other than
clinical trials or case reports in Medline (i.e. Meta-Analysis, Comparative Study,
Multicenter Study, or Journal Article).

Medline SemMedDB Clinical Trials
(MEDLINE SemMedDB ClinTrial)

For clinical trials, provides MeSH tagged drug-HOI clinical trial abstracts from
PubMed that look for associations such as: causes, affects, associated with,
complicates, or disrupts [24]. All of these associations also have a negative
modality, meaning SemMedDB provides both positive and negative associations.
The data was last mined June 30, 2015.

Medline SemMedDB Case Reports
(MEDLINE SemMedDB CT)

Similar to MEDLINE_SemMedDB_ClinTrial except for case reports.

Medline SemMedDB Other
(MEDLINE SemMedDB Other)

Similar to MEDLINE_SemMedDB_ClinTrial except for it reports on things other than
clinical trials or case reports in Medline

Structured Product Label Adverse Drug
Reactions from SPLICER
(SPL SPLICER ADR)

SPLICER, a tool that reads and parses United States Structured Product Labels (SPLs)
for drugs and HOIs in the sections “Adverse Drug Reactions” or “Postmarketing” [7].
SPLICER already utilizes the OMOP Vocabulary and maps drugs to RxNorm and HOIs
to MedDRA terms. The SPLICER data was up-to-date as of September 2015.

European Product Label Adverse Drug
Reactions
(SPL EU SPC)

From the PROTECT ADR database, this provided a list of ADRS on Summary of
Product Characteristics (SPC) of products authorized in the European Union [25].
The drugs come across as free text and the HOIs come across as descriptions of
MedDRA Preferred Terms. It was last updated on December 31, 2013.
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TABLE 2

Dimensions of LAERTES

Modality Rows Distinct
Ingredients

Distinct
HOI

FAERS PRR Positive 2,742,314 (34.4%) 3,534 (93.1%) 8,463 (90.0%)

FAERS Positive 2,742,314 (34.4%) 3,534 (93.1%) 8,463 (90.0%)

Medline Clinical Trial Positive 207,018 (2.6%) 2,292 (60.4%) 970 (10.3%)

Medline Case Reports Positive 825,635 (10.4%) 2,358 (62.1%) 2,248 (23.9%)

Medline Other Positive 1,122,493 (14.1%) 2,389 (62.9%) 2,458 (26.1%)

Medline SemMedDB Clinical Trial Positive 11,595 (0.2%) 1,353 (35.6%) 202 (2.2%)

Medline SemMedDB Clinical Trial Negative 906 (0.0%) 302 (8.0%) 48 (0.5%)

Medline SemMedDB Case Report Positive 17,285 (0.2%) 1,668 (43.9%) 227 (2.4%)

Medline SemMedDB Case Report Negative 550 (0.0%) 330 (8.7%) 25 (0.3%)

Medline SemMedDB Other Positive 79,725 (1.0%) 2,049 (54.0%) 366 (3.9%)

Medline SemMedDB Other Negative 4,498 (0.1%) 1,083 (28.5%) 125 (1.3%)

EU Product Labels Positive 24,626 (0.3%) 315 (8.3%) 2,052 (21.8%)

US Product Labels Positive 196,183 (2.5%) 1,085 (28.6%) 2,645 (28.1%)

Total Positive 7,975,142 (100.0%) 3,797 (100.0%) 9,403 (100.0%)

LAERTES Universe Set
Evidence Across
FAERS, Medline, and product
labels

- - 992 (26.1%) 3,488 (37.1%)

FAERS: FDA Adverse Event Reporting System, PRR: proportional reporting ratio, HOI: health outcome of interest

This table communicates the size of LAERTES in terms of distinct number of rows, distinct ingredients, and distinct HOIs. Utilizing this data we 
are able to find the LAERTES universe set which is the ingredients and HOIs that contain at least one piece of evidence in each of the following: 
Medline, product labels, and spontaneous reports.
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Table 4

AUC (Area Under the Curve) and 95% confidence interval for individual predictors and a regularized logistic

Column(s) in Model OMOP AUC EU-ADR AUC

Medline Clinical Trial 0.74 (0.69–0.79) 0.73 (0.63–0.83)

Medline Case Reports 0.85 (0.81–0.89) 0.88 (0.81–0.96)

Medline Other 0.85 (0.80–0.89) 0.87 (0.79–0.95)

Medline SemMedDB Clinical Trial 0.58 (0.55–0.61) 0.57 (0.51–0.63)

Medline SemMedDB Case Reports 0.58 (0.55–0.61) 0.59 (0.52–0.65)

EU Product Labels 0.57 (0.54–0.60) 0.53 (0.49–0.57)

US Product Labels 0.87 (0.84–0.91) 0.80 (0.71–0.89)

FAERS * 0.73 (0.67–0.78) 0.70 (0.57–0.82)

FAERS PRR ** 0.64 (0.58–0.70) 0.75 (0.63–0.86)

All Predictors 0.94 (0.91–0.97) 0.92 (0.86–0.98)

OMOP: Observational Medical Outcomes Partnership, EU-ADR: Exploring and Understanding Adverse Drug Reactions, AUC: area under the 
curve, LBCI: lower bound 95% confidence interval, UPCI: upper bound 95% confidence interval, FAERS: FDA Adverse Event Reporting System, 
PRR: proportional reporting ratio

*
natural logs were taken to scale predictor

**
geometric mean was used to scale predictor
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