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Abstract

Objectives—The purpose of this study was to determine the level of heterogeneity in high grade 

serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer 

associated stromal cells. In addition, we explored the possibility of identifying subgroups based on 

pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells.

Methods—A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and 

depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of 

these single cell datasets passed quality control checks. Sequences were analyzed using multiple 

bioinformatics tools, including clustering, principle components analysis, and geneset enrichment 
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analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, 

stem cell and stromal markers was performed on adjacent tumor sections.

Results—Analysis of the gene expression patterns identified two major subsets of cells 

characterized by epithelial and stromal gene expression patterns. The epithelial group was 

characterized by proliferative genes including genes associated with oxidative phosphorylation and 

MYC activity, while the stromal group was characterized by increased expression of extracellular 

matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). 

Neither group expressed a signature correlating with published chemo-resistant gene signatures, 

but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer 

stem cells.

Conclusions—Single cell sequencing provides a means of identifying subpopulations of cancer 

cells within a single patient. Single cell sequence analysis may prove to be critical for 

understanding the etiology, progression and drug resistance in ovarian cancer.
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Introduction

The promise of individualized cancer therapy is predicated on the identification of 

remediable drug targets within a tumor. Target identification has traditionally relied on 

technologies that interrogate parts of the cancer genome using bulk tumor samples 

consisting of millions of cells processed together. This strategy yields information regarding 

a tumor’s global biology, but treatment efforts exploiting this technology have met with 

mixed results, suggesting the possibility of mixed cell populations within a single patient. 

Single cell analysis has confirmed this hypothesis in several cancers including glioblastoma 

and breast cancer [1].

Most high grade serous ovarian cancer (HGSOC) patients initially respond to platinum-

based therapy, but the majority relapse and die from drug-resistant disease. It remains 

unclear if resistant clones are present early in tumor development or arise later, as a result of 

genomic instability or therapy-related genome damage. We hypothesized that ovarian 

cancer, which has both a high rate of chemotherapy-induced remission and a high rate of 

relapse, accompanied by increasing chemo-resistance, is likely composed of subsets of 

tumor cells with different gene expression patterns, biology, and chemosensitivity. 

Identification of subgroups with deleterious characteristics, such as stem cell or chemo-

resistant signatures, could provide information on the pathways activated in these subgroups. 

This information could be clinically useful if there are available therapeutics targeting those 

pathways.

One characteristic that separates ovarian cancer from other common epithelial cancers is that 

ovarian cancers have very few recurrent mutations (eg. TP53) [2] . Instead, HGSOC is 

characterized by high levels of copy number alterations, which likely creates the genetic 

milieu responsible for the clinical aggressiveness and tendency to become resistant to 
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chemotherapy. Due to the lack of consistent driver mutations, many groups have used RNA 

sequencing and microarrays to identify activated pathways, classifying patients based on 

gene expression patterns. This work has identified four consensus HGSOC molecular 

subtypes, termed differentiated, proliferative, mesenchymal and immunoreactive [2]. 

Furthermore, correlation between molecular subtypes and response to treatment has been 

demonstrated [3].

A limitation of this analysis is that bulk sequencing of tumor samples is unable to identify 

small subpopulations of tumor cells, including cancer stem cells. In addition, sequences 

contributed by other cell populations in the bulk sample, including immune and stromal 

cells, can significantly alter gene expression patterns. For example, infiltrating immune and 

stromal cell subpopulations as low as 5% of the entire sample can bias molecular subtyping 

analyses [4, 5].

Single cell sequencing presents an alternative to bulk sequencing and may prove more useful 

in analyzing DNA and RNA alterations to define subpopulations and molecular targets of 

cancer cells for existing or novel therapeutics. In this study, we analyzed the transcriptome 

of 66 cells isolated from a single tumor specimen obtained during primary cytoreductive 

surgery.

2 Materials and methods

Detailed methods are available in Supplemental Methods.

2.1 Tissue and single cell preparation

Following approval from the University of Minnesota Institutional Review Board, tumor was 

collected from a patient with HGSOC during primary debulking surgery. The sample was 

dissociated into a single cell suspension and red blood cells were lysed. Remaining cells 

were fluorescently-labeled with an antibody cocktail targeting five immune cell markers: 

CD3, CD14, CD19, CD20, CD56 and sorted by flow cytometry. The non-immune 

population was sorted into individual wells using Fluidigm C1 chips and images of each cell 

were captured.

2.2 Sequencing and sequence processing

Isolation of mRNA and generation of barcode-labeled cDNA was performed on the 

Fluidigm C1 chip followed by sequencing using Illumina HiSeq2500. Sequences were 

mapped to the genome and transcriptome using Bowtie2 [6] and RNA-Seq by Expectation-

Maximization [7]. Transcript analysis was limited to 24,200 RefSeq genes.

2.3 Sequence analysis

Unsupervised hierarchical and K-means clustering was done using Cluster 3.0 [8] and 

visualized using Treeview (v1.1.6r4) [9]. Principle component analysis was performed using 

R. Geneset enrichment analysis was performed using MSigDB v5.0 hallmark genesets [10, 

11]. Comparisons to TCGA molecular subtypes was performed using custom R functions.
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2.4 Immunohistochemistry

Standard methods were used for staining de-paraffinized and rehydrated tissue sections from 

the patient sample. Antibodies included ALDH1 (clone 44/ALDH), anti-PAX8 (clone 

MRQ-10), anti-p53 (clone DO7), anti-CD44(clone SP37), anti-CD133/Promin1(clone 

HA10), anti-Ki67 (clone SP6), and polyclonal cKIT(CD117).

3 Results

3.1 Cancer epithelial cells and cancer associated stromal cells can be differentiated based 
on gene expression patterns

Relative RNA abundance was calculated for 24,000 genes in 66 evaluable cells (Supp Table 

1 and Supplemental Methods). We used three different methods of clustering cells based on 

their gene expression pattern and found that the 66 cells consistently separated into two 

groups (Fig 1). The three methods we used were unsupervised hierarchical clustering, K-

means clustering, and principle components analysis.

To cluster cells, we selected the set of genes that had the highest variable expression based 

on an average absolute deviation > 3, encompassing 412 of the 4,673 highly expressed genes 

(Supp Tables 2 & 3). Unsupervised hierarchical clustering separated the cells into two major 

subsets as well as minor subsets (Fig 1A). K-means clustering (k = 4 for cells, k = 3 for 

genes) using the same set of genes separated the cells into the same two major groups, 

except for a single cell (Fig 1B). Principle component analysis using all 4,673 robustly 

expressed genes (Supp Table 2) also separated the cells into two major groups that 

correspond to the groups produced by hierarchical and K-means clustering (Figs. 1C & 1D). 

Importantly, bulk sequencing of the tumor would not have identified these distinct subsets of 

cells because the RNA from the low expressing and high expressing cells would be 

combined when processing the bulk sample.

We hypothesized that the two major groups resulted from separating cancer epithelial cells 

from cancer associated stromal cells. An alternative hypothesis, however, is that cells are 

clustering by cell cycle phase. To test the latter hypothesis, we performed the same 

clustering algorithms described above with a set of cell cycle genes defined by Whitfield, et 

al. [12] (Supp Table 3). Clustering exclusively using only cell cycle genes, or conversely, 

clustering using the remainder of the genes produced almost identical clusters to the original 

groupings, suggesting the cell cycle status of the cells does not explain the two groups (Supp 

Fig 1). We also attempted to define the cell cycle status of each cell using the mean-centered 

expression levels of cell cycle genes (Supp Table 4). By color-coding the cells based on cell 

cycle phase, it is evident that the clusters are not based on the cell cycle status of the cells 

(Supp Fig 2).

In support of the hypothesis that the two major groups are epithelial vs stromal cells we 

noted that 8 of 10 of the most differentially expressed genes are extracellular matrix (ECM) 

associated genes (Table 1). Approximately 76% of cells in the group highlighted in red in 

Figure 1 (16 of 21 cells) expressed high levels of ECM genes compared to the other group 

(Fig 2A). This same group of cells also express higher levels of the well-known 

mesenchymal transcription factors TWIST, SNAIL and ZEB (Fig 2B). It is possible that a 
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subset of cells in either of these groups are epithelial cancer cells undergoing an epithelial to 

mesenchymal transition (EMT), as several of these are EMT-associated proteins including 

collagen, fibronectin, secreted protein acidic and rich in cysteine, and vimentin [13]. In 

contrast to the red group with high ECM/EMT gene expression, 96% of the other group (43 

of 45 cells), highlighted in blue in Figure 1, expressed PAX8 and/or CA125 (Fig 2C & 2D), 

which are markers indicative of epithelial ovarian cancer.

We performed gene set enrichment analysis (GSEA) to identify genesets that were enriched 

in either of the groups. The group of cells with high levels of ECM gene expression (group 2 

in red in Fig 1) were significantly enriched for 8 out of 50 "hallmark" genesets annotated by 

the Broad Institute [14], while the other group (group 1 in blue in Fig 1) was enriched for 

three "hallmark" genesets (Table 2, Supp Fig. 3), (normalized enrichment score > 1.5 and 

nominal p value < 0.05). Not surprisingly, the top geneset for group 2, which is 

characterized by high ECM expression, was the EMT geneset in parallel with the 

overexpression of genes belonging to TGFb signaling and myogenesis genesets. The 

overexpression of these three genesets indicates the involvement of major cancer cell 

plasticity mechanisms characterizing this particular tumor. Also enriched were genesets for 

angiogenesis and hypoxia. While the other group of cells was significantly enriched for 

oxidative phosphorylation, DNA repair and MYC targets.

Two groups have published gene lists generated by comparing stromal tissue to epithelial 

tissue using either laser dissection on ovarian cancer samples [15] or by combining data 

from breast, ovarian and colorectal cancer [16]. Performing GSEA using these genesets 

indicates that the second group of cells, as expected, is highly enriched for genes that are “up 

in stroma”, while the first group of cells are highly enriched for genes that are “up in tumor” 

(Supp Fig 4). Again, it should be noted that these signatures would not have been identified 

using bulk sequencing data.

Analysis of single nucleotide variants (SNVs) detected by RNA sequencing also supports 

the hypothesis that group 1 cells are cancer epithelial cells while group 2 cells are stromal 

cells. Unfortunately, the RNA sequencing data was not deep enough to identify known 

recurrent mutations in ovarian cancer, like TP53. Instead, we used the RNASeq data to 

quantify numbers of homozygous vs heterozygous SNVs in each cell. After filtering out 

common SNVs, we identified ~650,000 SNVs that were present in at least one cell. The vast 

majority of these were unique to one or a few cells and were not “called” in most of the cells 

due to lack of sequencing reads covering the locus. Based on quantification of SNVs called 

as homozygous, cells could be grouped into low (< 15,000) and high (> 15,000) numbers of 

homozygous SNVs (Supp Figure 5A). As expected, the cells with low numbers of 

homozygous SNVs were mainly found in group 2, which we hypothesize are the cancer 

associated stromal cells (Supp Figure 5B), while the cells with high numbers of homozygous 

SNVs are in group 1, which we hypothesize are epithelial cancer cells. Henceforth, we will 

refer to these two groups as the stromal cell group (group 2 in red in Fig. 1) and epithelial 

cell group (group 1 in blue in Fig. 1). Interestingly, there is a subset of cells that have a high 

homozygous SNP count, yet cluster in the stromal group. It is possible that these cells 

represent cancer epithelial cells undergoing EMT.
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3.2 IHC reveals the presence of stem cell markers and mesenchymal markers in both 
cancer and cancer associated stroma

To characterize protein expression in the ovarian cancer tumor sample that was used for 

single cell sequencing, we performed hematoxylin and eosin (H&E) staining and 

immunohistochemistry (IHC) for common ovarian cancer markers on paraffin embedded 

tumor sections that were adjacent to the piece used for single cell sequencing. Based on 

H&E staining, approximately half of the cells were tumor cells (outlined in Supp Figure 6A) 

and, as expected, these cells stained positively for the ovarian cancer cell markers PAX8 and 

TP53 (Supp Figure 6B & 6C). Approximately 20% of these tumor cells stained positively 

for the proliferation marker ki67 (MKI67) (Supp Figure 6D & 6E).

To evaluate the presence of stem cell markers, we performed IHC for CD117/cKIT, CD44, 

ALDH1A1, and CD133/PROM1[17–19]. There were a few cells with positive membrane 

staining for CD117/cKIT, mostly located within the stromal areas (Supp Figure 7A & 7B). 

A similar pattern was evident with CD44 staining (Supp Figure 7C & 7D), with 10% of 

stromal cells showing immunoreactivity, while only 1% of tumor cells stained positively 

(Supp Figure 7E). ALDH1A1 staining was pervasive throughout the tumor and stromal 

areas, with cytoplasmic staining evident in a subset of tumor cells, while very few cells 

stained positively for CD133/PROM1 (Supp Figure 8). The vast majority of stromal cells 

were positive for vimentin (VIM), while only a few cells within the tumor sections stained 

positively (Supp Figure 9).

3.3 Technical considerations for single cell sequencing

We were able to sequence cDNA generated from 92 single cells using 100 bp paired-end 

sequencing to an average depth of 1.8 million reads/cell. An average of 89% (range 73% to 

96%) mapped to the genome, but only 26% (range 1% to 47%) aligned to the transcriptome, 

compared to 46% for the bulk sample (Supp Table 5). This might indicate that ovarian 

cancer cells produce a large amount of mRNA that is not processed correctly or the process 

of generating cDNA from single cells captures some genomic DNA. The number of RefSeq 

genes with detectable reads in the bulk sample was 12,193, while the average for a single 

cell was 3,603 (range 1,735 – 5,929). This suggests that either each single cell expresses 

about 25% of the genes compared to the total number of genes expressed in the bulk sample, 

or the technical limitations of single cell RNA capture and processing results in a large 

number of expressed genes not being detected.

An analysis of housekeeping genes, which we hypothesized to be robustly expressed and 

detected in all cells, indicated that some housekeeping genes were expressed in all cells (e.g. 

ACTB and CTNNB1), while other prototypical housekeeping genes (e.g. GAPDH and TBP) 

were not detected in all cells. In general, however, the entire set of 4,673 robustly expressed 

genes was highly enriched for housekeeping genes (1,924 out of 4,673, Fisher’s Exact Test, 

P < 0.00001), based on a list of 3,873 housekeeping genes identified by Eisenberg, et al., 

[20] (Supp Table 3). This suggests that technical limitations can partially explain why low 

numbers of genes are detected in single cells. Nevertheless, it is apparent that there is 

extensive heterogeneity in gene expression when comparing single cells, as the majority of 
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the 4,673 highly expressed genes are detected in less than half of the 66 cells sequenced 

(Supp Fig 10).

3.4 Detecting a chemo resistant population

To determine whether or not a chemo resistant gene expression signature is present in either 

the stromal or epithelial group, we performed GSEA using genesets produced by three 

different studies that identified genesets that were upregulated or downregulated in platinum 

resistant ovarian cancer (Supp Table 6). The first geneset was derived from cell lines 

conditioned to be resistant to either cisplatin or paclitaxel [21]. Both the cisplatin and 

paclitaxel resistant downregulated genesets were upregulated in the stromal group (FDR < 

25%), while the corresponding resistant upregulated genesets were enriched in the epithelial 

group, although not to a significant level (Supp Fig 11A & B). We had expected to find 

enrichment for genes upregulated in platinum resistant cancers in the stromal group, based 

on the finding that patients classified in the “mesenchymal” molecular subtype have a worse 

prognosis than the other groups [3] and the general consensus that EMT cells are more 

resistant to chemotherapy [22]. Next, we performed GSEA using genesets that corresponded 

to genes upregulated or downregulated in platinum-sensitive vs platinum-resistant tumor 

samples. The two genesets were derived from the union of genes found upregulated or 

downregulated in resistant vs sensitive ovarian cancer patients and genes that were changed 

in an ovarian cancer cell line (IGROV1) compared to its carboplatin-resistant derivative [23]. 

The only significant finding was an enrichment in the epithelial group for genes that were 

downregulated in carboplatin resistance tumors (Supp Fig 11C). Finally, we used a list of 

genes produced by the International Cancer Genome Consortium (ICGC) that were 

significantly upregulated or downregulated when comparing resistant vs sensitive ovarian 

cancer patient samples [24]. The only significant association was between the epithelial 

group and genes upregulated in platinum resistant cancers (Supp Fig 11D). One caveat to 

these analyses are that there is minimal overlap between the genesets defined in the three 

different studies as significantly up or downregulated in platinum resistant cells/tissues. 

Based on these GSEA results we conclude that neither group displays a gene signature that 

corresponds to platinum and taxane resistance based on the studies described above.

3.5 Detecting cancer stem cells

We analyzed the expression of cancer stem cell markers in our dataset (Fig 3). The patient in 

this study had stage IIIC HGSOC and approximately 30% (19/66) of her single cells were 

CD44+, although the majority (15) of these cells were in the stromal group (Fig 3A). This 

level of CD44 positivity is correlated with poor survival in early stage ovarian patients, but 

does not have a correlation with survival in late stage ovarian cancer patients [25]. There 

were no individual cells that were double positive for CD44 and KIT, nor were there any 

cells double positive for PROM1 and ALDH1, two combinations that have been purported to 

define ovarian cancer stem cells [17, 19, 26] (Fig 3A, D, E & H). In general, the stromal 

group was enriched for CD44, while the epithelial group was strongly enriched for CD24 

(Fig 3A & B). Interestingly, EPCAM, a gene associated with platinum resistance and 

ovarian cancer metastases [27] was unexpectedly correlated with CD44-/CD24+ cells (Fig 

3C), although four cells were triple positive for CD44/CD24/EPCAM (Fig 3A–C). MYD88 

and CD44 expression were not correlated, and high expression of CK18 was negatively 
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correlated with CD44 expression (Fig 3A, G & I). Only a few cells expressed PROM1 and 

KIT and there was no overlap between ALDH1+, PROM1+ or KIT+ cells (Fig 3D–F). 

Interestingly, there was a single cell that simultaneously expressed CD44, MYD88, ALDH1, 

and high levels of CK18, representing a candidate stem cell based on co-expression of these 

markers [28, 29] (black arrows, Fig 3A, F, G & I).

3.6 Molecular classification of ovarian cancer comparing bulk to single cell gene 
expression patterns

We re-derived the TCGA patient molecular subtypes using K-means clustering using TCGA 

RNASeq data instead of using the microarray data that was used originally in the TCGA 

study (see Materials and Methods). Surprisingly, approximately 30% of patients would be 

assigned to different molecular subtypes based on RNASeq data (Supp Fig 12), including 

almost half of the immunoreactive group. To determine the molecular subtype of the single 

cells, bulk population, and the stromal and epithelial cell groups we included these as 

samples along with the TCGA patient RNASeq data and performed K-means clustering. 

Using the RNASeq data from the bulk population, the patient’s bulk sample is classified as a 

mesenchymal subtype. As might be expected, the stromal group of cells are also classified as 

mesenchymal, while the epithelial group are classified as proliferative. Analysis of each 

single cell classifies the majority of stromal cells as mesenchymal and epithelial cells as 

proliferative, although some of the cells are classified in other groups (Fig 4). These 

analyses indicate that molecular classification using bulk sequencing can mask the gene 

expression patterns of large groups of cells, which may ultimately effect patient outcome 

and possible treatment decisions based on these classifications.

3.7 Functional classification of single cells

We explored the possibility of functionally classifying single cells based on genes that have 

been defined in the literature as marker genes for stroma and stromal subgroups and for 

epithelial cancer cells and epithelial subgroups. We used these known functional markers to 

define cancer epithelial cells vs stroma cells and to create three subgroups of cancer 

(epithelial, EMT, and EMP) and four subgroups of stroma (fibroblasts or myofibroblasts, 

either activated or non-activated). A cell was defined as a “cancer” cell (n = 54) if it 

expressed one or more ovarian cancer marker gene (WT1, PAX8, MUC16, KL6, KL7 or 

KL8). The “cancer” group was further subdivided based on epithelial markers (CD24, 

EPCAM, CDH1, OCLN, KRT19, DSP, KRT18, CLDN4) or mesenchymal markers (CD44, 

CDH2, ITGA5, VIM, FN1, S100A4, TNC, MMP2, ACTA2, TWIST1, WNT5A, SNAI2, 

ZEB1, ZEB2). Cells strongly expressing at least two genes from a marker group were 

considered to present an epithelial or EMT signature. Many cells expressed both signatures 

and were classified as being in an epithelial-mesenchymal plasticity state (EMP) [30]. Four 

of the 12 cells that were negative for cancer markers also expressed both the epithelial and 

mesenchymal signatures and were classified as cancer-negative EMP cells. The remaining 

eight cells were defined as fibroblasts or myofibroblasts based on ACTA2 levels and as 

activated or non-activated based on FAP expression. By overlaying these groups on the PCA 

plot it is evident that fibroblasts cluster in the stromal group while the EMP/EMT/epithelial 

cells cluster in the epithelial group (Fig. 5). Interestingly, the single cell displaying the most 

stem cell markers in Fig. 3 is classified as a non-cancer EMP cell in this grouping.
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Discussion

In this study of HGSOC we identified two major groups of cells, which were characterized 

by stromal and epithelial gene expression signatures. Neither of these groups displayed gene 

expression patterns associated with chemo resistance based on three independent studies [21, 

23, 24]. However, the chemo resistant genesets produced by these three studies did not 

overlap, indicating they may not be true indicators of chemo resistance. The patient in this 

study has shown no evidence of recurrence 19 months post-surgery which is consistent with 

the finding that the single cells did not express a chemo-resistant gene signature. Analysis of 

single cells from more patients, including samples from patients before and after recurrence 

will be necessary to define chemo-resistant single cell signatures. This type of analysis will 

also help answer the question of whether or not the resistant cell type was present in the 

primary tumor.

Identifying the ovarian cancer stem cell will likely be crucial for improving current cure 

rates of less than 50% for advanced stage patients. Many studies have attempted to identify 

ovarian cancer stem cells, however, molecular markers that indisputably identify ovarian 

cancer stem cells are not well-defined [31–33]. The consensus is that the cancer stem cell 

population is rare (< 2%) [31, 32], although this might be an underestimate due to the 

technical difficulty of propagating cancer stem cells [34]. Future studies will be necessary to 

quantify the frequency of cells with stem cell markers in other HGSOCs and sorting these 

cells followed by functional analyses will be required to determine their stemness.

Clinical decision-making based on molecular subtyping using gene expression patterns is 

still a rarity in oncology, except in a few types of cancers, like breast cancer. One reason 

may be that the cell types responsible for chemo resistance and/or recurrence are rare and 

their gene signature is always masked when analyzing gene expression data from a bulk 

tumor sample. Often, the molecular subtypes defined by gene expression patterns do not 

correlate with survival or have predictive value for alternative treatment options. In ovarian 

cancer, TCGA and other groups used clustering algorithms to define four molecular 

subtypes, referred to as mesenchymal, immunoreactive, proliferative and differentiated 

based on key genes that are expressed in each subtype. These uniquely defined molecular 

subtypes have some prognostic relevance and possible differential response to 

antiangiogenic treatment with bevacizumab [2, 3, 15, 35]. However, when the same 

clustering analysis is performed using bulk RNASeq data, which was gathered after the 

initial TCGA ovarian cancer publication, approximately 30% of patients are classified in 

different groups than they were originally classified when using microarray data (Supp Fig 

12). Based solely on the bulk sample, the patient in this study falls into the mesenchymal 

subtype. However, if we classify the stromal group of cells and the epithelial group of cells 

as two “patients”, the stromal group is classified as mesenchymal while the epithelial group 

is classified as proliferative. Finally, if we classify each single cell, the majority of stromal 

cells fall into the mesenchymal group and the majority of the epithelial cells fall into the 

proliferative group, although a small portion of each group are classified in one of the other 

three groups (Fig 4). Interestingly, this patient’s cancer harbors the molecular subtypes, 

mesenchymal and proliferative, which carry the worst prognosis, but which may derive the 

largest clinical benefit from anti-VEGF treatment with bevacizumab. These results suggest 
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that molecular classification at the single cell level can reveal the presence of multiple 

molecular subclassifications within a tumor. This knowledge may prove useful for 

categorizing subpopulations of cancer cells which drive clinical outcome and response to 

chemotherapy, although more patients will need to be analyzed.

In summary, to our knowledge, we provide the first study of gene expression patterns in 

single cells from a patient with HGSOC, demonstrating there is considerable heterogeneity 

within a single tumor. Analysis of more patients will allow stratification based on 

percentages of cells in the different functional groups. There appear to be underlying themes 

within this heterogeneity that can be defined at the single cell level and it is tantalizing to 

hypothesize that it may be possible to identify cancer stem cells using this technology. Our 

findings provide a first view of single cell gene expression analysis in ovarian cancer. 

Analysis of more patient samples and more cells per sample will be required to continue to 

unravel the complexity of HGSOC and aid in development of effective therapies tailored to 

individual patients with the goal of improving outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A single tumor contains cells representing all defined molecular 

classifications

• Molecular classification based on sequencing of bulk tumor samples is 

problematic

• Single cell sequencing can identify rare cells expressing stem cell markers

Winterhoff et al. Page 13

Gynecol Oncol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Three clustering methods reveal two major groups of cells. A) Unsupervised hierarchical 

clustering based on 412 variably expressed genes. B) K-means clustering using the same 412 

genes. C & D) Principle component analysis (PCA) 3D plot of 66 cells based on first three 

principle components analysis using 4,673 highly expressed genes. Cells are colored in C) 

based on color bar underneath hierarchical clustering heat map. Cells in D) are colored 

based on K-means color bar. The two major groups defined by all three methods (Group 1 = 

blue/lightblue vs Group 2 = red/lightred) are identical except for a single cell.
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Figure 2. 
High expression levels of 8 ECM-related-genes define cell subpopulations. PCA plots using 

4,673 genes × 66 samples with cells colored based on average expression levels of A) 8 

highly variably expressed ECM genes, and B) EMT transcription factors (TWIST, SNAIL, 

ZEB). Red = high, yellow = medium, blue = low. C) PAX8 high in green. D) CA125 

(MUC16) high in black.
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Figure 3. 
PCA plots of all 66 cells colored based on expression of the indicated stem cell gene. A) 

CD44 in green. B) CD24 in red. C) EPCAM in blue. D) PROM1 in yellow. E) KIT in pink. 

F) ALDH1A1, ALDH1A2 and ALDH1A3 in brown. G) MYD88 in cyan. H) ABCG2 in red. 

In A-H, cells are colored if expression of the indicated gene(s) is > 2 (LogTPM), otherwise 

cells are in white. I) CK18 expression based on expression tertiles: low/none = blue, middle 

= yellow, high = red. Red and blue circles delineate stroma and epithelial subgroups 

identified in Figure 1, respectively.
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Figure 4. 
Pie charts depicting distribution of single cells based on molecular subtype. A) Epithelial 

group cells (n=45) and B) Stroma group cells (n=21). Differentiated = green, proliferative = 

blue, mesenchymal = red, immunoreactive = yellow.
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Figure 5. 
PCA plot with single cells colored based on presence of functional markers: Cancer 

epithelial cells (dark blue), cancer EMP cells (blue), cancer EMT cells (yellow), non-cancer 

EMP cells (red), fibroblasts (activated = black, not activated = grey), and myofibroblasts 

(activated = dark green, not activated = light green).
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Table 1

Top ten variably expressed genes*

HGNC_symbol Name Function

C0L3A1 Collagen, Type III,
Alpha 1 ECM protein

SPARC
Secreted Protein,
Acidic, Cysteine-Rich
(Osteonectin)

Matrix-associated protein that regulates collagen,
cell shape, and ECM synthesis

COL1A1 Collagen, Type 1,
Alpha 1 ECM protein

COL1A2 Collagen, Type 1,
Alpha 2 ECM protein

DCN Decorin Proteoglycan that plays a role in matrix assembly

VIM Vimentin Intermediate filament that maintains cell shape
and stabilizes type 1 collagen

CD24 CD24 Molecule Membrane sialoglycoprotein involved in cell
signaling

FN1 Fibronectin 1 Glycoprotein involved in cell adhesion, motility
and matrix assembly

ARRDC3 Arrestin Domain
Containing 3

Membrane protein implicated in B2- adrenergic
receptor downregulation

THBS1 Thrombospondin 1 Adhesive glycoprotein that mediates cell-cell and
cell-matrix adhesion

*
Variation based on average of absolute deviation of mean-centered log2TPM values
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