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Abstract

In the vertebrate nervous system, the fast conduction of action potentials is potentiated by the 

myelin sheath, a multi-lamellar, lipid-rich structure that also provides vital trophic and metabolic 

support to axons. Myelin is elaborated by the plasma membrane of specialized glial cells, 

oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral 

nervous system (PNS). The diseases that result from damage to myelin or glia, including multiple 

sclerosis and Charcot-Marie-Tooth disease, underscore the importance of these cells for human 

health. Therefore, an understanding of glial development and myelination is crucial in addressing 

the etiology of demyelinating diseases and developing patient therapies. In this review, we discuss 

new insights into the roles of mechanotransduction and cytoskeletal rearrangements as well as 

activity dependent myelination and axonal maintenance by glia. Together, these discoveries 

advance our knowledge of myelin and glia in nervous system health and plasticity throughout life.

Intrinsic factors guiding oligodendrocyte and SC development

Although both cells produce myelin to insulate and support axons, oligodendrocytes and 

SCs differ early in their genesis. Oligodendrocytes originate from neuroepithelial precursors, 

whereas SCs are derived from the neural crest. Furthermore, one oligodendrocyte can 

myelinate multiple axon segments, but one SC myelinates only a single axon segment (Fig. 

1, Fig. 2). This is achieved through a process called radial sorting in which cytoplasmic 

processes from immature SCs extend into axon bundles and “select” an axon segment [1]. 

SC development is mediated by a host of transcription factors and signaling molecules, 

including Sox10, which persists throughout development and differentiation, activating other 

transcription factors [1]. In pro-myelinating SCs, which have radially sorted axons and 

wrapped 1–1.5 turns around an axon, the G protein-coupled receptor (GPCR) GPR126/

ADGRG6 elevates cAMP to promote expression of the transcription factor Oct6/Pou3f1 [1]. 

Oct6 and Sox10, along with other factors, activate the master regulator of PNS myelination, 
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Krox-20/Egr2, which is essential for expression of critical myelin genes, including Myelin 
basic protein (Mbp) [1].

Proliferative and migratory oligodendrocyte precursor cells (OPCs) extend and retract 

numerous processes during development [2]. Recent work has found that OPCs can migrate 

along blood vessels in a Wnt-dependent manner involving the receptor-ligand pair Cxcr4-

Cxcl12, which are expressed on OPCs and endothelial cells, respectively [3]. 

Oligodendrocyte differentiation requires some shared SC factors, including Sox10 and Yin 
yang 1 (Yy1), in addition to the oligodendrocyte specific regulators Olig1, Olig2, Nkx2.2 [2] 

and Myelin regulatory factor, Myrf, which plays an analogous role to Krox-20 [4]. Recent 

work in SCs and oligodendrocytes has identified novel roles for signaling molecules, 

including a suite of GPCRs, GPR17, GPR56 and GPR37 in the CNS [5][6][7][8] and 

GPR44 and the zinc finger Zeb2 in the PNS [9][10][11]. While new myelin regulators 

remain to be uncovered, elucidating the function of known molecules and pathways is key to 

understanding myelination in development and repair.

Mechanical regulation of myelinating glia during development and 

differentiation

A unique signaling mechanism in SCs occurs via the basal lamina (BL), and recent evidence 

points to the molecular mechanisms by which this structure mechanically regulates 

myelination. In SCs, GPR126 can interact with axonally-derived Prion protein (PrPc)[12] as 

well as two SC-derived components of the BL, collagen IV and Laminin-211 [13][14]. 

Laminin-211 polymerization was proposed to activate GPR126 mechanically, initiating SC 

myelination (Fig. 1)[13], and SCs respond to mechanical properties of the BL with 

intracellular molecules such as Focal adhesion kinase (FAK)[15]. Recently, two Hippo 

pathway signaling molecules, YAP and TAZ (YAP/TAZ), have been implicated as mediators 

of mechanotransduction during SC development. YAP/TAZ respond to mechanical or 

chemical stimuli and translocate to the nucleus to regulate gene transcription. In vitro culture 

experiments found nuclear localized YAP/TAZ during SC spreading, plating on stiffer 

surfaces, plating on Laminin-211, and experimentally applied stretching (Fig. 1). Analysis of 

mouse mutants demonstrated that YAP/TAZ signaling is required for radial sorting and 

myelination [16]. YAP also has a role in modulating internode length during development 

and disease. [17]. In concert with TEAD transcription factors, nuclear YAP activates genes 

involved in the myelination program, including Krox-20/Egr2 and Myelin associated 
glycoprotein (MAG), Rab11, and Laminin ϒ1. The polarity protein Crb3 inhibits YAP 

nuclear translocation and knock-down of Crb3 increases the length of SC myelin segments 

[17]. Crb3 is therefore thought to modulate YAP activity to temper internode length. 

Interestingly, a dystrophic mouse model of peripheral neuropathy exhibited reduced nuclear 

YAP with shorter internodes, a phenotype that could be rescued by manual sciatic nerve 

elongation via femoral distraction to increase nuclear YAP [17]. These data suggest that 

migration of SCs along axons and/or longitudinal nerve growth could activate YAP/TAZ 

signaling during development. Perhaps physical maturation of the BL and GPR126 

activation is similarly linked to developmental YAP/TAZ signaling, as GPCRs are known 

upstream regulators of this pathway [18]. Downstream of YAP/TAZ signaling, TEAD1 

Herbert and Monk Page 2

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



directly regulates Peripheral myelin protein 22 (Pmp22), mis-regulation of which causes 

Charcot-Marie-Tooth disease [19].

While a role for YAP/TAZ signaling in oligodendrocytes has not been described, these cells 

are also responsive to mechanical stimuli. OPC proliferation and migration can be altered by 

plating on substrates of varying stiffness [20], resulting in differentiation in a density-

dependent manner. Plating at high density with polystyrene beads promoted OPC 

differentiation, demonstrating that this process is mediated by physical space limitations, 

rather than by extracellular signals [21]. How might external forces drive oligodendrocyte 

development? A recent report demonstrates that mechanical stimuli interact with the nucleus 

via the Linker of Nucleoskeleton and Cytoskeleton complex (LINC). One LINC complex 

component in particular, SYNE1, which binds the nuclear envelope and actin, was shown to 

link extracellular stimuli, including high density plating with beads and mechanical force 

using a cell-compression device, to nuclear changes [22]. The switch from primarily 

euchromatin to heterochromatin is a hallmark of differentiation in oligodendrocytes [23] and 

requires SYNE1 [22]. Histone modifying complexes, specifically HDAC1 and HDAC2, 

affect nuclear reorganization by altering chromatin configuration and are essential for 

oligodendrocyte and SC differentiation. Epigenetic regulation of oligodendrocytes and SCs 

during development and myelination is reviewed in greater detail elsewhere [1][4].

Producing the myelin sheath

In a feat of cellular morphogenesis, glial cells massively upregulate production of their 

plasma membrane and spiral it around an axon segment. These dramatic shape changes 

require extensive cytoskeletal rearrangements, and great inroads have been made in 

understanding how such rearrangements drive myelin sheath formation. Using zebrafish in 
vivo imaging and 3D electron microscopic reconstruction, Snaidero and colleagues 

demonstrated that the plasma membrane inner tongue maintains contact with the axon 

segment as it wraps and progressively spreads out to form the myelin internode. Initial inner 

tongue movement is aided by the transport of critical material, including mRNA and protein, 

through nanometer wide channels [24]. How is the inner tongue propelled around the axon? 

Two elegant studies suggest actin dynamics as a driving force. Nawaz et al. used zebrafish 

live imaging to determine that F-actin is initially localized to the leading edge, but later 

excluded from the developing membrane. Culture experiments demonstrated that F-actin 

depolymerization by drug treatment increased cell spreading, leading to a model in which 

the force of actin filament disassembly propels the membrane forward (Fig. 2). Interestingly, 

Zuchero and colleagues found that actin disassembly is driven in part by competition of 

MBP protein for binding to PI(4,5)P2, which then releases the actin disassembly factors 

gelsolin and cofilin (Fig. 2). The dynamic interplay between actin assembly during 

development and disassembly during myelination highlights a potential form of temporal 

control. Because actin assembly is necessary for OPC development [25], the timing of 

disassembly must be tightly regulated. What factors could influence timing? One possibility 

is axonal activity. In vitro, vesicular glutamate release from axons in response to electrical 

stimulation phosphorylates Fyn kinase at the oligodendrocyte membrane, leading to local 

translation of Mbp [26]. Together, these discoveries implicate axons in temporally 

influencing myelination via actin disassembly.
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A role for actin dynamics has similarly been described in the PNS. Inhibition of F-actin 

formation resulted in delayed SC differentiation [27] and SC-specific deletion of neural 

Wiskott-Aldrich syndrome protein (N-WASp), a mechanical transducer that remodels actin 

via Arp2/3, inhibits myelination and causes motor deficits [28][29]. Unlike 

oligodendrocytes, SCs must sort axons prior to myelination. Radial sorting, like myelination, 

requires dramatic cell shape changes that are mediated by proteins regulating the 

cytoskeleton, including the Rho family GTPases Rac1 and Cdc42 [30][31]. Although these 

studies point to the importance of cytoskeletal rearrangements in SC development, less is 

known about the forces driving myelination. Interestingly, both oligodendrocytes and SCs 

transport Mbp along microtubules to sites of membrane elaboration [32][33]. Whether actin 

disassembly and local translation of Mbp in SCs have roles in driving myelination remains 

to be determined.

Activity-dependent control of myelination and myelin maintenance

Oligodendrocytes have intrinsic myelinating capacity and can myelinate fixed axons in 

addition to synthetic nanofibers and micropillars [21][34][35]. What prevents 

oligodendrocytes from myelinating dendrites or other cells in the CNS? Using a candidate 

approach, Redmond et al. identified the transmembrane protein JAM2 as a negative regulator 

of oligodendrocyte myelination (Fig. 2). Overexpression of JAM2 attenuated the ability of 

plated oligodendrocytes to myelinate micropillars, and loss of Jam2 in a mouse model 

caused an increase in myelinated neuronal cell bodies, implicating repulsive cues in 

modulating myelination [36]. Another study indicates that a component of intrinsic 

myelination may be hardwired in oligodendrocytes. When plated on nanofibers, spinal cord 

oligodendrocytes produced more myelin than cortex-derived oligodendrocytes [37]. Are 

these regional differences due to environmental cues or other factors? One possibility is that 

there are specific subtypes of oligodendrocytes with distinct myelinating capacities. To this 

end, single-cell RNA sequencing was used to characterize cell types in the murine 

hippocampus and cortex. Interestingly, findings from these experiments suggested seven 

distinct subtypes of oligodendrocytes, including OPCs [38]. Furthermore, a recent study 

using the same technique to probe oligodendrocyte heterogeneity in more detail proposed 13 

distinct populations of oligodendrocytes in the mouse brain [39].

While negative regulators prevent aberrant myelination in the CNS, variation in myelin 

distribution along single axons of the developing cortex suggests a fine-tuning of 

myelination capacity beyond an intrinsic program [40]. Indeed, early work implicated 

electrical signaling as an instructive cue in oligodendrocyte development and myelination 

[41][42]. How might activity influence myelination? Previous work demonstrated that 

neurons form functional synapses on OPCs [43]. Recent research suggests, however, that 

while oligodendrocytes are more likely to myelinate electrically active axons, this occurs 

independently of synapse formation, instead relying on vesicular release of glutamate and 

ATP [44]. A critical role for vesicle transport in myelination was confirmed in vivo using 

zebrafish. Mensch and colleagues used tetanus toxin to inhibit vesicular release, resulting in 

fewer sheaths, while increasing activity led to more sheaths per oligodendrocyte [45]. In a 

complementary study, Hines et al. found that initial oligodendrocyte axon ensheathment is 

activity independent, but preferential contact is maintained on axons releasing vesicles. 
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Processes are either retracted from inactive axons or produce shorter myelin sheaths (Fig. 2) 

[46]. However, the necessity of vesicular release is differentially regulated in the CNS. This 

cue is required for myelination by reticulospinal neurons but not by commissural primary 

ascending (CoPA) neurons [47]. Why there are different regulatory mechanisms depending 

on neuronal subtype is an area of future investigation.

Rather than a simple static insulator deposited during development, myelin is now 

recognized as a player in nervous system plasticity. Myelination during development and in 

adulthood is modulated by an animal’s social experience [48][49] and myelin remodeling 

occurs throughout life [50]. Furthermore, learning new skills, such as juggling and language 

acquisition, results in changes to myelin [51][52]. How do myelin alterations occur and how 

do they affect nervous system plasticity? One possibility is that activity stimulates formation 

of new oligodendrocytes. To this end, it was shown that differentiation of oligodendrocytes 

from precursors is necessary for mice to learn a new skill effectively [53], and that neuronal 

activity promotes oligodendrogenesis and concomitant behavior changes [54]. What is the 

role of new oligodendrocytes? A recent paper examined the timing of oligodendrogenesis in 

response to learning and found significant formation of new oligodendrocytes in mice 

learning to navigate a complex wheel within the first 2.5 hours. Furthermore, mice unable to 

form new oligodendrocytes exhibit learning deficits as early as 2–3 hours after first 

encountering the wheel. This early necessity for new oligodendrocytes in the learning 

process indicates a level of active involvement [55]. Whether this occurs through modifying 

circuits, providing metabolic support or an as yet undetermined mechanism is an area of 

future investigation.

Myelin and metabolism

In addition to promoting efficient action potential propagation, myelin is also critical for 

trophic and metabolic support of axons [56]. To provide metabolites to axons accurately, glia 

must “know” the metabolic requirements of axons. Could electrical activity by axons 

function as a means of communication? NMDA glutamate receptors are present on 

oligodendrocytes [57][58], but were thought to be dispensable for oligodendrocyte 

development, myelination, and injury response [59][60]. However, recent work has 

implicated these receptors in mediating calcium influxes in mature oligodendrocytes [61]. 

Furthermore, NMDA receptors have been shown to link electrical activity in axons to the 

production of lactate by oligodendrocytes, a critical energy source for axons. By “learning” 

via NMDA receptor signaling which axons are fast spiking, oligodendrocytes are able to 

vary lactate production. Loss of NMDA receptors specifically in oligodendrocytes, while not 

critical during development, causes eventual neurodegeneration from reduced metabolism 

[62]. Lactate production and metabolic support of axons by SCs is also critical in the PNS 

[63][64]. The lactate transporter that is used by oligodendrocytes, MCT1, is present in SCs 

and mediates axonal health [65][66]. However, these studies did not address a role for 

electrical activity in SC regulation of axonal metabolism. Interestingly, a recent report found 

that ATP release by electrically active axons mediates mitochondrial signaling to promote 

energy production in SCs and disruption of this signaling pathway resulted in 

hypomyelination [67].
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Conclusion and Outlook

From static insulating factor to dynamic structure critical in enabling nervous system 

plasticity, our conceptions about myelin have changed dramatically in recent years. 

However, although both SCs and oligodendrocytes produce myelin, the mechanisms by 

which they do so are distinct (Fig. 3). Oligodendrocytes possess an intrinsic ability to 

myelinate that is fine-tuned by environmental cues, such as mechanical stimulation and 

electrical activity from axons. New studies suggest the existence of distinct subsets of 

oligodendrocytes, raising the possibility that such heterogeneity could contribute to 

differences in innate myelination and re-myelination abilities. It will be exciting to uncover 

the extent to which interplay between the extracellular environment and oligodendrocyte 

heterogeneity influences myelination during development and repair. Advances in cellular 

techniques, including 3D electron microscopic reconstructions and live imaging, have 

contributed to a better understanding of the physical process of myelination by 

oligodendrocytes, including a surprising role for actin dynamics. Further research into the 

cytoskeletal and architectural reorganization of membrane during myelination will help us 

better understand this feat of morphogenesis and elucidate how to promote re-myelination in 

disease or injury.

SCs are incapable of myelinating inert structures [37], relying instead on instructive cues. 

PNS myelination also appears to be less finely tuned compared to the CNS, with stricter 

correlations between axon diameter and myelin thickness. Whether PNS myelin undergoes 

dynamic changes similar to CNS myelin has not been well studied. While early work 

demonstrated a role for axonal activity in modulating SC development and myelination [68], 

this area of research has lagged behind progress made in the CNS. The mechanisms by 

which SCs elaborate a myelin sheath are similarly mysterious. One pertinent question is 

whether actin dynamics, which are vital during CNS myelination, play an analogous role in 

SCs. A current focus in SCs is on mechanotransduction, and advances in this area are 

already guiding therapeutic developments through techniques such as optimal matrices for 

acellular nerve allografts [69].

In summary, the studies highlighted in this review demonstrate that myelination in the CNS 

and PNS is distinct while sharing some similar processes. Future work would benefit from 

comparing and contrasting these systems to clarify common or unique aspects of 

development and myelination. Therapeutic advances will be realized through continued 

investigation into the mechanisms and controls of myelination from genesis through 

maturity.
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Highlights

• Schwann cell development is mediated by mechanical signals.

• Some mechanical signals in Schwann cells activate the Hippo signaling 

pathway.

• Intrinsic oligodendrocyte myelinating capacity is fine-tuned by the 

environment.

• Lactate made by myelinating glia is critical for axonal metabolism and health.
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Figure 1. 
Mechanotransduction plays a critical role in SC development and differentiation. Immature 

SCs migrate and divide along growing axons. The forces associated with migration are 

thought to activate the mechanotransducers YAP/TAZ in SC cytoplasm, which then 

translocate to the nucleus where they interact with the TEAD family transcription factors to 

drive expression of important myelin genes (a). After SCs have formed a “1:1” relationship 

with axons in the pro-myelinating stage, maturation of the basal lamina and subsequent 

polymerization of Laminin-211 is thought to activate GPR126, which initiates a 
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transcriptional cascade activating Oct6 and promoting myelination (b). Eventually, SCs wrap 

myelin around axon segments to form internodes (c).
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Figure 2. 
Multiple factors fine tune the myelination potential of oligodendrocytes. Oligodendrocytes 

preferentially myelinate electrically active axons (a) and retract processes from inactive 

axons (b). Furthermore, the intrinsic myelination program is moderated by negative 

regulators, such as JAM2, which are expressed on dendrites (c). Vesicular release from 

active axons initiates a cascade of events, one of which is the translation of locally 

transported Mbp mRNA. MBP then competes with the factors gelsolin and cofilin for 

binding to PIP2 on the inner oligodendrocyte membrane, resulting in release of the two 

proteins and subsequent actin disassembly (d). During wrapping, filamentous actin is located 

at the leading edge of the inner tongue and is proposed to propel the membrane forward by 

actin disassembly (e) (image adapted from Nawaz et al. 2015).
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Figure 3. 
Comparing and contrasting SC and oligodendrocyte development and differentiation. 

Although both SCs and oligodendrocytes produce the myelin critical for nervous system 

function, there are important differences in the mechanisms by which they generate myelin. 

The similarities and differences between SCs and oligodendrocytes discussed in this review 

are summarized in the table above.
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