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Abstract

Interoperability across data sets is a key challenge for quantitative histopathological imaging. 

There is a need for an ontology that can support effective merging of pathological image data with 

associated clinical and demographic data. To foster organized, cross-disciplinary, information-

driven collaborations in the pathological imaging field, we propose to develop an ontology to 

represent imaging data and methods used in pathological imaging and analysis, and call it 

Quantitative Histopathological Imaging Ontology – QHIO. We apply QHIO to breast cancer hot-

spot detection with the goal of enhancing reliability of detection by promoting the sharing of data 

between image analysts.

Graphical abstract

Contact author: Metin N. Gurcan, PhD, Department of Biomedical Informatics, OSU, 250 Lincoln Tower, 1800 Cannon Drive, 
Columbus, OH 43210, United States, metin.gurcan@osumc.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflict of interest.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:
J Biomed Inform. 2017 February ; 66: 129–135. doi:10.1016/j.jbi.2016.12.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

histopathology imaging; image analysis; hot spot; ontology; breast cancer

Introduction

Interoperability across data sets is a key challenge for quantitative histopathological imaging 

(QHI). Interoperability describes the extent to which systems and devices can share data and 

interpret the data that is shared. The ideal is for multiple systems to be able to use and 

interpret each other’s data in just the same way that they can use and interpret their own 

data. Limited interoperability between imaging data systems is a major obstacle to coherent 

multi-institutional collaboration, in digital pathology as in many other areas.

Interoperability, according to the HIMSS Dictionary, may be seen on three different levels.1 

At the foundational level interoperability describes the capability for simple data exchange 

from one information system to another, without any requirement for the receiving 

information technology system to be able to interpret the data that it receives. 

Interoperability at the structural level refers to the capability for data exchange in which the 

format and organization of the data is preserved unaltered. Here interoperability relates to 

the syntax of the data exchanged. The highest level of semantic interoperability is achieved, 

according to the HIMSS Dictionary, when data systems can take advantage “of both the 

structuring of the data exchange and the codification of the data including vocabulary so that 

the receiving information technology systems can interpret the data.”

Many strategies to achieve semantic interoperability nowadays require the use of controlled 

vocabularies which provide single annotations or tags to be used to address the problems 

which arise when multiple coding systems use different codes describe the same entities in 

reality. “Ontologies” improve on controlled vocabularies by using links and logical 

definitions to connect terms in a rich network of well-defined relationships. With the 

advance of pathological imaging technology and of associated software for the processing of 

pathological images, the need arises for an ontology which can support effective merging of 

pathological image data with associated clinical and demographic data that have already 

been described using existing controlled vocabularies such as SNOMED-CT, the NCI 

Thesaurus, or the ontologies such as the Cell Ontology constituting the OBO Foundry [1].

To this end we are constructing a Quantitative Histopathological Image Ontology (QHIO) 

incorporating terms representing the different types and subtypes of pathological images, 
imaging processes and techniquesand computational algorithms. In addition the ontology 

will incorporate formal definitions of these terms and specify formally the relations that hold 

between entities of the corresponding types. Because QHIO will itself follow the principles 

of the OBO Foundry, the data resulting from the use of QHIO terms in annotations will be in 

a form that allows integration with other commonly used ontologies in the biomedical 

domain.

1HIMSS Dictionary of Healthcare Information Technology Terms, Acronyms and Organizations, 2nd Edition, 2010, Appendix B

Gurcan et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The result will allow us to leverage the opportunities brought by new imaging platforms and 

algorithms to create an environment in which the clinical imaging data, and clinician and 

algorithmically created annotations deriving from different communities of clinicians and 

scientists, can be combined and analyzed as a single whole.

The Problem of Reproducibility of Image Analysis

A further urgent factor in contemporary research is the issue of reproducibility of clinical 

and scientific findings. The reproducibility and validation of large-scale, cross-institutional 

imaging research is limited by the fact that there is lacking any common structured 

framework for describing images and the results of their analysis. Here, too, we believe, 

ontologies can play a role by providing controlled vocabularies which can be used to 

describe in standardized ways the steps taken to achieve particular results [2]. Currently, 

pathology image data is collected in local “silos” using in-house protocols, and is processed 

using proprietary algorithms developed in isolation. Typically the software itself may be 

unavailable to downstream image consumers, and even when it is available, there is rarely 

information about the sets of parameters necessary to run the software. Even the type of 

outputs of these algorithms, for example, a new potential prognostic feature, is not open to 

discovery by third party software. For these and a series of related reasons digital 

histopathology is difficult to reproduce and validate. While reproducibility and validation are 

important goals in their own right, even more value can be gained by combining and 

building upon image data and software methods across institutions.

Quantitative Histopathological Imaging Ontology (QHIO)

To foster organized, cross-disciplinary, information-driven collaborations in the pathological 

imaging field, we propose to develop an ontology to represent imaging data and methods 

used in pathological imaging and analysis with an initial focus on enabling effective 

communication and collaboration between developers of algorithms for analyzing 

histopathology images. Our ontology is modeled after the Gene Ontology (GO) [3] and 

follows the principles of the Open Biomedical Ontologies (OBO) Foundry [4], which are 

now used by some dozens of ontology-driven research efforts in clinical and translational 

science. An essential aspect of our work is the reuse of existing ontology terms wherever 

possible, thereby increasing the potential for interoperability as well as reducing the effort 

involved in defining new terms [5]. Hereafter when we refer to QHIO we mean the 

aggregate of terms we define, together with those terms that have been reused (imported) 

from other ontologies [5].

We intend to continue to design and use QHIO to promote long-term interoperability of data 

across pathology imaging. We will cultivate wide community dissemination through 

development of model collections that include sample image data, example software that can 

compute useful information about them as well as the annotated output of this software. 

Both the model collections and the ontology will be released into the public domain, again 

following the model of the GO [4].

The workflow in histopathology-based clinical testing extends from biopsy collection, to 

slide production and analysis, to the assignment of a diagnostic category, to the creation of a 
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predictive statement for an individual patient based on that diagnostic category. All of these 

activities combine to support the choice of a treatment plan by a clinician for a particular 

patient.

At the same time these activities cover a variety of different domains and thus they raise 

multiple questions that will impact interoperability. Some of these questions include: How 

are demographic, anatomical and relevant health information to be gathered and 

communicated? How are annotations for histology image data created and what do they 

identify? What information will be needed to enable productive communication between 

image analysis researchers and clinicians? Answers to these questions will influence the 

success and quality of interoperability. Our long-term goal is to demonstrate that an 

ontology can enable interoperability in the pathology image domain. To achieve this goal, 

we are in the process of curating an annotated dataset and developing parallel sets of 

algorithms for quantifying breast cancer histopathology. We will attempt to combine the 

results of these algorithms, run on the same dataset, as a test, while developing and testing 

QHIO.

QHIO’s overarching goal is to foster interoperability of computationally derived image data. 

We need to emphasize that this study is not designed so much to help routine clinical 

diagnosis; rather it is designed to create an enriched data resource in which various kinds of 

clinical and translational software approaches can be tested out. It can also be used to 

explore the role image data may play in clinical decision support systems and to test 

hypotheses regarding correlations between image features and patient outcomes, or between 

image features and other features catalogued by OBO Foundry ontologies.

Motivating examples

We present two general activities (i.e. validation and combining multiple analyses to make 

diagnosis), and give a more detailed use case (i.e. hot spot detection) that motivates our 

effort.

Activity 1: Validation

The issue of interoperability is a major concern in validation. For example, two groups 

working on feature extraction may be investigating different but overlapping features, but 

currently have no way to develop a comparison tool to use their extracted features on the 

same dataset and thus produce quantitative results in a manner that can be easily 

communicated. This is important because such comparison is not only important for the 

qualitative validation of subject matter experts’ prognoses but also for timely identification 

of divergence of results flowing from use of independently developed algorithms targeting 

the same object.

Activity 2: Combining multiple analyses to make diagnoses

Another scenario where QHIO might be useful is in the making of diagnoses on the basis of 

data derived from multiple analyses. Several different algorithms can be run on the same 

images to analyse different aspects (e.g. the amount of stroma and mitotic count). A 

diagnostic program needs to check whether the available data have the specific features it 
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needs: Relative amounts of cells by type, quantity of mitotic cells and potentially a subgroup 

of those within certain regions. It is important that we can establish effectively that these 

features are among those found in several different analyses while the algorithm determines 

the case, retrieves the relevant information, and computes the diagnostic in a robust manner.

Use case: Hot spot detection

Ki67, a nuclear marker expressed in all phases of the cell cycle except G0 [6], has been 

widely used in pathology to assess proliferation within multiple neoplasms. “Hot Spots”, are 

areas with prevalent Ki67 staining with the highest number of positively staining nuclei 

within the invasive component. In the literature, there is no uniform approach to scoring hot 

spots. Many studies have specifically targeted hot spots in determining the Ki67 index while 

others have done an overall assessment of Ki67 with the incorporation of the hot spots in the 

overall index. Clearly, studies addressing outcome with detailed hot spot scoring are 

warranted. However in order to do better we need to develop an automatic hot spot detection 

method that can minimize the intra- and inter-pathologist’s variability in identification of hot 

spots.

In previous work, we developed a hot spot tool [7] for breast cancer as Ki67 has shown 

promise as a prognostic marker and predictor of responsiveness to chemotherapy or 

endocrine therapy. The method first segments Ki67 positive pixels using a previously-

developed Visually Meaningful Segmentation (VMS) method [8]. VMS generates an image-

dependent filter, which in turn generates a density map from the segmented image. The 

smoothness of the density image simplifies the detection of local maxima, which directly 

correspond to the hot spots in the image. The method was tested on 23 different regions of 

interest extracted from 10 breast cancer Ki67 slide images. To determine intra-reader 

variability, each image was annotated twice for hot spots by a board-certified pathologist 

with a two-week interval between the two readings. A computer-generated hot spot was 

considered true-positive if it agreed with either of the two annotation sets provided by the 

pathologist. While intra-reader variability was 57%, our method correctly detected hot spots 

with 81% precision. In order to run this tool at multiple institutions, some interoperability 

issues need to be overcome. For instance, we need a way to identify the stain type as Ki67. 

Additionally, several terms need to be defined and communicated, for example, positive and 

negative stain, hot spot boundary, image magnification, etc. both to the algorithm as well as 

the pathologist who will use this system.

Methods

In our paper “Biomedical imaging ontologies: A survey and proposal for future work” [9] 

we surveyed the state of the art as concerns the development and application of controlled 

vocabularies and ontologies for digital pathology [10, 11]. We also laid out a plan for 

building QHIO and for using QHIO in promoting the sharing of pathology image data and 

associated algorithm and algorithm output information. We have begun to execute this plan 

by

1. creating a prototype of QHIO and
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2. applying it to breast cancer hot-spot detection with the goal of enhancing 

reliability of detection by promoting the sharing of data between image analysts.

Our goal here is to demonstrate that QHIO can be used for pathology data sharing, and that 

it can serve as a starting point for further development toward realizing our longer term 

goals of advancing interoperability of histopathological imaging systems and reproducibility 

of histopathological imaging assays. The current version of QHIO is available at https://

github.com/ontodev/QHIO.

A turning point in the development of ontologies and their extensive use in biology and 

biomedicine was the building and application of the Gene Ontology (GO) [3]. That work 

showed the benefits of tagging sequence data obtained from both humans and multiple 

model organism species with a single set of species-neutral terms. The success of the GO 

created a situation in which many biomedical subdisciplines saw a need to develop 

ontologies of their own, often in uncoordinated fashion with resultant tendencies to forking 

and redundancy. To counteract these tendencies a group of researchers developing ontologies 

centered on the GO established, in 2004, the Open Biomedical Ontology (OBO) Foundry 

initiative, promulgating a set of principles for ontology development which have been tested 

in practice and refined in light of the lessons learned by the many groups who have sought to 

apply them in their work. It is these principles which we have used also to guide our work on 

QHIO. Chief among them is a commitment by the developers of each ontology to ensure 

interoperability with its neighbouring ontologies.

The Ontology for Biomedical Investigations

One neighbour to QHIO is the Ontology for Biomedical Investigations (OBI), an OBO 

Foundry ontology with over 2500 terms for describing biomedical investigations, including 

core terms such as investigation, assay, planning, protocol, specimenand conclusion based 
on data.

Currently, OBI contains a small number of terms for medical imaging and pathology, 

including terms such as imaging assay, staining, feature extraction, and pathologist role. We 

are developing QHIO as an extension of OBI, with the immediate advantage of 

interoperability between QHIO and the larger OBO ecosystem. QHIO will be subject to the 

same processes of ongoing review and maintenance and be able to draw on the deep 

expertise that the OBI community has developed over several years.

OBI’s hierarchy of terms can be used to represent investigations either in great detail or in 

broad strokes, as appropriate. For example, OBI can be used to annotate a given body of 

experiment records along dimensions such as: funding agency, antibodies, staining methods, 

statistical algorithms used, and so forth. In this way OBI enables powerful querying across 

experimental data, made still more powerful through cross-linkage to other OBO Foundry 

ontologies such as the Gene Ontology the Cell Ontology (CL) [12], the Foundational Model 

of Anatomy (FMA) [13], the Human Disease Ontology [14], Chemical Entities of Biological 

Interest (ChEBI) ontology [15], as well as to external ontology resources including – most 

importantly for our purposes – the National Cancer Institute Thesaurus (NCIT). This enables 

other researchers to find experimental data that have been annotated with OBI because they 
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know which terms to look for when searching. It also enables other researchers to 

understand how the data was acquired, since OBI enables provenance information pertaining 

not only to the persons, organizations, places and times of generation of the data, but also 

the experimental and data processing methods used.

A number of initiatives are under way to map these and other OBO Foundry ontologies to 

major clinical vocabularies (especially SNOMED CT and ICD) in order to allow them to be 

used for querying and analytical purposes in tandem with Electronic Health Record and 

other clinical data [16]. We will take this work further in the specific field of breast cancer 

research, taking account of the set of common data elements (CDEs) recommended by the 

NCI's Early Detection Research Network (EDRN) for the treatment of breast cancer 

biomarker data. We will explore applications of our work to the creation of CDEs for cancer 

imaging biomarkers, drawing also on the preliminary work performed within the framework 

of the Quantitative Imaging Biomarker Ontology (QIBO) project [17].

What will QHIO achieve?

Currently whole slide pathology images are annotated using vendor-supplied, freely 

available software programs. The resultant annotations in these programs typically employ 

natural language phrases, sometimes using machine-readable formats such as XML. They 

are limited to small controlled vocabularies of terms for colors and basic geometrical shapes 

(e.g. lines, circles, free-form figures), and use unstructured text fields to describe features of 

interest (e.g. ‘necrotic region’, ‘necrosis’, etc.). Annotations created by members of given 

communities using given vendor software are in almost every case incompatible with those 

created by other communities using other software. This locks valuable data into 

information silos.

The challenges of sharing algorithms and image features are even greater than those of 

sharing image annotations because no standards currently exist to describe algorithms and 

image features. To rectify this problem QHIO will include standard terms not merely for 

algorithm and feature types and attributes but also for all other entities involved in each stage 

of the pathological imaging and analysis workflow (Figure 1). These will include:

1. Input: type (e.g. image), preparation processes such as staining, slide 

characteristics, magnification, resolution, the meaning and typical range of 

parameters and other annotations

2. Parameters: size of the filter window sizes, the number of iterations, etc.

3. Output: type (e.g. image, measurement), the meaning and typical range of 

parameters, statistical details (e.g. accuracy, false positive rate), statistical 

evaluation methodology (e.g. ROC) and the methods/software required

4. Execution: operating system (e.g. Windows 7), software environment (e.g. 

Matlab), required resources (e.g. RAM, storage), expected time to run the 

algorithm.

In addition there is a need to improve the existing annotation scheme by using QHIO in 

tandem with standard linked data formats that generalize current approaches based on XML, 
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by applying QHIO and associated software to make image and algorithm annotations cleanly 

interoperable between sites (Figure 2).

For this study, we have identified hot spot detection algorithm-related terms (Table 1). These 

terms as well as ontological terms necessary to represent images were included in QHIO 

prototype (Figure 3).

Discussion and Conclusion

Experience shows that – even with the use of traditional Delphi techniques [18] – current 

image annotation formats and current ways of creating annotations (in many cases on the 

basis of free text or locally developed codes) leave much of the data accessible only at the 

site where it was created. Such data is both difficult to interpret and understand outside that 

context, and is in practice thus undiscoverable by external researchers. Our future work will 

be about bridging that gap by building an ontology and supporting software for better data 

sharing.

The potential value of QHIO is its ability to aggregate data from multiple sources that can 

then be subject to analysis for research purposes. Establishing which images are compatible 

with a chosen algorithm and which might be pooled in an aggregate analysis certainly could 

benefit researchers, and the provision of information of the types in the QHIO would be very 

valuable for this purpose, whether embedded in the image metadata or in the database from 

which they are derived. Using a subset of the common dataset, ontology development 

experts need to continue the development of QHIO. QHIO must be applied to convert the 

annotated image data into a set of interoperable, standardized data, supported by tools that 

allow for rich search and analysis, and automated matching of algorithms to appropriate 

input data.

Ontologies serve as crucial aids to human communication, and are supported by a range of 

technologies that aid machine communication, search, and analysis [19]. We will use linked 

data standards developed by the World Wide Web Consortium (W3C) and associated 

technologies to build, maintain and use QHIO, and to process, store, and query annotations 

on images and algorithms. In particular the W3C standard Web Ontology Language (OWL) 

[20] will serve as the foundational technology for QHIO, as it is for all OBO ontologies. 

OWL brings both the ability to define and organize the classes in the ontology and the ability 

to instantiate those classes in the case of particular workflows or studies. OWL builds on the 

Resource Description Framework (RDF), which can be queried using the SPARQL Query 

Language. These and other software resources used in our project are based on open source 

tools and libraries. We have already demonstrated the use of OWL in QHIO, and used it to 

model the application of a hot-spot detection algorithm.

QHIO will also build upon existing work done by the Open Microscopy Environment 

project (http://www.openmicroscopy.org/site/support/ome-model/). For example, OME 

already deals very effectively with the details of various file formats. QHIO and OME are 

complementary efforts. One future research direction is to establish tight integration between 

OME and QHIO, although this may require changes to both OME and QHIO. Additionally, 
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we need to supply resources for keeping track of the image artifact itself, of how it changes 

as different sorts of annotations are added.

We will use QHIO and linked data tools to develop an automated workflow for converting 

existing image annotations in our common dataset to linked data annotations using QHIO 

terms and terms from associated ontologies and structured resources referencing clinical 

data. The converted data will be loaded into an RDF database where it can be shared and 

queried using SPARQL. It is at this point the benefits of using OBO Foundry ontologies 

become increasingly clear:

• Every ontology term belongs to a hierarchy of more-and-less general terms, 

allowing for queries at many levels of specificity;

• Ontology terms are defined through logical axioms that provide further links 

across the network of data, such as parthood, aboutness, adjacency, inclusion and 

other relations;

• The logic of OWL allows for automated reasoning software to infer further links 

in the network from existing links and logical axioms, facilitating error checking 

and discovery of new knowledge;

• Pathology imaging data can be easily integrated with data from other medical 

and scientific domains;

The technology that is involved is now widely dispersed through the biomedical research 

community through the sustained support not merely of the W3C [20] but also of the 

National Cancer Institute, the International Health Terminology Standards Development 

Organization (IHTSDO, now responsible for SNOMED – CT) and by other bodies.
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Highlights

• The Quantitative Histopathological Imaging Ontology (QHIO) is proposed.

• QHIO facilitates interoperability between histopathology datasets and 

algorithms.

• By enforcing data compatibility, QHIO enables large-scale collaborative 

studies.

• Researchers can easily find data and algorithms to suit their experimental 

needs.

• Designed with OBO principles, QHIO integrates with existing biomedical 

ontologies.
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Figure 1. 
From specimen to hot spot detection. Overview of types and relationships in QHIO. Types 

are taken from OBI. More specific types from QHIO noted after colon.
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Figure 2. 
Sample workflow represented through QHIO and OBI terms. (PCA = Principal Component 

Analysis)
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Figure 3. 
An example representation in the QHIO prototype generated using Protégé
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Table 1

Hot spot detection algorithm related terms, existing OBO superclass and URI, and upper level term. 

Information entity is from the IAO, disorder from OGMS, and rest of the terms are from BFO.

Term needed mid-level parent
mid-level
URI high-level parent

1 color space transformation data transformation OBI_0200000 process

2 image segmentation biological feature identification OBI_0000015 process

3 object classification class discovery data transformation OBI_0200175 process

4 clustering class discovery data transformation OBI_0200175 process

5 pixel unit UO_0000000 information entity

6 image markup symbol IAO_0000028 information entity

7 image annotation textual entity IAO_0000300 information entity

8 histological slide scanning image creation OBI_0001007 process

9 histological slide scanner image creation device OBI_0000398 material entity

10 image region part_of some image IAO_0000101 information entity

11 histological mounting histological sample preparation OBI_0000341 process

12 ischemia ischemia DOID_326 disorder

13 tissue dehydration material processing OBI_0000094 process

14 histological sectioning histological sample preparation OBI_0000341 process

15 optical magnification ratio device setting OBI_0000654 quality

16 microns per pixel unit label UO_0000000 information entity

17 image annotation creation documenting IAO_0000572 process

18 histological slide microscope slide OBI_0400170 material entity

19 Ki67 stain cytological stain role OBI_0000026 material entity

20 ki67 antigen KI-67 PR_000010425 material entity

21 hot spot cellular feature identification OBI_0000219 information entity

22 histological section tissue specimen OBI_0001479 material entity

23 mitosis count substance unit UO_0000006 information entity

24 Ki67 percentage concentration unit UO_0000051 information entity
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