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Abstract

Background—The interhemispheric competition hypothesis attributes the distribution of 

selective attention to a balance of mutual inhibition between homotopic, interhemispheric 

connections in parietal cortex [1,2]. In support of this hypothesis, repetitive inhibitory TMS over 

right parietal cortex in healthy individuals rapidly induces interhemispheric imbalance in cortical 

activity that spreads beyond the site of stimulation [3]. Behaviorally, the impacts of inhibitory 

rTMS may be long delayed from the onset of stimulation, as much as 30 minutes [4,5].

Objective—In this study, we examine the temporal dynamics of inhibitory rTMS on cortical 

network integrity that supports sustained visual attention.

Methods—Healthy individuals received 15 min of 1Hz offline, inhibitory rTMS (or sham) over 

left parietal cortex, and then immediately engaged in a bilateral visual tracking task while we 

recorded brain activity with fMRI. We computed functional connectivity (FC) between three nodes 

of the attention network engaged by visual tracking: the intraparietal sulcus (IPS), frontal eye 

fields (FEF) and human MT+ (hMT+).

Results—FC immediately and significantly decreased between the stimulation site (left IPS) and 

all other regions, then recovered to normal levels within 30 minutes. rTMS increased FC between 

left and right FEF at approximately 36 min following stimulation, and between sites in the 

unstimulated hemisphere approximately 48 min after stimulation.
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Conclusions—These findings demonstrate large-scale changes in cortical organization 

following inhibitory rTMS. The immediate impact of rTMS on connectivity to the stimulation site 

dovetails with the putative role of interhemispheric balance for bilateral visual sustained attention. 

The delayed, compensatory increases in functional connectivity have implications for models of 

dynamic reorganization in networks supporting spatial and nonspatial selective attention, and 

compensatory mechanisms within these networks that may be stabilized in chronic stroke.
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Introduction

The interhemispheric competition hypothesis is the leading proposal for cortical control of 

visual spatial attention. This hypothesis attributes the spatial distribution of selective 

attention to a balance of mutual inhibition between homotopic, interhemispheric connections 

in parietal cortex [6,7,1]. Disruptions in interhemispheric balance are increasingly linked to 

impaired visual attention in patients, such as hemispatial neglect and extinction [8]. Indeed, 

more severe hemispatial neglect is correlated with increased interhemispheric imbalances in 

cortical activity and decreased interhemispheric functional connectivity in the parietal 

components of the dorsal attention network [9–11]. In healthy individuals, asymmetric 

mutual inhibition is believed to underlie pseudoneglect and pseudoextinction [12–14].

Interhemispheric imbalance is implicated specifically in the ability to attend to rapidly 

changing competing sensory inputs, such as in visual tracking. Bilateral visual tracking is a 

task that requires the coordination of spatiotemporal attention to selected targets while 

suppressing signals for irrelevant distractors in both visual fields [15,2,4]. In healthy 

individuals, the load and spatial attention demands imposed by visual tracking are correlated 

with neural activity in the superior parietal lobule (specifically in the intraparietal sulcus, 

IPS) and the frontal eye fields (FEF) [16,17], the same neural circuits implicated by the 

interhemispheric competition hypothesis [1,8,18].

Two causal studies link the interhemispheric balance in parietal cortex to tracking abilities. 

Chronic right parietal patients with impaired visual tracking can improve their tracking 

scores following 1Hz offline inhibitory rTMS to the healthy left parietal cortex [4]. And in 

healthy individuals, rTMS over left IPS impairs tracking, with the severity of impaired 

performance correlated with the impact of rTMS on BOLD activity [3]. In addition to 

changes in performance overall, both of these studies reported a delay in the peak rTMS 

impact on behavior and cortical activity. In the right parietal patients, the peak improvement 

in tracking performance was observed 30 minutes after stimulation. In the healthy 

individuals, the correlation between individual subject performance and the magnitude of the 

univariate BOLD response emerged 25 minutes following stimulation. Delayed impact of 

rTMS is difficult to explain with current models of TMS intervention but is not without 

precedent, and has been linked to long-term depression/potentiation mechanisms [19,20].

In this study, we investigate changes in functional connectivity during visual tracking, 

specifically measuring the influence of rTMS interventions on interhemispheric 
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relationships. Functional connectivity is a metric of network integrity that reveals the 

structure of neural pathways independent of the magnitude of BOLD activity levels [21,22]. 

Using the protocol of Plow et al. [3], we examine the time dependent changes in cortico-

cortical functional connectivity altered by rTMS, and compare its impact to visual tracking 

scores in healthy individuals. In this analysis we examine connectivity in a simplified model 

of three brain regions in the dorsal attention network engaged by visual tracking: the 

intraparietal sulcus (IPS), frontal eye fields (FEF) and human MT+ (hMT+). These three 

brain regions were selected because they are linked to tracking abilities in healthy 

individuals [2,17,3] and the interhemispheric weights within these regions predicts 

individual bias in spatial allocation of attention [23]. Importantly, understanding the 

dynamic nature of connectivity within these mechanisms, and how their dynamic interplay 

changes across time when disrupted, could help determine the extent to which these neural 

circuits may be amenable to therapeutic interventions to promote long-term plasticity.

Methods

Participants

Nine healthy subjects (mean age ± SD 27.72 ± 5.99 years, 7 males) participated in the 

experiment. Two subjects were excluded from analysis due to gradient artifacts in the MR 

data. All subjects had normal or corrected-to-normal vision. All participants met all TMS 

[24] and MRI screening criteria and provided written informed consent in accordance with 

the Institutional Review Board of the Beth Israel Deaconess Medical Center, Boston, MA.

Stimuli & Procedure

Data used in this analysis was previously published in Plow et al. [3]. Briefly, subjects 

participated in a total of two experimental sessions in which they engaged in a visual 

tracking task following offline, inhibitory rTMS or sham (conducted on 2 separate days in a 

counterbalanced order). In this task, subjects monitored high-contrast pairs of four-spokes-

pinwheels displayed on either side of a central fixation. At the beginning of each trial two 

spokes, one for each pinwheel, were flickered briefly, indicating the targets. Both pinwheels 

then rotated at a fixed rate for 3 seconds. At the end of the trial all spokes on the target 

pinwheel appeared as probes and subjects were asked to indicate on a four alternative forced 

choice procedure which spoke was the target (top, bottom, right or left, Figure 1) [2,25]. 

Subjects were briefly tested before each fMRI session where we psychophysically measured 

the speed threshold at which they could report the target spoke at 85% accuracy, using a 

staircase procedure. We then used that same individually estimated threshold speed 

throughout the entire fMRI session.

Stimuli were generated in MATLAB using the Psychophysics Toolbox [26,27] and displayed 

on a PC laptop with a 17″ monitor screen projected with a rear-view mirror attached to the 

head coil in the scanner. Subjects completed a total of 48 trials of tracking over four scans 

(twelve per scan) with the trials randomly and evenly split across the two hemifields. Data 

for tracking in the left and right hemifields were pooled in the subsequent functional 

connectivity analysis.
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rTMS

Transcranial magnetic stimulation was applied using a MagStim device (MagStim, 

Whitland, Wales, UK) with a 70-mm figure-of-eight coil guided by neuronavigation 

(BrainsightTM, Rogue Research Inc., Montreal, QC, Canada). Low-frequency 1 Hz rTMS 

was applied for 15-min at 75% of the maximum stimulator output, targeting the left 

intraparietal sulcus (IPS), identified using frameless stereotaxic image guidance co-

registered with the individual subject’s anatomical images [2]. Specifically, all subjects 

participated in a previous TMS experiment where we anatomically and functionally defined 

the left posterior IPS individually (average Talairach (mean ± SD): X = −23.37 ± 5.24; Y = 

−67.60 ± 4.25 and Z = 52.88 ± 2.47 mm) [2]. The TMS coil was held with the handle 

pointing posteriorly at an angle of 45° to the inter-hemispheric fissure, at an orientation that 

aligned it perpendicular to the left IPS. For the sham condition we placed the edge of the 

coil at an angle perpendicular to the head, while stimulation was delivered at the same 

intensity as in the rTMS session. The fMRI data collection was initiated within four minutes 

from completion of rTMS/sham.

fMRI procedure and analysis

Brain imaging was conducted with a whole-body 3T Phillips scanner equipped a standard 

birdcage headcoil. We acquired high-resolution T1-weighted MPRAGE images for each 

subject that reconstructed the individual structural brain anatomy (1 × 1 × 1.2 mm saggital 

images with no gap between slices, 170 slices). Subjects participated in four gradient-echo 

planar imaging (EPI) scans (TR = 2 s, TE = 55 ms, flip angle = 90°, TE = 30 ms, FOV = 23 

cm and 96 × 96 matrix, final voxel size of 2.4 × 2.4 × 4 mm and a gap of 0.5mm, 20 axial 

slices acquired interleaved) in which 366 volumes were collected in each 12:12 min scan.

fMRI data collection was initiated within four minutes following the rTMS/sham. The first 

three EPI scans were collected successively, and the fourth and final scan was completed 

following a twelve minute interval during which subjects relaxed and viewed a popular 

cinema movie.

All functional scans were corrected for slice acquisition timing and for movement within 

and across the volumes. We removed the linear trends and slow temporal fluctuations (3 

cycles per scan high pass filter) from each voxel. Functional data was then registered to 

standardized Talaraich space [28] and minimally spatially smoothed with a 3 mm FWHM 

filter.

We computed functional connectivity between the left and right corresponding regions for 

three bilateral regions of interest (ROIs): the intraparietal sulcus (IPS), human middle 

temporal complex (hMT+) and the frontal eye fields (FEF). These regions were identified in 

individual subjects, using a contrast of visual tracking versus fixation, and included only 

voxels significantly correlated with visual tracking with a Bonferroni family-wise error 

correction of p < .0001). Scans that were collected following TMS and sham conditions 

were included in the localization mapping. The ROIs were further localized in individual 

subjects using the following anatomical landmarks: the dorsal ridge of the intraparietal 

sulcus (IPS), the fundus of the descending branch of the inferior occipital sulcus, and the 
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anterior wall and fundus of the precentral sulcus (FEF). All ROIs were constructed as a 

sphere with 10mm radius centered on the peak voxels of activation and anatomical 

landmark. The group mean Talairach coordinates for the centroid of each region (right and 

left hemispheres) are shown in Table 1.

Functional connectivity was computed as the Pearson’s r correlation coefficient for the z-

score normalized timeseries of BOLD activity from each ROI. The ROI timeseries were 

constructed from the normalized (z-scored) BOLD for the entire 12 minute scans, which 

included intervals of visual tracking interspersed with fixation (rest). Correlation coefficients 

were Fisher-z transformed and the effect of rTMS on functional connectivity was estimated 

as FC = FCTMS − FCSHAM. This was computed separately for each 12 min scan then 

averaged across subjects.

Statistical significance was assessed by a bootstrap Monte Carlo procedure that computed 

the expected difference in correlation coefficients expected by chance. Bootstrap timeseries 

were constructed from timelocked pairs of timepoints selected from two ROIs, sampled with 

replacement from the TMS and sham conditions. This process was repeated 1,000 times to 

generate a distribution of samples that test the null hypothesis that the TMS and sham 

functional connectivity scores originate from the same population distribution. Those 

correlation coefficients with scores that exceeded two standard deviations of the simulated 

null population distribution were deemed statistically significant.

The recovery from the impact of TMS on functional connectivity was estimated by 

computing the slope of a linear fit to the FC scores from the first three sequential scans. The 

slope and intercept of those fits gives an estimate of the impact of the rTMS on the 

individual subjects. We also compared these metrics of rTMS impact to individual subject 

tracking scores to determine the strength of the relationship between the rTMS induced 

reorganization of cortical connectivity and behavior.

Results

Figures 2 and 3 show how functional connectivity evolved in the approximately one hour 

following stimulation over the left IPS, with connectivity scores normalized by connectivity 

following sham. Positive scores that exceed the dashed line indicate significantly stronger 

functional connectivity following rTMS as compared to sham, while negative scores (below 

the dashed line) indicate rTMS significantly reduced functional connectivity. Significance 

was assessed via a bootstrap procedure (see methods).

Figure 2 shows functional connectivity between the right and left regions of interest 

(interhemispheric homotopic connections). Functional connectivity between the stimulation 

site and the homologous right IPS decreased significantly immediately following stimulation 

(scan 1), and recovered to within normal levels by approximately 30 minutes following the 

rTMS (scan 3). This timecourse of normalized functional connectivity is consistent with the 

duration over which rTMS influences behavioral performance in healthy individuals as 

reported in a wide range of cognitive and attention tasks [29,30].
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We also examined functional connectivity in two regions distal and functionally connected 

to the stimulation site. The influence of rTMS on the functional connectivity between left 

and right FEF was delayed and brief, with increased connectivity approximately 36 min 

following stimulation that returned to levels consistent with sham within 60 min. The late 

increase in functional connectivity in the FEF was unexpected, however it is consistent with 

a previous report of delayed impact of rTMS on the bilateral FEF BOLD activity following 

theta burst stimulation over right FEF [31] and may relate to potential compensatory effects 

observed in Plow et al. [3] rTMS had no impact on interhemispheric connectivity between 

the left and right hMT+.

We next looked at the impact of rTMS on inter-regional functional connectivity, and found 

that the influence depended on hemisphere and time. In the stimulated left hemisphere, FEF 

and hMT+ connectivity to the stimulation site (left IPS) decreased immediately following 

rTMS, then recovered to normal levels (Figure 3a). This pattern of connectivity has the same 

timing as the IPS interhemispheric connections.

In the unstimulated right hemisphere, FEF and hMT+ connectivity increased only in the 

fourth and final scan, approximately 50 minutes following stimulation and after a period of 

free-viewing the movie. These delayed and remote effects of rTMS on functional 

connectivity in the unstimulated hemisphere were unanticipated.

In previous reports using the same paradigm, the extent to which rTMS shifts the cortical 

imbalance in neural activity between homotopic regions in parietal cortex is linked to 

individual subject tracking scores [3]. We therefore investigated a possible brain-behavior 

link in functional connectivity changes over time by examining the correlation between 

recovery in functional connectivity and visual tracking.

To quantify the temporal dynamics of functional connectivity recovery following rTMS, we 

modeled the functional connectivity scores using linear regression for the first 40 min 

following stimulation. Whereas the initial impact of rTMS (as indicated by the intercept) had 

a marginal relationship with functional connectivity to the stimulation site (r = .54, p>.05), it 

was the recovery of the functional connectivity that most strongly correlated with tracking 

performance (Table 2 and Figure 4). Dynamic changes in the left and right IPS functional 

connectivity, the left and right hMT+ connectivity, and the connections between the 

stimulated IPS and hMT+ were all significantly correlated with tracking scores (r = −.78, r = 

−.87, and r = −.74, respectively; all p < .05; Table 2). Those subjects that experienced the 

greatest impact of rTMS on functional connectivity also made the most tracking errors. We 

found no relationship between the impact of rTMS on functional connectivity in the 

unstimulated hemisphere.

Discussion

In a normally functioning system, visual orienting is controlled by bilateral cortical 

mechanisms that direct attention to contralateral space, and the functional integrity of this 

attention network is critical for healthy visual attention. In this study, we measured the 

temporal dynamics of functional connectivity for 50 minutes during a visual tracking task, 
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with and without 1 Hz repetitive TMS. This study is motivated by the observation that 

inhibitory TMS over the IPS impairs bilateral visual tracking in healthy individuals [2] and 

improves bilateral tracking when applied to the healthy (left) parietal cortex in right parietal 

patients [4]. Both of these findings are consistent with the interhemispheric competition 

hypothesis for bilateral control of visual orienting.

Inhibitory rTMS over left IPS induced widespread changes in the functional integrity of the 

dorsal attention network. These changes occurred both inter- and intra-hemispherically, with 

immediate and delayed timing, respectively. The immediate changes manifested as a 

decreased connectivity between the homotopic regions at the IPS stimulation site, and 

decreased inter-regional connectivity in stimulated hemisphere (FEF and hMT+ to the 

stimulation site). These changes in connectivity normalized within 36 minutes following 

stimulation. Delayed effects of the rTMS included increasing connectivity between 

homologous regions of the FEF approximately 36 min following stimulation, and increased 

interregional connectivity very late in the unstimulated hemisphere.

That rTMS can induce rapid changes in cortical activity directly under the site of stimulation 

and downstream from the stimulation site is well known [32]. Low frequency inhibitory 

rTMS decreases metabolic activity local to the stimulation site as measured by PET, and is 

often accompanied by compensatory increases in neural activity in functionally connected 

regions in the normal population [3,33–36].

Whereas at least four studies have documented large-scale shifts in interhemispheric balance 

within the dorsal attention network following rTMS to the parietal cortex [4,3,23,37], ours is 

the first to consider changes in functional connectivity during a sustained attention task. 

Functional connectivity measures are dominated by low frequency fluctuations on the order 

of .1 Hz or slower [38,39], reflecting phase-locked covariations of functionally connected 

regions. Our study demonstrates rTMS will disrupt the spontaneous connections between 

these regions for time extending beyond the period of stimulation, creating a wave of 

compensatory activity that alters neural coupling for extended durations remote from the 

region of stimulation.

The timing of recovery we observed for connectivity to the stimulation site, approximately 

36 minutes, is consistent with the observed interval of impaired behavior on a wide range of 

attention tasks following rTMS [29]. We were also able to link the impact and recovery of 

functional connectivity to the stimulation site with individual subject tracking errors, 

establishing a causal relationship between the impact of rTMS on functional connectivity 

and the ability of individual subjects to engage in visual tracking.

The rTMS stimulation also induced delayed increases in functional connectivity distal to the 

stimulation site. We observed an increase in connectivity in the unstimulated right 

hemisphere, between the right IPS and right FEF, and right IPS and right hMT+. These 

findings were unpredicted, but not without precedent. Agosta et al., [4] observed peak 

improvement in tracking performance 20–30 minutes following inhibitory rTMS applied to 

the healthy, contralesional parietal cortex in stroke patients. Likewise, Nyffler et al. [40] 

observed delayed peak impact of theta burst rTMS over FEF on saccadic latency. A 

Battelli et al. Page 7

Brain Stimul. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequent study using the same paradigm documented delayed (20–35 min) peak decrease 

BOLD activity in the stimulated FEF and, to a lesser extent, in functionally connected 

regions [31]. The timescale of these changes is consistent with that of long-term depression/

potentiation [19,41] and there is some evidence that the magnitude of these delayed effects 

may depend on the level of exertion engaged during stimulation [42].

That downstream changes in functional connectivity would be observed within the dorsal 

attention network is not surprising. The intraparietal sulcus and frontal eye field are strongly 

interconnected via the superior longitudinal fasciculi [43–45] and both are important for the 

implementation of voluntary directed attention to task-relevant features [see 46 for a recent 

review]. Focal TMS over IPS and FEF both disrupt selective attention in visual search tasks, 

albeit with different timing, in which targets are defined by conjunctions of features and thus 

require feature binding [47–49].

Posterior parietal cortex and the FEF are also linked to sustained awareness of sensory 

events, and to maintaining sustained cortical modulations in sensory cortex during encoding 

of task-relevant events [50–52]. Single pulses of TMS over posterior parietal cortex 

decreases the perceptual sensitivity for targets that are being monitored in the contralateral 

visual field [53] and shortens dominance intervals during binocular rivalry [54]. Patients 

with damage to posterior parietal cortex experience the perceptual fading of visual events 

more quickly that typical individuals [55]. The implication is that connectivity between 

posterior parietal cortex, frontal eye fields and sensory cortex are essential for sustained 

salience of attended features [56]. Our study demonstrates that acute disruptions to 

connectivity between these regions are followed by an interval dynamic stabilization within 

this highly connected network.

These findings also have implications for stroke models that implicate imbalanced network 

activity, as damage to one hemisphere leads to disinhibition in the competing, unaffected 
hemisphere [57]. This up-regulated activity in the unaffected hemisphere thus leads to 

excessive inhibition in the affected hemisphere. That is, not only does the lesioned 

hemisphere suffer the frank damage from the stroke, it is also further suppressed by 

“unabated” inhibition from the unaffected hemisphere. The improvement seen in the patients 

specifically implicates the ability of rTMS to restructure the balance of cortical activity 

through functional connectivity. In our study we found that it is the interplay and strength of 

inter- and intra-hemispheric connections among the cortical areas within the dorsal attention 

network that determine the efficiency of the sustained attention system [58].
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Highlights

• Offline inhibitory rTMS over the left intraparietal sulcus has a local, 

immediate and brief impact on the network integrity to functionally connected 

cortical regions in the dorsal attention network

• Those individuals with more disruptions in local functional connectivity are 

most impaired on sustained visual attention tasks, which dovetails with the 

hypothesized role of interhemispheric balance for bilateral visual sustained 

attention

• rTMS over left intraparietal sulcus creates remote and delayed increases in 

interregional functional connectivity in distal brain sites, which may have 

implications for models of compensatory mechanisms that may be stabilized 

in chronic stroke
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Figure 1. Bilateral Visual Tracking Task
A. Two pinwheels were presented. Cartoon of one frame of the task, where sizes of the 

pinwheels and distances are reported. B. One spoke for each pinwheel was cued (a black line 

flashed briefly). Once the black lines disappeared, the pinwheels began to rotate in randomly 

different directions. Once they stopped, one pinwheel was highlighted, and using a four-

alternative forced-choice procedure, subjects indicated which spoke was the one cued at the 

beginning of the trial. The side of the target was unpredictable across trials.
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Figure 2. Interhemispheric FC across time
Functional connectivity difference between homotopic areas in the left (stimulated) and right 

hemisphere (Sham FC was subtracted from TMS FC). Colored symbols indicate the three 

areas: IPS (Intraparietal Sulcus, blue diamonds), FEF (Frontal Eye Field, red circles) and 

hMT+ (human Middle Temporal Area, green squares). While the first three runs were 

collected in close succession (Scans 1, 2 and 3 on the x-axis), scan 4 was collected 

approximately 48 minutes from the end of stimulation, following an intermediate run during 

which subjects rested while watching a video clip of a popular movie. Values above the 

dashed lines indicate statistically significant difference (between Sham and TMS), 

determined using a the bootstrap Monte Carlo procedure. FC between left and right IPS 

significantly decreased during Scan 1 and slowly recovered in Scan 2. FC between left and 

right FEF significantly increased during Scan 3, over 30 minutes after the end of stimulation.
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Figure 3. Intrahemispheric FC across time
Intrahemispheric impact of rTMS on FC within the left hemisphere (a. stimulated) and the 

right hemisphere (b. unstimulated). FC scores reflect the change in functional connectivity in 

the TMS condition as compared to Sham. A) FC between the left IPS and the left FEF (blue 

circles) and between the left IPS and left hMT+ (red squares) immediately and significantly 

decreased during Scan 1 (dotted line indicates significant difference) and recovered starting 

from Scan 2, 3 and 4. B) FC between the right IPS and the right FEF (blue circles) as well as 

between the right IPS and right hMT+ (red squares) significantly increased around 48 

minutes after the end of stimulation, during Scan 4.
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Figure 4. Relationship between tracking performance and impact of rTMS
(A) Change in tracking accuracy vs the initial impact of rTMS on homotopic IPS 

connectivity. Behavioral scores reflect the change in visual tracking following rTMS as 

compared to sham. Initial impact of rTMS on functional connectivity is computed as the 

intercept of the best linear fit for functional connectivity following rTMS vs sham (see 

methods). Those subjects most impacted by rTMS (on this connection, and many others) 

also have the most recovery in FC over time. (B) Change in tracking accuracy vs recovery 

(slope) of the homotopic IPS functional connectivity. These are the subjects where the rTMS 

really changed FC. (C) Change in tracking accuracy vs recovery (slope) of the left 

(stimulated) hemisphere IPS-hMT+ functional connectivity.
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