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Abstract

Digital whole slide imaging is an increasingly common medium in pathology, with application to 

education, telemedicine, and rendering second opinions. It has also made it possible to use eye 

tracking devices to explore the dynamic visual inspection and interpretation of histopathological 

features of tissue while pathologists review cases. Using whole slide images, the present study 

examined how a pathologist’s diagnosis is influenced by fixed case-level factors, their prior 

clinical experience, and their patterns of visual inspection. Participating pathologists interpreted 

one of two test sets, each containing 12 digital whole slide images of breast biopsy specimens. 

Cases represented four diagnostic categories as determined via expert consensus: benign without 

atypia, atypia, ductal carcinoma in situ (DCIS), and invasive cancer. Each case included one or 

more regions of interest (ROIs) previously determined as of critical diagnostic importance. During 

pathologist interpretation we tracked eye movements, viewer tool behavior (zooming, panning), 

and interpretation time. Models were built using logistic and linear regression with generalized 

estimating equations, testing whether variables at the level of the pathologists, cases, and visual 

interpretive behavior would independently and/or interactively predict diagnostic accuracy and 

efficiency. Diagnostic accuracy varied as a function of case consensus diagnosis, replicating earlier 

research. As would be expected, benign cases tended to elicit false positives, and atypia, DCIS, 

and invasive cases tended to elicit false negatives. Pathologist experience levels, case consensus 

diagnosis, case difficulty, eye fixation durations, and the extent to which pathologists’ eyes fixated 

within versus outside of diagnostic ROIs, all independently or interactively predicted diagnostic 

accuracy. Higher zooming behavior predicted a tendency to over-interpret benign and atypia cases, 
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but not DCIS cases. Efficiency was not predicted by pathologist- or visual search-level variables. 

Results provide new insights into the medical interpretive process and demonstrate the complex 

interactions between pathologists and cases that guide diagnostic decision-making. Implications 

for training, clinical practice, and computer-aided decision aids are considered.
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1. Introduction

Each year millions of women rely upon a pathologist’s visual inspection, interpretation, and 

diagnosis of tissue from their breast biopsies. Accurately diagnosing biopsies on the 

continuum from benign to invasive cancer requires not only specialized knowledge but also 

identifying critical regions within the histopathologic material and appropriately classifying 

perceived visual features by candidate histological diagnoses 1,2. This process is exceedingly 

dynamic and complex; it is also vulnerable to misidentification, misinterpretation, and 

ultimately diagnostic errors in the form of false positive or false negative interpretations. 

Because diagnostic errors can contribute to over- or under-treatment, with significant impact 

on patients, it is important to understand the conditions under which diagnostic errors 

emerge and how they might be prevented. Information processing frameworks propose that 

variation in diagnostic accuracy results from the interaction of characteristics of the case, 

physician experience levels, and the visual search process characterizing interpretation 3. 

This notion provides the conceptual basis for the present study examining the independent 

and interactive influence of these three elements in predicting the accuracy and efficiency of 

histological diagnosis. To do so, we tracked the eye movements and image review behaviors 

employed by pathologists examining whole slide images (WSI) of breast biopsy specimens 

as they rendered diagnoses. We then evaluated the characteristics of the case, the physician 

and the visual search process that are associated with accuracy and efficiency.

1.2 Factors influencing diagnostic accuracy

Variation in case-level parameters may be associated with diagnostic accuracy, though few 

studies have examined this possibility. Several case-level dimensions of breast biopsy 

specimens include the diagnostic category of tissue (defined by a consensus of experts here), 

the density of the woman’s breast tissue (defined by density reported on mammography 

exam preceding the biopsy) 4, and the inherent difficulty of interpreting certain visual 
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features in the image (defined by a larger group of practicing pathologists who rated the 

level of difficulty of each test case). In general, breast biopsy specimens can be categorized 

by diagnosis along a continuum from benign (normal) to invasive carcinoma. For the 

purposes of this research, we parse diagnoses into the following four categories: benign, 

atypia, ductal carcinoma in situ (DCIS), and invasive. Each category is characterized by 

unique cellular and architectural features and extent of disease. Benign indicates normal or 

hyperplastic cells and architecture, atypia indicates an increased number of cells with 

abnormal features that are beginning to adopt an abnormal architecture, DCIS indicates 

abnormal neoplastic cells and architecture confined within the walls of a duct, and invasive 

indicates that clusters of abnormal malignant cells have invaded beyond the walls of a duct.

In clinical practice, the diagnostic category assigned to a breast specimen carries 

implications for subsequent monitoring, treatment, quality of life, and prognosis. These 

diagnostic categories also differentially influence diagnostic accuracy, with atypia and DCIS 

eliciting lower overall accuracy relative to the benign or invasive cases at the ends of the 

spectrum 5. Breast density has been associated with diagnostic accuracy of radiologists when 

interpreting mammograms 6,7, and a relationship between mammographic density and the 

accuracy of the pathologists has been reported 5, but not thoroughly examined. Furthermore, 

whether due to the presence of “borderline” features or complex architecture, cases vary in 

perceived difficulty 2, and normative case difficulty ratings may by associated with 

diagnostic accuracy.

Digital imaging technology is revolutionizing the practice of medicine 8,9. The advent of 

WSI in pathology has removed traditional barriers to studying glass slide interpretation, 

allowing researchers to understand not only physician magnification and panning behavior 

but also unobtrusively monitor eye movements to gain high fidelity information regarding 

the visual interpretive process. Several insights have resulted from this advancement. 

Tiersma and colleagues found that pathologists reviewing WSI tend to fixate their eyes more 

frequently on image regions containing relevant (versus irrelevant) diagnostic features, 

called regions of interest (ROI) 10. More recent research has demonstrated that not only are 

there salient image regions attracting the visual attention of pathologists 11, but pathologist 

experience levels modulate whether these viewed regions are correctly interpreted and used 

to make a correct diagnosis. Specifically, trainees (pathology residents) show an early focus 

on visually salient but diagnostically irrelevant image regions whereas experienced 

pathologists tend to focus predominantly on regions with diagnostic relevance, and these 

patterns can in some cases predict diagnostic accuracy 12. Similar experience-related 

distinctions regarding the accuracy and efficiency of medical interpretation have been found 

in radiology 13–17.

How expertise arises among physicians likely parallels visual expertise in other domains, 

such as seen with luggage screeners and professional athletes 18,19. A number of studies 

have examined the perceptual and cognitive processes involved in expert visual diagnosis, 

including seminal work by Norman 20 and Ericsson 21. There are two highly relevant 

outcomes from this research. First, expertise in visual diagnosis arises from knowledge of 

exemplars gained through past experience 22. The larger and more diverse an expert’s 

memory for exemplars, the faster they will be able to match a percept with a similar stored 
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exemplar and perform diagnostic classification 23. Second, expert medical practitioners are 

better able to flexibly reason, often in a conceptual manner, about the relationships between 

visual information and diagnostic alternatives 21. In contrast, novices may rely on 

memorized biomedical rules that are relatively inflexible and not necessarily grounded in 

prior perceptual experiences 24,25 Thus, in pathology increasing experience interpreting 

biopsy images results in more finely tuned memory for exemplars, increasing the 

distinctiveness of exemplar categories, and the efficiency and flexibility with which critical 

image features are identified and mapped to candidate diagnoses 26,27. It is important to 

realize, however, that developing visual expertise may be faster and ultimately more 

successful for some individuals than others, suggesting that not all trainees are capable of 

becoming experts at interpreting and diagnosing images 28,29.

The visual search process describes the interactions between the pathologist and the case, 

considering the pathologist’s zooming and panning patterns, and their allocation of visual 

attention toward image features. To measure the latter, eye tracking devices use infrared light 

to monitor the spatial and temporal distribution of eye fixations, momentary pauses of the 

eyes thought to reflect the overt allocation of visual attention over regions of a scene. Eye 

trackers leverage how we move our eyes to bring particular regions of a scene into high 

resolution focus, allowing us to perceive and understand fine details 30. Research has 

demonstrated important relationships between the visual search process and diagnostic 

accuracy. For instance, high diagnostic accuracy levels are reached when pathologists show 

fewer fixations overall, and less examination of diagnostically irrelevant regions 31. High 

diagnostic accuracy is also associated with pathologists spending the majority of time 

fixating their eyes in regions of high diagnostic relevance 12,32. Overall, a more refined 

visual search process that prioritizes diagnostically relevant areas is related to higher 

diagnostic accuracy.

1.3 The present study

Extant research suggests that individual case parameters, pathologist experience, and the 

visual search process may influence diagnostic accuracy, though these studies are limited in 

a few regards. First, no single study has examined the independent and interactive influence 

of these elements on the accuracy and efficiency of diagnosis. In contrast, existing research 

tends to narrowly focus on one (e.g., image navigation patterns 11 or experience 32) or two 

factors at a time, limiting understandings of the full range and influence of pathologist, case, 

and visual search level factors. Second, most studies examining eye movements of 

pathologists use restricted sample sizes (e.g., 4 to 7 physicians). Third, most studies restrict 

zooming and panning behavior, preventing the type of image inspection that would be 

employed during routine clinical practice 32,33. The present study was designed to expand 

upon this earlier work by using a large sample of pathologists (N = 40), allowing 

pathologists to freely zoom and pan images during visual inspection, and examining a wider 

range of pathologist-level, case-level, and visual search processes that may predict 

diagnostic accuracy and efficiency.
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2. Materials and Methods

2.1 Participating pathologists

Forty pathologists were recruited from five U.S. university medical centers, two on the west 

coast and three on the east coast. Pathologists varied in level of training (14 faculty, 26 

residents) and years of experience interpreting breast pathology (x̄ = 3.61, min < 1, max = 

14.5).

2.2 Test cases

Breast biopsy test cases were obtained from women >= 40 years of age, using one slide per 

case that best illustrated the diagnostic features. A set of 24 hematoxylin and eosin (H&E) 

stained breast specimens was chosen from a larger (240 case) test set 5,34. To develop the 

digital WSI, glass slides were scanned into high resolution digital TIFF format using an 

iScan Coreo Au scanner 35 at 40× magnification. Using a modified Delphi technique, each 

case had a single consensus diagnosis based on the agreement of three expert breast 

pathologists. These experts also marked one or more ROI on each case to indicate what they 

considered the “best example(s)” of the consensus diagnosis.

The 24 cases represented four consensus diagnostic categories, to include benign without 

atypia (4 non-proliferative and proliferative cases), atypia (8 cases), DCIS (8 cases), and 

invasive cancer (4 cases). Cases also varied in breast density reported on mammograms 

obtained before the breast biopsy (using BI-RADS 4), and in standardized ratings of the 

extent of case difficulty (scale 1–6) based on data gathered from a larger sample of 

pathologists (N = 115). It is worth noting that variation in the number of ROIs across cases 

was not correlated with reference case difficulty. Furthermore, expert interpretations of these 

24 cases were highly concordant (21/24 cases) between the digital and glass versions (for a 

more in depth examination of this issue, see 36).

2.3 WSI viewer and histology form

A custom web browser-based WSI viewer was developed using the Microsoft Silverlight 

platform (Figure 1a). Like clinical WSI viewers, the system displayed each image at 1× 

magnification and a standard resolution, and allowed images to be zoomed (1–60×) and 

panned while maintaining full resolution. As the pathologist reviewed the image, the 

software automatically logged panning and zooming behavior over time and output this 

information to a data file. Note that participating pathologists were always blind to 

concordance diagnosis and the expert-marked regions of interest (ROIs). Once the 

pathologist reached an interpretation for a case, a standardized histology form was used to 

record final diagnosis by selecting from four diagnostic categories (benign, atypia, DCIS, 

and invasive cancer).

2.4 Eye tracker

We used an unobtrusive, remote eye tracking device (RED-m; SensoMotoric Instruments, 

Boston, MA) mounted to the bottom of a 22” (NEC EA224WMI-BK IPS LED) flat screen 

monitor running at 1920×1080 resolution. The eye tracker uses infrared lights and cameras 

to track eye gaze position at 60Hz with high angular accuracy (0.5°) and spatial resolution 
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(0.1°). A standard 9-point calibration process was repeated for each participating pathologist 

to achieve high angular accuracy before they began interpreting the test cases.

2.5 Data collection procedures

The eye tracker and computer monitor were transported to each data collection site where 

pathologists were scheduled to participate in approximately 45-minute sessions in private 

conference rooms or offices; thus, each participant interpreted images using the same 

computer monitor and eye tracker. Following consent, participants completed a brief 

demographic survey followed by eye tracker calibration performed by watching a dot move 

between nine successive points on the screen. Participants were then instructed to interpret 

cases as they would in clinical practice and were randomized to interpret test set A or B. 

Participants then viewed and interpreted one of the two sets of 12 cases, at full screen, in 

random order. After each case, they completed the histology form. At the end of the session, 

they were remunerated with a $50USD gift card.

2.6 Data processing

All pathologist-level, case-level, and visual search measures are included in Table 1. Data 

regarding each pathologist included whether they were a resident or faculty member, their 

self-reported level of experience with digital whole slide imaging, and their years of 

experience with breast pathology. Data regarding each case included the consensus 

diagnosis, mammographic breast density, and standardized difficulty ratings as described in 

section 2.2.

Eye tracking data were output at 60Hz and included raw coordinate eye position data in 

Cartesian space. Using standard techniques 30, raw data were parsed into eye fixations, 

momentary (> 99ms) pauses of the eye within a predefined angular dispersion (max 100 

pixels). Each eye fixation includes a screen location and duration in milliseconds (ms). Data 

from the WSI viewer, including zoom levels and panning locations, were merged with eye 

tracking data to produce a single data stream relating image locations and eye fixations. 

Figure 1b exemplifies eye fixation data overlaid onto a representative case (DCIS consensus 

diagnosis); each of the 37,645 points indicates a single eye fixation.

Several visual search variables were derived from integrated WSI viewer and eye tracking 

data. From the WSI viewer, we included several zoom metrics including mean zoom levels, 

peak zoom level, and standard deviation of zoom behavior. From the eye tracker, we 

calculated the total number of fixations during case review, and the average duration (in ms) 

of fixations. We also parsed eye fixations and durations into occurring within versus outside 

of expert defined ROIs, to include several additional measures: proportion of fixations 

falling within an ROI, proportion falling outside an ROI, duration of fixations falling within 

an ROI, duration of fixations falling outside an ROI, and proportion of fixations 

characterized by re-entering an ROI. Note that because eye blinks tend to vary with levels of 

effort during visual tasks 37, we also exported blink rate for analysis.
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2.7 Data consolidation

Because variables at the level of pathologist and visual search behavior tend to show 

collinearity, dimension reduction was completed using principal components analyses with 

Varimax rotation. The results of these analyses are detailed in Table 2. At the level of 

pathologists, the analysis revealed a single component weighted primarily toward career 

level and years of experience; this component will be referred to as pathologist experience. 

At the level of visual search behavior, the analysis revealed four components. The first was 

weighted toward overall and ROI specific fixation durations. The second was weighted 

toward relative fixations within versus outside of ROIs. The third was weighted toward zoom 
behavior, and the fourth weighted toward the number of fixations. Factor scores were 

calculated for all components and saved as new predictor variables using the Bartlett 

method 38. Case-level variables remained untransformed given the lack of collinearity.

Three outcome variables were considered. First, diagnostic accuracy was assessed by 

comparing participants’ diagnoses to the expert defined consensus diagnosis for each case; 

concordant diagnoses were coded as a 1 and discordant diagnoses were coded as a 0. 

Second, we coded over-called (false positive) cases as 1, and under-called (false negative) 

cases as −1; concordant responses were coded as 0. These codes were averaged to calculate 

overall over- versus under-calling rates for each diagnostic category. Third, we also 

considered review time (in sec) as a measure of interpretive efficiency, which was only 

calculated for accurate (concordant) diagnoses.

2.8 Data analysis

Data analysis proceeded in two phases. First, to assess overall outcomes as a function of 

consensus diagnosis we conducted a repeated-measures analysis of variance (ANOVA) with 

four levels of our independent variable (Consensus Diagnosis: Benign, Atypia, DCIS, 

Invasive). Our intent was to replicate earlier studies demonstrating diagnostic concordance 

differences as a function of consensus diagnosis, and examine how diagnostic category may 

additionally influence diagnostic efficiency.

Second, to assess how pathologist-level, case-level, and visual search behavior variables 

predict diagnostic outcomes, we modeled our data using repeated-measures regressions, 

implementing the generalized estimating equation (GEE) approach 39,40. Each model used 

two categorical factors (Case Diagnostic Category, Case Mammographic Density) and six 

continuous covariates (Case Reference Difficulty, Pathologist Experience, Fixation 

Durations, Fixations in versus outside ROIs, Zoom Behavior, and Number of Fixations). All 

analyses used forward model selection to minimize quasi-likelihood under the independence 

model criterion (QIC) and identify 2-way interactions contributing to model fit. Due to 

unequal representation of the four breast density categories (and model failure due to matrix 

singularity), we collapsed density into two categories (low, high). For accuracy data, the 

model used a binary logistic outcome. For over- versus under-calling data, the model used an 

ordinal logistic outcome. For efficiency, the model used a linear outcome.
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3. Results

3.1 Overall diagnostic accuracy & efficiency

Overall diagnostic concordance with consensus, rates of interpretation above and below 

consensus diagnoses, tendency to over- versus under-call diagnoses, and efficiency data are 

detailed in Table 3.

Diagnostic concordance varied as a function of diagnostic category. A repeated-measures 

analysis of variance (ANOVA) demonstrated significant accuracy differences across the four 

diagnostic categories, F(3, 117) = 34.77, p < .001, η2 = .47. Paired samples t-tests 

demonstrated significant differences (p < .01) between all pairwise comparisons.

The rate of over-calling (false positive) versus under-calling (false negative) also varied as a 

function of diagnostic category, F(3, 117) = 24.25, p < .001, η2 = .38. Paired samples t-tests 

showed over-calling in the benign condition relative to the three other conditions (p < .001), 

and higher under-calling with atypia relative to invasive cancer (p = .018). All other 

comparisons were non-significant (p > .05). We also compared the rate of over-calling 

versus under-calling to 0 (zero) within each category, by conducting a series of one-sample 

t-tests; all four diagnostic categories showed significant variation from 0 (p < .03).

For efficiency, the amount of time reviewing a case varied as a function of diagnostic 

category, F(3, 117) = 5.47, p < .001, η2 = .12. Paired samples t-tests demonstrated 

significantly (p’s < .02) faster review times with benign cases relative to the other three 

categories. All other comparisons were non-significant (p > .05).

3.2 Predicting diagnostic accuracy

The best fitting model (QIC = 496.5) for accuracy included main effects and two two-way 

interactions, as detailed in Table 4. Significant effects were as follows. First, case consensus 

diagnostic category predicted accuracy (as seen previously in Table 3). Second, case breast 

density was related to accuracy, with higher accuracy at higher density levels. Third, more 

difficult cases predicted lower accuracy. Finally, longer fixation durations and more fixations 

within versus outside the boundaries of expert defined ROIs, were both related to higher 

accuracy.

Pathologist experience predicted higher accuracy, but this effect was qualified by an 

interaction between pathologist experience and diagnostic category. Higher pathologist 

experience levels predicted higher accuracy, but this effect was most pronounced with 

Atypia (χ2 = 13.94, p < .001) and DCIS (χ2 = 8.21, p < .001) cases.

3.3 Predicting over- and under-calling

The final model for over- versus under-calling included main effects and three two-way 

interactions, as detailed in Table 5. Significant effects were as follows. First, pathologist 

experience predicted higher over- versus under-calling rates, but this effect was qualified by 

an interaction between pathologist experience and fixations within versus outside ROIs. A 

median split by pathologist experience level showed a cross-over interaction. For lower 

pathologist experience levels, fixating within versus outside ROIs negatively predicted over- 
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versus under-calling diagnoses (χ2 = .86, p > .05); in contrast, for higher experience levels, 

this relationship was positive-going (χ2 = .44, p > .05). In other words, increasing levels of 

pathologist experience predicted over-calling when the ROI was fixated. Neither of these 

individual patterns, however, reached significance.

Second, case consensus diagnosis negatively predicted over- versus under-calling rates (as 

seen previously in Table 3), and zoom behavior positively predicted over- versus under-

calling. These effects, however, were qualified by an interaction between case consensus 

diagnosis and zoom behavior. Parsing by diagnostic category, higher zoom behavior 

predicted over-calling but this effect was most pronounced with atypia (χ2 = 21.84, p < .

001) and DCIS (χ2 = 14.88, p < .001) cases. In other words, when viewing atypia or DCIS 

cases, more zooming behavior predicted over-calling case diagnoses.

Third, there was an interaction between case difficulty rating and fixations within versus 

outside of ROIs. A median split by case difficulty ratings showed that with lower difficulty 

cases, fixations within versus outside of ROIs negatively predicted over- versus under-

calling (χ2 = 12.22, p < .001); with higher difficulty cases, the relationship was non-

significant (χ2 = .45, p > .05). In other words, lower difficulty cases tended to be under-

called when there were more fixations within the ROI, and this pattern was not found with 

more difficult cases.

3.4 Predicting diagnostic efficiency

The best fitting model (QICC = 19302630) included all main and two-way interactions. 

There was only one marginal main effect of consensus (χ2 = 6.79, p = .08), suggesting 

longer review times with higher diagnostic categories (as seen previously in Table 3).

4. Discussion

This study was the first to explore the independent and interactive influences of pathologist-

level, case-level, and visual search-level variables on the accuracy and efficiency of 

histological diagnosis. Replicating recent research, we found the lowest levels of 

concordance with expert defined consensus diagnoses when pathologists interpreted atypia 

and DCIS cases, relative to benign and invasive cancer cases 5,41. Discordance tended to be 

in the form of false negatives with atypia and DCIS; this pattern matches predictions made 

by visual search theory, which posits that targets with low prevalence rates tend to increase 

false negatives 42,43. Breast biopsy diagnoses more severe than benign without atypia are 

estimated to only occur in approximately 35% of cases, making them relatively low 

prevalence in daily practice 44,45. When a concordant diagnosis is reached, however, it is 

done most efficiently with Benign cases relative to the other diagnostic categories.

We found several main and interactive effects of pathologist-level, case-level, and visual 

search-level variables in predicting accuracy. First, pathologists with higher experience 

levels showed higher accuracy, but only when reviewing Atypia and DCIS cases. In other 

words, pathologist experience level is critical for the correct interpretation of diagnostic 

categories that tend to elicit more discordance 5. The finely tuned exemplars of diagnostic 

features that develop with experience appear to be most critical for interpreting cases that 
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tend to show highest diagnostic variability 5,46. Second, pathologists who fixated more 

within rather than outside of ROIs showed higher overall accuracy. This finding supports 

earlier research demonstrating that spending less time in non-diagnostic regions 31, and more 

time in diagnostic regions 12,32, increases accuracy, extending this finding from radiology to 

a dynamic (zooming, panning) diagnostic pathology task 14,16,31,32,47. Third, longer fixation 

durations predicted higher accuracy, supporting recent research showing longer fixation 

durations with expert versus novice surgeons 48. Finally, more difficult cases were related to 

lower accuracy, and higher density cases were related to higher accuracy. Note that the latter 

effect was novel and in an unexpected direction, which may be driven by an unequal 

representation of diagnostic categories in our two mammographic density levels.

We also found that pathologist-level, case-level, and visual search-level variables 

differentially guide over- versus under-calling within diagnostic categories. With Atypia and 

DCIS cases, pathologists were more likely to over-call a case when they also showed more 

zooming behavior. This pattern supports visual search theory suggesting that as observers 

repeatedly examine a case in detailed depth, the probability of an erroneous “guess” 

increases 49. Such erroneous interpretations likely result from a failure to find a target image 

features that precisely match histopathological features stored in memory. Finally, we also 

found evidence that when pathologists allocated more fixations to regions outside of critical 

ROIs during the inspection of cases with lower difficulty ratings, they tended to over-call the 

diagnosis. This pattern suggests that identifying diagnostically relevant ROIs is important 

not just for the positive identification of features, but also preventing over-diagnosis when 

interpreting cases that should not otherwise evoke difficulty on behalf of the pathologist.

4.1 Training and Clinical Implications

Modern training and accreditation programs require evidence that pathology residents 

demonstrate competence in examining and assessing surgical pathology specimens as part of 

the Milestones project 50. Toward this goal, medical educators are seeking methods for 

characterizing learners’ competence. Understanding overt (e.g., zooming, panning) and 

covert (e.g., fixation location, fixation duration) pathologist behavior can help identify 

methods and metrics for monitoring and evaluating the development of visual expertise in 

pathology. For instance, eye movement patterns can be used to provide feedback regarding 

the relative allocation of visual attention within versus outside pre-determined diagnostic 

ROIs 51, allowing trainees and educators to review and learn from the visual interpretive 

process. In one recent advancement, nursing students were shown their own eye movement 

behaviors during a debriefing, resulting in improved understanding and learning about how 

they allocated visual attention during clinical practice 52. The present results are also 

relevant to cognitive informatics research, which uses cognitive approaches (such as eye 

tracking) to better understand human information processing and interactions with computer 

systems 53,54. We demonstrate that image navigation behavior, coupled with eye tracking, 

can unobtrusively monitor physicians’ visual search and reveal important features of the 

visual search process and distinctions within and across individuals. As eye tracking systems 

become increasingly prevalent and flexible, and less obtrusive and expensive, they become 

more feasible for incorporation into classrooms and clinics 52,55. A continuing challenge to 
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this goal, however, is developing more robust, flexible, reliable, and clinically relevant 

algorithms for automated image processing and eye movement interpretation56.

There are three primary clinical impacts of the present work. First, the extent to which 

pathologist expertise, eye movements, and zooming behavior were related to diagnosis 

tended to be most pronounced in Atypia and DCIS cases where the variability of pathology 

interpretations is relatively high 5,57. Misdiagnosis, particularly over-diagnosis (e.g., 

interpreting a biopsy as DCIS when it is Atypia), can lead to a cascade of unnecessary and 

costly surveillance, intervention, and treatment procedures 46,58. Obtaining formal second 

opinions (i.e., double reading) may prove advantageous in these circumstances 59, as may 

providing trainees with feedback about their image review behaviors that may be 

disadvantageous for ultimate diagnostic success. Second, while most prior work focuses on 

how single variables, such as pathologist clinical expertise or eye movement patterns, 

influence accuracy and efficiency, we demonstrate several important interactions that 

clinicians may find valuable to consider during practice. As the domain of cognitive 

informatics proceeds, it will find value in not only considering patterns of image navigation 

and eye movement behavior, but also how these patterns may vary reliably across individuals 

and cases. Furthermore, as telemedicine and second opinions become increasingly prevalent, 

it is important for the informatics domain to consider how distributed, team-based 

interpretation may impact the features attended to, diagnoses reached, and clinical 

outcomes 53,60.

4.2 Limitations

Though our study uses a larger sample size of 40 pathologists, includes more clinical cases, 

and details a broader range of variables predictive of accuracy and efficiency relative to prior 

studies, it also carries a few limitations. First, our testing situation was limited to reviewing a 

single slide, which contrasts with clinical practice wherein pathologists may review multiple 

slides per case, or request complementary tests. However, we do note that an expert panel 

was able reach consensus with these slides alone, and agreed that each slide contained 

adequate and representative material for rendering a primary diagnosis. It is also true that 

pathologists may routinely seek second opinions and have more clinical information 

available during interpretation than our experimental design allowed. Second, the proportion 

of cases representing each diagnostic category is unreflective of the distribution of cases in 

clinical practice 44. Indeed, our cases intentionally oversampled atypia and DCIS diagnoses. 

Violating pathologists’ expectations relative to daily practice may influence interpretive 

behavior in yet unknown ways 61. Though likely intractable for an eye tracking study of this 

nature, continuing research may benefit from integrating experimental cases into normal 

clinical practice. Finally, we note that self-reported level of experience with digital whole 

slide imaging is subjective, relies upon accurate memory of those experiences, and assumes 

the frequency of experience is positively related to the quality of experience. Though this 

variable was only minimally weighted in our Pathologist Experience component and thus 

did not likely contribute to overall data patterns, it is worth considering the inherent 

weaknesses of this type of subjective measure.
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4.3 Conclusions

Overall, we find unique evidence that diagnostic accuracy and efficiency are influenced by 

variables at the levels of individual pathologists and cases, and the visual search process that 

relates the two over time. In some cases, these relationships proved interactive, 

demonstrating the importance of measuring and monitoring a broader range of pathologist 

behavior during biopsy interpretation.
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• Pathologists reviewed digital whole slide images and rendered diagnoses

• During interpretation, eye movements and image navigation behavior were 

recorded

• Pathologist experience positively predicted accuracy

• Case characteristics and eye movement patterns interactively predicted 

accuracy

• Higher zooming behavior predicted diagnostic over-interpretation
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Figure 1. 
a. A demonstration of a digitized whole slide image of a breast biopsy specimen with 

accompanying viewer interface controls. This case was given a diagnosis of ductal 

carcinoma in situ (DCIS) by an expert consensus panel.

b. Eye fixations (blue dots) overlaid onto the ductal carcinoma in situ (DCIS) case depicted 

in Figure 1. A total of 37,645 fixations are depicted, representing all 40 participating 

pathologists.
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Table 1

Descriptions of all case-level, pathologist-level, and visual search-level independent variables.

Independent Variable Level of
Measurement Description

Expert consensus diagnosis Case

Consensus reference diagnosis
derived from expert panel review.
Diagnostic categories include: benign
without atypia, atypia, DCIS and
invasive cancer.

Mammographic breast density Case

BI-RADS category rating (1–4)
collected at the time of
mammography preceding the breast
biopsy.

Standardized difficulty rating Case

Mean difficulty rating (1–6) by a
separate group (N=115) of
pathologists interpreting the glass
slides.

Career level (resident, faculty) Pathologist Pathologist current appointment at
academic medical center.

Digital WSI experience Pathologist Pathologist breadth of experience (#
of uses) with digital WSI

Breast pathology experience Pathologist Pathologist years of experience
interpreting breast pathology

Number of fixations Visual Search
Behavior

Total number of fixations made
during case review

Mean fixation duration Visual Search
Behavior

Mean duration (in ms) of fixations
made during case review

Blink rate Visual Search
Behavior

Mean blink rate (frequency/time)
during case review

Proportion fixations in ROI Visual Search
Behavior

Proportion fixations falling within
ROI(s) versus total number of
fixations

Proportion fixations out ROI Visual Search
Behavior

Proportion fixations falling outside
ROI(s) versus total number of
fixations

Mean fixation duration in ROI Visual Search
Behavior

Mean duration of fixations falling
within ROI(s)

Mean fixation duration out ROI Visual Search
Behavior

Mean duration of fixations falling
outside of ROI(s)

Proportion re-entry to ROI Visual Search
Behavior

Proportion fixations re-entering
ROI(s) versus total number of
fixations

Mean viewer zoom level Visual Search
Behavior

Mean WSI viewer tool zoom level
during case review

Peak viewer zoom level Visual Search
Behavior

Peak (maximum) WSI viewer tool
zoom level (1–60x) during case
review

Standard deviation zoom level Visual Search
Behavior

Standard deviation WSI viewer tool
zoom level during case review
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Table 2

Independent variables resulting from principal components analysis, with corresponding Eigen values.

PCA-Derived
Independent Variable Eigen Value

Fixation durations 3.05

Fixations within versus outside ROIs 2.45

Zoom behavior 1.84

Number of fixations 1.21

Pathologist clinical experience 1.81
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