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Abstract

Over a century of efforts to categorize the astonishing diversity of cortical neurons has relied on 

criteria of morphology, electrophysiology, ontology, and the expression of a few transcripts and 

proteins. The rapid development of single-cell RNA sequencing (scRNA-seq) adds genome-wide 

gene expression patterns to this list of criteria, and promises to reveal new insights into the 

transitions that establish neuronal identity during development, differentiation, activity, and 

disease. Comparing single neuron data to reference atlases constructed from hundreds of 

thousands of single-cell transcriptomes will be critical to understanding these transitions and the 

molecular mechanisms that drive them. We review early efforts, and discuss future challenges and 

opportunities, in applying scRNA-seq to the elucidation of neuronal subtypes and their 

development.

Introduction

The classification of cell types in the cerebral cortex has challenged the greatest minds in the 

history of neuroscience, and so perhaps it is no surprise that we don’t quite have it figured 

out yet. Ramon y Cajal and other early histologists described the two major cortical neuronal 

types – those with long, distantly projecting axons and those with short, locally projecting 
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axons – and documented their many morphological variations[1]. Brodmann, Campbell, 

Vogt and others used the distribution of morphological types to subdivide the cortex into 

cytoarchitectonic areas which we now understand have important functional correlates[2–4]. 

Yet, whereas classical neuroscientists reached consensus around the neuronal types in brain 

structures like the cerebellum over a century ago, the effort to develop a comprehensive 

neuronal “parts list” for the cortex has lagged. Electrophysiological and circuit analyses 

arrived in the mid-twentieth century with new tools and the idea that morphological and 

functional classes of neurons might somehow correspond, though the labor-intensive nature 

of combining electrophysiology and morphology has limited the ability to integrate form and 

function. The revolution in molecular biology of the late 20th century allowed an integration 

of developmental lineage, inferred from the expression of a few marker genes[5], yet still it 

is not clear whether these criteria can define a clean, non-overlapping “periodic table” of 

cortical neuronal types, or whether instead the classification of cortical neurons is inherently 

less precise than in other brain areas, with a mix of some sharply defined classes and other, 

fuzzier categories[6,7]. This review will focus on the relevance of single-cell transcriptomics 

to the classification of cortical neuron subtypes by genomewide gene expression, and 

explore the unique perspective afforded by scRNA-seq on the dynamic processes of cortical 

neurogenesis and differentiation.

Transcriptomic classification of neuronal cell types

Pioneering single-cell microarray and qRT-PCR studies elucidated progenitor and neuronal 

subtypes in the mouse brainstem[8], olfactory system[9], retina[10,11], inner ear[12], and 

embryonic cortex[13,14], as well as developing human and ferret cortex[15]. Now, single-

cell RNA-seq has opened the floodgates for deep transcriptomic analysis of CNS cell 

types[16–26] (see also recent review by [27]). While some early scRNA-seq studies have 

tested specific hypotheses – for example, confirming the “one neuron–one receptor rule,” 

that each individual primary olfactory neuron expresses one and only one olfactory receptor 

gene[28–31] – most have aimed to elaborate on the molecular identities of classically 

defined neuronal types, discover new types, and begin to establish definitive brain cell type 

taxonomies (Table 1). These studies employ a generalizable two-stage approach to scRNA-

seq-based cell type classification. In the first stage of analysis, single-cell transcriptomes are 

grouped through a combination of dimensionality reduction and hierarchical clustering, with 

varying degrees of iteration and supervision. In the second stage, the resulting cell groups 

are contrasted against each other to identify differentially expressed marker genes. This 

approach has so far met with great success in marrying transcriptomic classifications to 

known cell types. As sample sizes expand and studies proliferate, new methods to 

standardize these taxonomies and map other data modalities onto transcriptomic cell types 

will be critical.

The cerebral cortex: the ultimate cell type diversity challenge

Three of the largest scRNA-seq studies of neuronal identity published to date have, fittingly, 

tackled the most heterogeneous brain region, the cerebral cortex[32–34]. In the first such 

study, unbiased sampling of mouse primary somatosensory and hippocampal cortex 

identified many non-neuronal cell types in addition to seven excitatory and 16 inhibitory 
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neuronal types, corresponding well to existing layer- and marker-defined classes[32]. 

Acknowledging that an unbiased sampling captures few cells from rare populations, the 

authors also oversampled a subtype of interneurons by FACS isolation, enabling them to find 

a novel subtype of PAX6+ neurogliaform cells in layer I, nicely validated by 

immunohistochemistry and electrophysiology[32].

In contrast, selection of known neuronal populations by microdissection and FACS 

purification from reporter mice yielded a more diverse taxonomy of 42 neuron classes[33], 

reassuringly concordant with the selected laminar and marker-based populations, but also 

further subdividing many of these classes into putative novel subpopulations. In addition, 

these authors’ classification algorithm is relatively lenient with regard to cell type ambiguity, 

assigning ~15% of cells an “intermediate” identity between two neuronal classes. In the 

most extreme case, one third of layer IV neurons were classified as intermediate between 

two of the three proposed layer IV subtypes. What remains to be determined is the extent to 

which these intermediate cells reflect algorithmic “over-splitting,” or subdivision of cell 

types based on transcriptional variability that is in fact stochastic or state-related rather than 

subtype identity-dependent. Further studies will be necessary to differentiate state versus 

trait transcriptional signals in these and any other proposed novel neuronal types.

Adult human brain presents particular challenges for single-cell studies, given the highly 

myelinated and dense extracellular milieu of the tissue and the typical storage conditions of 

postmortem samples, which make clean dissociation of intact whole cells difficult[35]. 

There are, however, reliable and reproducible protocols for isolating single neuronal nuclei 

from frozen postmortem human brain[36,37]. Fortunately, the nucleus contains a significant 

amount of messenger RNA, and several studies have now demonstrated single-nucleus RNA 

sequencing[38–40]. Lake et al. have taken this approach for scRNA-seq–based cell type 

classification in the human cerebral cortex, identifying 16 neuronal subtypes – 8 excitatory 

and 8 inhibitory[34]. Most intriguingly, these authors also detected differences between 

neocortical areas, e.g., between the layer IV transcriptomic subtypes present in frontal versus 

occipital cortex.

Merging Transcriptomic Taxonomy With Other Data Types

Given that traditional methods of cell type classification are much lower throughput than 

scRNA-seq, they are likely to be increasingly guided by single-cell transcriptomic 

taxonomies, through the ability to collect the transcriptome of a single cell that has already 

been characterized by another method and map that transcriptome onto large scRNA-seq 

reference data sets. Several groups have recently demonstrated the collection and sequencing 

of RNA from cells following electrophysiological recordings[41–43]. In one study, 45 CCK+ 

interneurons in cortical layer I were first characterized by patch-clamp recording and 

classified into five subtypes based purely on their electrophysiological properties[41]. Each 

cell’s contents were then aspirated into the patch pipette and the RNA sequenced. The 45 

single-cell transcriptomes were then mapped onto 16 interneuron subtypes defined 

previously[32]. Interestingly, none of the five electrophysiological subtypes corresponded to 

a single transcriptomic subtype, with cells from each group mapping to two, three, or even 
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four different scRNA-seq–defined interneuron classes. Similar discord was observed for 

excitatory neurons.

Discrepancy between electrophysiological and transcriptomic cell type could arise trivially 

from the technical noise inherent in scRNA-seq, or from differences in experimental 

conditions. However, it’s notable that electrophysiology seems to provide greater unity of 

CCK+ interneuron subtypes compared to scRNA-seq, again suggesting that the algorithm 

applied to the larger scRNA-seq data set[32] may have over-split some cell types. 

Alternatively, the methods used to map one taxonomy onto the other may improve with 

inclusion of additional a priori knowledge; about a third of the Patch-seq interneurons 

assayed in somatosensory cortex mapped to subtypes predominantly found in hippocampus 

in the prior scRNA-seq study. The electrophysiological properties of Patch-seq cells were 

also highly correlated with their expression of 24 of 167 genes encoding relevant proteins – 

channels, pumps, receptors, etc. It would be informative to cluster the larger scRNA-seq 

sample using the same 167-gene panel and map the Patch-seq interneurons onto the resulting 

taxonomy, which should improve the correspondence between the two data modalities. 

Indeed, overlapping but distinct sets of genes are likely to determine distinct neuronal 

properties, including morphology, electrophysiology, and connectivity, as well as 

developmental processes, like migration, that interact with these features. Although several 

studies have found a nearly 1:1 correspondence between morphology and electrophysiology 

for layer I interneurons[42,44], such correspondence is strikingly lacking for interneurons in 

the rest of the cortical layers[44], supporting the partial independence of these properties. It 

is likely that classifications based on the summation of all of these transcriptional signals 

will yield neither unambiguous subtypes nor clear correspondence to individual cellular 

properties, and the challenge rather will be to deconvolve single-cell transcriptional profiles 

into the distinct signatures that correspond to each domain of neuronal properties – 

electrophysiology, location, dendritic arborization, axonal projection, etc.

Droplets and the advantages of 10x higher throughput

While the methods employed by the vast majority of scRNA-seq studies to date – manual or 

automated cell picking[17,28,31]; single-cell flow cytometry[33]; and/or microfluidics (i.e., 

the Fluidigm C1 system)[19,29,30,32,34,35] – may capture as much as 25% of each cell’s 

mRNA, they are limited in throughput, and by the cost-per-cell for library construction and 

sequencing (Table 2). An alternative approach involves encapsulating single cells in 

nanoliter-volume droplets and performing lysis and barcoded reverse transcription within the 

droplets[26,45,46]. For comparison, to assay 3,300 cortical cells[32] required weeks of 

cumulative C1 run time; manual screening of cDNA samples; and dozens of library 

preparations and sequencing lanes, whereas a droplet-based study of the mouse retina[46] 

generated cDNA from 49,300 cells, pooled into seven libraries, over the course of four days 

– i.e., 15 times the number of cells assayed by one fifth the amount of sequencing, and 

probably less than one tenth the hands-on processing time. The two main drawbacks of 

current droplet-based methods are (1) only about 10% of a cell’s mRNA molecules are 

captured; and (2) the lack of full-length cDNA generation limits alternative splicing analyses 

(Table 2), though technological improvements are likely to ameliorate both of these 

disadvantages in the near future.
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Increasing throughput by three orders of magnitude alleviates the pressure to choose 

between a hypothesis-driven, targeted design that may miss unknown cell types[33] and an 

unbiased approach that undersamples minority populations[32]. In fact, analyzing 49,300 

retinal cells first required excluding a large proportion of the rod photoreceptors that, 

making up two thirds of the retina, masked the transcriptional signatures differentiating other 

cell types[46]. Following this in silico selection step, 39 cell types were defined based on a 

“training set” of ~13,000 cells, and the remaining ~36,300 cells were classified by 

correlation to the training set. Notably, the large sample size enabled identification of known 

and novel neuronal subtypes as rare as 0.1%. Remarkably however, these subtypes are still 

far fewer than the 60 to 100 retinal cell types defined by morphology and physiology[47]. In 

particular, retinal ganglion cells are known to be highly diverse and yet, because they 

compose only about 0.5% to 1% of cells in the retina, the current sample of 49,300 cells was 

insufficient to detect heterogeneity within the ~500 RGCs assayed. Thus, even with the high 

throughput of droplet-based methods, careful experimental design will be paramount, and a 

logical expectation is that a complete cell type taxonomy from any tissue that contains rare 

subpopulations will require a tiered approach of initial unbiased sampling followed by 

targeted subpopulation studies using known or novel markers to isolate the rarest cells.

Progenitor heterogeneity of the human fetal cortex

Remarkably, while only a single scRNA-seq analysis of mouse embryonic cortex has so far 

been published[48], a large number of studies have applied single-cell transcriptomics to 

fetal human cortex[15,35,49–51], motivated by the intriguing morphological heterogeneity 

of primate cortical neural progenitor cells (NPC)[52–55]. A major contributor to the 

diversity of primate NPC is the relative abundance of basal or outer radial glia (ORG), which 

morphologically, functionally, and transcriptionally resemble apical radial glia of the 

ventricular zone (VZ) but are located in the subventricular zone (SVZ). Two studies 

employing scRNA-seq to uncover the distinct transcriptional program of ORG employed 

different selection methods to enrich for their NPC parent population, and notably arrived at 

similar results[49,50]. By manually microdissecting the VZ/inner SVZ from the outer SVZ 

prior to scRNA-seq, Pollen et al. were able to subsequently correlate gene expression with 

germinal zone location and thus identify genes specifically enriched in ORG[49]. At the 

same time, Thomsen et al. developed a protocol for light fixation, permeabilization, and 

fluorescent immunolabeling compatible with FACS purification of NPC followed by 

scRNA-seq[50]. Remarkably, both efforts identified several of the same ORG-enriched 

genes, including HOPX, FAM107A, and TNC. Nevertheless, the sample sizes of these 

studies are small compared to those on the adult cortex, and much remains to be done. It is 

important to note that single progenitor transcriptomes are heavily influenced by cell cycle 

phase, and probably also reflect dramatic changes in fate potential over the course of cortical 

neurogenesis. Indeed, several ORG-enriched genes were found to be expressed by VZ NPC 

slightly earlier in development[49]. Altogether, there is a strong case for further 

developmental studies not only including greater cell numbers but also sampling a wide 

range of time-points, and applying new analysis methods that can probe the dynamic 

development and complex lineage relationships of the developing cortex.
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Assessing validity and utility of in vitro models by scRNA-seq

A key use of scRNA-seq will be to validate in vitro models of human brain development and 

disease by comparing the cell types and developmental dynamics of these models to primary 

human tissues[51,56,57]. Cerebral organoids are fast becoming a popular model for early 

human brain development, but neither the variability across iPSC lines or individual 

organoids nor the correspondence of organoids to in vivo brain development is yet fully 

understood. An scRNA-seq analysis of cerebral organoids at 33 to 65 days post-

differentiation identified both dorsal and ventral telencephalic NPC and neurons, as well as a 

few cells resembling those of the cortical hem signaling center, an important source of 

patterning morphogens[51]. Importantly, parallel analyses of organoids and primary human 

fetal cortex found a remarkable similarity in transcriptional programs of neurogenesis and 

differentiation, the biggest difference being a paucity of basal NPC in organoids (6% of cells 

in the organoids versus 34% in 12–13 weeks of gestation human cortex). Future studies will 

be needed to determine whether this discrepancy reflects the absence or underdevelopment 

of an important progenitor niche in the organoids, or simply a mismatch in the 

developmental stages of the organoids and primary tissues compared in this study.

Challenges and opportunities for future studies

Single-cell technologies and data analysis methods continue to improve rapidly, and will be 

invaluable in creating a complete census of cell types and lineage relationships in the brain. 

We foresee future improvements leading to great opportunities in four general areas.

1. Methods to isolate cell populations from non-genetic model species will be of 

particular importance. The FRISCR method[50] has great potential, but relies on 

suitable antibodies and known cell type markers. Promising alternatives include 

using fluorescent in situ hybridization or RT-PCR reactions to sort cells on the 

abundance of mRNA transcripts[58,59], and merging these methods with 

droplet-based scRNA-seq will be hugely advantageous.

2. In the model of Patch-seq, protocols are sorely needed for sequencing RNA from 

single cells previously or concurrently characterized by other methods, e.g., 

physiology, connectivity, developmental lineage, or live imaging. Methods to 

either maintain[60] or reconstruct[61,62] spatial information in conjunction with 

scRNA-seq need further development for application to mammalian brain 

studies. Similarly, emerging methods to sequence DNA and RNA from the same 

single cell[63,64] will provide critical insights into the lineage relationships 

between cell types, which are otherwise extremely difficult to assess in human 

brain.

3. New statistical models have been developed to improve gene expression level 

estimates and quantify heterogeneity in noisy single-cell data[65,66]. Further 

development should be aimed at integrating these models with advanced 

clustering and pseudotime methods. Large-scale developmental studies will 

require new algorithms for inferring cell type lineages from scRNA-seq data 

collected at multiple real time points, while normalizing for cell cycle phase.
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4. Validation of putative novel subtypes will be paramount, and will require 

innovative approaches to visualize transcriptional dynamics in single cells over 

time. The true test of cell type identity is stability, and thus time-lapse live 

imaging of single-cell transcription will be needed to definitively differentiate 

transcriptional cell type from cell state.
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Highlights

• Single-cell RNA sequencing revolutionizes systematic classification of 

neurons.

• Classification by scRNA-seq reveals new neuronal subtypes.

• Matching transcriptionally and classically defined subtypes is challenging.

• Developmental classifications need larger sample sizes across many time-

points.
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Table 2

Pros and cons of current single-cell capture and processing methods.

Cell capture method Throughput,
cells per day

Cost per cell cDNA output

manual/automated cell picking tens of cells tens of dollars 5', 3', or full-length cDNA

flow cytometry hundreds of cells dollars 5', 3', or full-length cDNA

microfluidics tens or hundreds* dollars full-length cDNA (barcoded*)

droplets tens of thousands cents 3' tag, already barcoded

*
Fluidigm’s yet-to-be-published high-throughput chip is expected to capture up to 800 cells per run, with some level of on-chip barcoding.
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