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Abstract

Comparative analyses of the human microbiome have identified both taxonomic and functional 

shifts that are associated with numerous diseases. To date, however, microbiome taxonomy and 

function have mostly been studied independently and the taxonomic drivers of functional 

imbalances have not been systematically identified. Here, we present FishTaco, an analytical and 

computational framework that integrates taxonomic and functional comparative analyses to 

accurately quantify taxon-level contributions to disease-associated functional shifts. Applying 

FishTaco to several large-scale metagenomic cohorts, we show that shifts in the microbiome’s 

functional capacity can be traced back to specific taxa. Furthermore, the set of taxa driving 

functional shifts and their contribution levels vary markedly between functions. We additionally 

find that similar functional imbalances in different diseases are driven by both disease-specific and 

shared taxa. Such integrated analysis of microbiome ecological and functional dynamics can 

inform future microbiome-based therapy, pinpointing putative intervention targets for 

manipulating the microbiome’s functional capacity.
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Introduction

The human microbiome – the collection of microorganisms that inhabit the human body – is 

tightly linked to our health and impacts several crucial host processes (Kinross et al., 2011). 

Recently, a plethora of comparative studies have identified intriguing associations between 

the composition of the microbiome and numerous diseases including various metabolic 

disorders (Greenblum et al., 2012; Karlsson et al., 2014; Qin et al., 2013), malignancies 

(Schulz et al., 2014), autoimmune diseases (Scher et al., 2013), and neurological 

developmental disorders (Hsiao et al., 2013). Such studies can take two different approaches 

to profile the composition of the microbiome (Noecker et al., 2016). The first approach 

focuses on taxonomy, aiming to profile the abundances of different microbial clades in each 

sample, either by targeted sequencing of the ribosomal 16S gene and operational taxonomic 

units clustering (Caporaso et al., 2010; Schloss et al., 2009) or by shotgun metagenomic 

sequencing and quantification of clade-specific marker genes’ abundances (Segata et al., 

2012). The second approach aims to characterize the functional capacity of the community, 

quantifying the abundances of genes or pathways through shotgun metagenomic sequencing 

(Abubucker et al., 2012; Carr and Borenstein, 2014). The obtained taxonomic or functional 

profiles can then be compared across samples to identify shifts in the abundance of specific 

taxa or functions associated with the host state.

To date, however, disease-associated taxonomic and functional shifts (i.e., significant 

differences in abundance observed between case and control samples) are often studied 

independently, and efforts to link these two facets of the microbiome have been mostly 

anecdotal and often reported only qualitative associations. For example, in a study of the 
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skin microbiome, researchers concluded that changes in the abundance of the NADH 

dehydrogenase module are driven by shifts in the prevalence of P. acnes, based on a strong 

correlation observed between the two (Oh et al., 2014). Similarly, Turnbaugh et al. compared 

microbiome sequences to a custom database of 44 gut microbes’ genomes and concluded 

that obesity-related functional enrichments in carbohydrate metabolism were a product of 

elevated abundances of Actinobacteria and Firmicutes (Turnbaugh et al., 2009). Studying the 

dynamics of the gut microbiome in the first year of life, Bäckhed et al. reported an 

association between functional enrichment of genes involved in degradation of complex 

sugars and starch and the abundance of B. thetaiotaomicron (Bäckhed et al., 2015).

The studies above emphasize the importance of identifying taxonomic drivers of disease-

associated functional imbalances and highlight the potential for integrating taxonomic and 

functional comparative analyses, yet do not offer a systematic, rigorous, and comprehensive 

methodology toward such integration. This gap in our ability to systematically define and 

quantify taxonomic contributions to functional shifts hinders our understanding of disease-

associated functional dynamics and leaves multiple fundamental questions unanswered. It is 

not clear, for example, whether functional shifts tend to be driven by a change in the 

abundances of a small set of taxa or by community-wide dysbiosis, and whether the same set 

of taxa generally drive shifts in multiple functions. It is also not clear how taxon prevalence, 

inter-sample variation, and co-variation with other taxa come together to induce a functional 

shift. Most importantly, without linking taxonomic and functional shifts, our ability to 

ultimately pinpoint species that could be targeted in order to restore desired microbiome-

level functional capacity remains limited.

To address this challenge, here we introduce FishTaco, an analytical and computational 

framework for comprehensively quantifying taxon-level contribution to observed functional 

shifts and identifying key taxa that drive such shifts. We first apply our framework to a large 

set of samples from different body sites of healthy individuals, and reveal marked variation 

in the taxonomic drivers of different functional shifts. Next, we apply our framework to type 

2 diabetes (T2D) and inflammatory bowel disease (IBD) cohorts, and show that seemingly 

similar disease-associated functional shifts are in fact driven by a function-specific and 
disease-specific set of microbial taxa. Combined, our findings suggest a route towards 

systematic integration of taxonomic and functional comparative analyses and informed 

design of precise microbiome-based interventions.

Results

Challenges and opportunities in linking microbiome taxonomic and functional data

Consider a standard metagenomic comparative analysis, where samples from different 

habitats or from a disease cohort (Figure 1A) are assayed to characterize the taxonomic 

(Figure 1B) and functional (Figure 1C) abundance profiles in each sample. Taxonomic and 

functional profiles can then be compared across samples using some statistical test (e.g., 

Wilcoxon rank-sum test or fold ratio) to identify compositional shifts and to discover 

disease-associated taxa (Figure 1D) or functions (Figure 1E).
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Clearly, however, the obtained taxonomic and functional profiles are tightly coupled since 

the abundance of each gene family (or any other genomic element) in a mixed aggregate of 

genomes (i.e., the metagenome) is a simple derivative of the prevalence of this gene in each 

genome and the relative abundance of each genome in the mixture. More formally, given the 

genomic content of each taxon in the community – denoting the copy number of each gene 

(or gene-family) in the genome of that taxon (Figure 1F) – the functional composition of the 

metagenome can be represented as a linear combination, aggregating the genomic content of 

all taxa weighted by the taxa relative abundances in the community. Such taxa-based 
functional profiles have been shown to accurately predict the abundance of the various 

functions in the metagenome, offering a promising route for conducting functional analysis 

when the gene composition of the metagenome was not assayed directly (Langille et al., 

2013). This view of the metagenomic functional content as an aggregate of the member 

species’ genomic contents provides a mapping from taxonomic abundances to functional 

abundances, detailing the fraction of each gene’s abundance that originated from each 

species (Figure 1G).

Importantly, however, even when this mapping is known (e.g., as in the case of taxa-based 

functional profiles) and the contribution of each taxon to the measured abundance of a given 

function in a sample can be estimated, the contribution of each taxon to an observed shift in 

the abundance of this function between two sets of samples cannot be easily quantified. 

Specifically, a taxon’s contribution to the abundance of some function may not be very 

indicative of this taxon’s contribution to an observed functional shift since, for example, a 

taxon could be highly but similarly abundant across cases and controls, contributing 

significantly to the abundance of a function but not to its disease-associated shift. It is also 

not clear how to take into account co-variation between taxa that may, for example, allow 

one taxon to compensate for the functional shifts induced by another taxon. More generally, 

while the total abundance of a certain gene can be viewed as a linear sum of all taxon-level 

contributions, an analytical approach that rigorously defines how to partition among the 

various taxa a measure of the gene’s differential abundance in the context of comparative 

analysis is lacking.

These challenges call for the development of a framework for defining and calculating 

taxonomic contributions to functional shifts. Ideally, such a framework should meet several 

key requirements: First, since comparative studies employ a wide variety of statistical 

metrics to measure shifts (e.g., a Wilcoxon rank-sum test, fold ratio, or a Student’s t-test), to 

be widely applicable such a framework should support the use of any shift metric. Moreover, 

to make the calculated contribution scores intuitive and meaningful, taxon-level 

contributions should be measured using the same units and the same scale as those used to 

measure functional shifts. Additionally, to allow contribution scores to be interpreted as a 

decomposition of the observed shift into its taxon-level components, the sum of calculated 

contribution scores across all taxa for a given function should equal the shift observed in this 

specific function. Finally, since, as described above, the contribution of each taxon to 

observed functional shifts depends on both its abundance relative to other taxa and on its co-

variation with other taxa, such a framework should account for community-wide context 

(rather than considering each taxon in isolation) and for taxa co-variation patterns. The 

framework described below aims to address these challenges and requirements.
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An integrative computational framework for identifying taxonomic drivers of functional 
shifts in the human microbiome

Here we introduce a computational framework termed Functional Shifts’ Taxonomic 

Contributors (FishTaco, Figure 2) for linking taxonomic and functional comparative 

analyses. Given two sets of microbiome samples (e.g., cases and controls), FishTaco takes as 

input both the taxonomic abundance profile and the functional abundance profile of each 

sample. Taxonomic profiles can be based on either clade-specific markers from 

metagenomic sequencing (e.g., using MetaPhlAn; Segata et al., 2012) or targeted 16S 

sequencing followed by OTU picking. Functional profiles can be based on metagenomic 

shotgun sequencing and annotation (e.g., using HUMAnN; Abubucker et al., 2012), or other 

similar pipelines, (e.g., Carr and Borenstein, 2014). When available, the input can further 

include corresponding genomic content data for each taxon. Such genomic content data can 

be obtained from reference genomes that match identified marker genes (when using 

marker-based taxonomic profiles) or from closely related reference genomes and 

phylogenetic-inferred genomes (when using 16S-based taxonomic profiles, e.g., via 

PICRUSt; Langille et al., 2013). Our framework then integrates these inputs to rigorously 

define and quantify the contribution of each taxon to the observed shift in the abundance of 

each function between these two sets.

Briefly, our framework works as follows: First the taxonomic profiles and the genomic 

content of the member taxa are used to generate taxa-based functional profiles for all the 

samples (Figure 2A), detailing how much of the abundance of each function in each sample 

is accounted for by each taxon. When complete genomic content is not available for all 

resident taxa, our framework can further employ a previously described machine learning-

based method (Carr et al., 2013) to analyze the taxonomic and functional profile of each 

sample and to infer the genomic content of the different taxa. The obtained taxa-based 

functional profile for each sample and the functional shifts between the two sets of samples 

observed in these profiles are compared to those observed in the metagenome to evaluate 

their accuracy (Figure 2B). Next, to quantify the contribution of taxa to observed functional 

shifts, our framework employs a permutation-based approach, estimating how these 

functional shifts would change if the abundances of taxa are shuffled across samples. To this 

end, our framework utilizes the fact that taxa-based functional profiles allow for translating 

perturbations in the abundance of species across samples into changes in the corresponding 

functional profiles, and compares the functional shifts observed in the original taxa-based 

functional profiles to the shifts observed when the relative abundances of a set of taxa are 

randomly permuted across samples (Figure 2B). Notably, this approach allows maintaining 

community context and quantifying contribution scores using the same metric used for 

measuring functional shifts. Finally, the Shapley value analysis (originally developed for 

estimating the contribution of individual players in a multi-player game) is applied to 

determine the individual contribution of each taxon within this multi-taxa setting (Figure 

S1). The complete details of the FishTaco framework could be found in the Methods and in 

the Supplemental Experimental Procedures.

Ultimately, this process results in a taxon-level shift contribution profile for each function, 

decomposing the overall enrichment score of this function into its taxon-level components. 
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Notably, assuming a case vs. control setting, a taxon’s contribution to the enrichment of a 

specific function in cases can be either positive (i.e., the taxon is driving this enrichment) or 

negative (i.e., the taxon is attenuating this enrichment). Using these calculated contributions 

and the shifts observed in the taxonomic profile, FishTaco further classifies each taxon into 

one of four distinct groups representing different modes of contribution to a given functional 

shift (Figure 2C–D). The first group includes taxa that drive the enrichment of that function 

and are case-associated (i.e., have higher abundance in cases). These taxa encode the 

function in question in their genomes and increase in abundance in cases, hence contributing 

positively to the function’s enrichment. The second group includes taxa that drive the 

enrichment of the function but are control-associated taxa (i.e., higher abundance in 

controls). Such taxa likely lack the function in question in their genomes (or encode it with a 

relatively low copy number) and their increased relative abundance in control samples 

therefore decreases the average abundance of that function in controls, ultimately 

contributing positively to the enrichment of this function in cases. Similarly, taxa that 

attenuate the enrichment of the function in question in cases (even though that function is 

ultimately still identified as significantly enriched) can again be classified into two groups, 

one that includes case-associated taxa (that likely lack the function in question in their 

genomes), and another that includes control-associated taxa (that likely encode the function 

in their genomes). These four groups of taxa are then plotted separately (and in the 

appropriate direction) as stacked bar plots for each function to provide a comprehensive 

visualization of all taxon-level shift contributions (Figure 2C–D and see also Figure S2 for a 

numerical example).

To confirm that calculated taxon-level shift contribution profiles correctly reflect the impact 

that each species may have on observed functional shifts, we implemented a large-scale 

simulation study, using several perturbation assays to mimic the impact of taxonomic 

intervention schemes. We found that contribution scores calculated by our framework were 

highly correlated with these perturbation-based estimates (Figure S3). The complete details 

of this simulation analysis can be found in the Supplemental Text.

Differences in the functional capacity of the microbiome across body sites can be traced 
to rich and complex ecological changes

To examine whether differences in the overall functional capacity of distinct microbial 

communities tend to be driven by changes in the abundance of a small number of taxa or 

rather by broader and more complex changes in community ecology, we first applied our 

framework to decompose functional shifts observed between different body sites in healthy 

individuals. These site-specific communities represent adaptations to distinct niches, yet are 

similar enough to allow focusing on specific biological pathways that shift in abundance 

between these sites. We specifically compared samples from the tongue (tongue dorsum) 

with samples from the inner cheek (buccal mucosa) obtained through the Human 

Microbiome Project (HMP; Human Microbiome Project Consortium, 2013). These two 

anatomical sites are among the most highly sampled in this study (106 and 107 samples for 

tongue and cheek, respectively) and are in close spatial proximity. We first obtained the 

taxonomic profiles of these samples (at species-level resolution across 76 species, generated 

by MetaPhlAn; Segata et al., 2012; see also Figure S4) and identified shifts in taxonomic 
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composition between tongue and cheek samples. Next, we used these taxonomic profiles and 

the genomic content of each taxon (based on reference genomes obtained from the 

Integrated Microbial Genomes database, IMG; Markowitz et al., 2013) to construct a taxa-

based functional profile for each sample (as described above). We finally obtained 

metagenome-based functional profiles for these samples (as generated by HUMAnN; 

Abubucker et al., 2012).

We first evaluated the agreement between taxa-based and metagenome-based functional 

profiles and the corresponding functional shifts observed between tongue and cheek 

samples. Focusing on the 22 pathways that were significantly enriched in the tongue 

(Methods), we found a good overall agreement between the taxa-based and metagenome-

based functional profiles (Figure 3A, median Pearson’s correlation across functions of 

R=0.91). Functional shift scores (using Wilcoxon test statistic, W) calculated from these 

taxa-based functional profiles similarly agreed with those calculated based on the 

metagenome (Figure 3B and Table S1, Spearman correlation of shift scores ρ=0.65, p<10−5). 

These findings confirm that our taxa-based functional profiles capture the underlying 

functional composition of the metagenomes and can be used for downstream analysis of 

each taxon’s contribution to observed shifts in functional capacity.

We next applied FishTaco to calculate a taxon-level shift contribution profile for each 

tongue-enriched function, quantifying the contribution of each taxon to the observed shift in 

each function. Our analysis revealed diverse, and non-trivial patterns in these shift 

contribution profiles (Figure 3C and Table S2). Some species, for example, drove the 

observed shift in one function while attenuating the shift in another (compare the 

contribution of Neisseria flavescens to Lipopolysaccharide biosynthesis and Flagellar 

assembly in Figure 3D). Moreover, different species from the same phylum often had 

dramatically different impacts on the shift observed in a given function (see, for example, 

the contribution of Proteobacteria species to the shift in the pathways in Figure 3D).

To demonstrate in detail the complex ways in which ecological changes drive functional 

differences, we focused on three pathways previously reported as tongue-enriched (Human 

Microbiome Project Consortium, 2013; Goll et al., 2012): Flagellar assembly, 

Lipopolysaccharide (LPS) biosynthesis, and the TCA cycle. Notably, as also reported above, 

taxa-based functional profiles were highly similar to the metagenome-based functional 

profiles of these pathways (Pearson’s correlation R>0.95), and the corresponding functional 

shifts were consistent (Figure 3D). Examining the calculated taxon-level shift contribution 

profiles highlighted several intriguing patterns. First, even though these three pathways 

exhibited similar overall functional shift scores (Wilcoxon test statistic, W, ranging from ~8 

to ~11), the shift contribution profiles were complex and markedly variable (Figure 3D and 

Table S2). For example, our analysis demonstrated that the shift in the flagellar assembly 

pathway was driven mostly by tongue-associated taxa, whereas the shift in the TCA cycle 

pathway was driven largely by cheek-associated taxa. Moreover, some taxa contributed 

mostly to the shift observed in a single pathway, with relatively little contribution to others. 

For example, the species Oribacterium sinus was found to contribute substantially to the 

enrichment of the flagellar assembly pathway, but not to the enrichment of the TCA cycle or 

LPS biosynthesis pathways, in line with the characteristics of O. sinus, a motile, strictly 
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anaerobic, Gram-positive organism. We further confirmed this specificity in the contribution 

of O. sinus and of other species to observed functional shifts by analyzing subsets of 

samples in which species exhibited marked differences in abundance (Supplemental Text). 

Importantly, such taxon-level characterization and the detection of species that contribute to 

a restricted set of functional shifts can be used to pinpoint specific driver taxa and ultimately 

to identify taxonomic intervention targets for manipulating (or restoring) the functional 

capacity of the microbiome.

Shifts in various type 2 diabetes-associated functions are driven by distinct bacterial 
clades

Having shown that functional shifts between different anatomical sites of healthy individuals 

are attributed to a diverse and highly variable set of taxonomic drivers, we set out to examine 

whether a similar relationship exists between community dysbiosis and disease-associated 

functional shifts. We specifically applied our framework to a type 2 diabetes (T2D) cohort 

(Qin et al., 2013), which represents one of the largest studies to date of the association 

between the composition of the microbiome and a disease state. We used the genus-level 

taxonomic abundance profiles across 48 genera generated in the study (since species-level 

abundances were not reported) coupled with corresponding reference genomes for each 

genus (taken from IMG; Markowitz et al., 2013) to construct taxa-based functional profiles. 

In addition, we obtained metagenome-based functional profiles generated in the study for 

these samples. We again confirmed that constructed taxa-based functional profiles were in 

good agreement with metagenome-based functional profiles (median Pearson’s correlation 

R=0.76), as were the taxa- and metagenome-based functional shifts (R=0.37, P<0.005, 

Pearson’s correlation test; Figure S5 and Tables S3–S4).

We first examined FishTaco’s calculated taxon-level contributions to observed shifts in 

various functional modules, focusing initially on three previously reported T2D-associated 

sugar transport modules (Karlsson et al., 2014; Qin et al., 2013): D-Allose transport system 
(M00217), Multiple sugar transport system (M00216), and the PTS system sucrose-specific 
II component (M00269). We again found marked variation in the identified taxonomic 

drivers of the enrichments observed in these three modules in T2D samples (Figure 4A and 

Table S5). For example, the T2D-associated genus Escherichia, as well as several other 

Proteobacteria genera, were major drivers of the enrichment in the D-Allose module, while 

the genus Bifidobacterium attenuated that enrichment. In contrast, Bifidobacterium was the 

main driver of the enrichment of the multiple sugar module in T2D samples, whereas all 

Proteobacteria species attenuated the enrichment of this module. In support of this functional 

shift decomposition, we found that metagenome-based abundance of the D-Allose module 

across samples was correlated with the abundances of Escherichia, as was the abundance of 

the multiple sugar module with Bifidobacterium (Spearman’s correlation R=0.48 and 

R=0.25, respectively). Notably, in the subset of samples that had high abundances of 

Bifidobacterium but low abundances of Escherichia, the D-Allose module did not display 

significant enrichment in T2D (P=0.55, Wilcoxon rank-sum test) while the multiple sugar 
module remained significantly enriched (P=0.001, Wilcoxon rank-sum test). In addition, in 

both modules the genus Prevotella, which is strongly depleted in T2D (fold-ratio of 1.91 in 

mean abundance between controls and cases), was a major driver of functional shift. Our 
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analysis further revealed that Firmicutes species dominated the driving contributions to the 

PTS module among T2D-associated taxa, with the genera Clostridium and Lactobacillus 
accounting for a large fraction of the observed shift. Interestingly, in an independent study 

that identified this module as part of the most enriched pathway in T2D patients, these two 

taxa were found to be the most strongly associated with T2D (Karlsson et al., 2014). As our 

framework can be applied to decompose shifts at various functional levels (ranging from 

pathways to individual gene families), we further applied it to characterize the taxonomic 

drivers of several T2D-enriched genes involved in Xenobiotics degradation and amino acid 

metabolism, revealing similarly diverse, rich, and complex patterns (compare, for example, 

the contributions of Escherichia and Bifidobacterium; Figure 4B and Table S6).

The findings described above highlight the complex nature of disease-associated functional 

imbalances, and suggest that functional shifts are a convoluted outcome of multiple 

taxonomic shifts. The calculation of taxon-level contribution profiles is therefore an essential 

step toward the rational design of targeted interventions aiming to manipulate the functional 

capacity of the microbiome.

Similar functional imbalances in different body sites or in different diseases have different 
microbial drivers

Our analysis of tongue and cheek samples above demonstrated that functional shifts in 

different functions are often driven by markedly different sets of taxa. To examine whether 

this trend is universal or limited to these body sites, we identified the taxonomic drivers of 

observed functional shifts when comparing cheek samples to 4 additional body sites (teeth, 

gut, ear, and nose). We again found that in each of these body sites, different functions had 

markedly different shift contribution profiles (Figure 5A–D). Importantly, however, not only 

did different functions show differences in their taxon-level contribution profiles in each site, 

but the same function often exhibited substantially different contribution profiles across the 

different body sites (with less variability between the two skin sites; Figure 5A–D). For 

example, while the TCA cycle pathway was significantly enriched in each of the 5 body 

sites when compared to cheek (i.e., including tongue; see Figure 3D), the set of taxa that 

drove this enrichment in each body site and the level of contribution of each taxon differed 

greatly, with many Proteobacteria driving the shift in oral sites, Bacteroidetes (e.g., B. 
ovatus) driving the shift in the gut, and Actinobacteria and Firmicutes (e.g., P. acnes and S. 
epidermidis) driving the shift in the skin sites. Indeed, such site-specific contribution profiles 

were also observed when examining all 20 pathways that are significantly enriched in these 

5 body sites compared to cheek (Figure 5E).

Next, we sought to examine whether contribution profiles are not only site-specific, but also 

disease-specific (put differently, are similar functional imbalances in different diseases 

driven by similar taxonomic dynamics or not?). To this end, we applied our framework to a 

previously obtained inflammatory bowel disease (IBD) cohort (Qin et al., 2010), and 

identified genera that are driving shifts in functions that were found to be both T2D- and 

IBD-enriched (Greenblum et al., 2012; Morgan et al., 2012; Qin et al., 2013). We explored 

such functions at three levels of functional organization, pathways, modules, and gene 

orthology groups, and below highlight specific examples from each of these levels. We first 
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focused on the Methane metabolism pathway, which was found to be enriched in both T2D 

and IBD. We found a large set of shared taxa that contributed to the enrichment of this 

pathway in both diseases, such as Clostridium and Methanobrevibacter (a genus that 

includes the key gut methanogen M. smithii), although the mode and level of contribution of 

each taxon differed across diseases (Figure 6A). Importantly, however, the calculated 

contribution profiles also highlighted a set of disease-specific drivers, such as Escherichia in 

T2D and Blautia in IBD, suggesting that similar functional imbalances in different diseases 

may still be attributed, at least in part, to different ecological changes. Indeed, the role of 

Escherichia in driving enrichment of this pathway in T2D is in agreement with previous 

observations of an enrichment of the E. coli hxlB gene (a part of the methane metabolism 

pathway) in T2D (Qin et al., 2013).

We next focused on the PTS sucrose transporter module (M00269; Figure 6B), as an 

example of the many oligosaccharide transporters found to be significantly enriched in both 

T2D and IBD patients (Morgan et al., 2012; Qin et al., 2013). In contrast to the diverse set of 

phyla contributing to the shift in the methane metabolism pathway, the shift in this module 

was primarily driven by Firmicutes. Nonetheless, as above, the contribution profiles 

included both shared and disease-specific taxa, with several Firmicutes (such as 

Acidaminococcus, Clostridium, Lactobacillus) driving the shift in both diseases and other 

Firmicutes driving the shift in only one (e.g., Megasphaera in T2D and Streptococcus in 

IBD). These taxonomic contribution profiles are again supported by previous observations. 

For example, an IBD study demonstrated that patients treated with mesalamine exhibit 

significant decrease in Clostridium coupled with a significant decrease in the PTS pathway 

(Morgan et al., 2012), and a T2D study demonstrated enrichment of 2 Clostridium genes (of 

the 3 genes in the PTS sucrose transporter module) in T2D (Qin et al., 2013). Similarly, 

Megasphaera was found to be more highly abundant in pre-diabetic individuals (Lambeth et 

al., 2015), while Streptococcus was found to be associated with IBD (Kojima et al., 2012) 

but to decrease in abundance in T2D (Zhang et al., 2013). Similar biologically-relevant 

combinations of disease-specific and shared contributors were also observed at the gene 

level (Figure 6C and Supplemental Text). Combined, these findings highlight the extremely 

complex ecological dynamics that underlie shifts in the functional capacity of the 

microbiome and emphasize the importance of characterizing the taxonomic drivers of these 

shifts.

Genomic content inference improves agreement between metagenome- and taxa-based 
functional profiles and uncovers previously unknown drivers of functional shifts

As noted above, when reference genomes are not available for all community members, our 

framework can employ a previously introduced method (Carr et al., 2013) to infer the 

genomic content of each taxon based on coupling of taxonomic and functional abundance 

profiles (see Methods and Supplemental Experimental Procedures). To examine the 

applicability of this approach and its impact on the calculated FishTaco contribution profiles, 

we again applied FishTaco to the HMP and T2D datasets, but this time using genomic 

content inference (rather than available reference genomes). We first confirmed that genomic 

content inference successfully recovered the genomic content of the member species 

(R=0.83 median Pearson correlation across pathways in HMP species). Importantly, 
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however, we found that genomic content inference markedly improved the agreement 

between taxa-based and metagenome-based functional profiles and shifts (Figure 7A–B; and 

see also Figure S6).

Moreover, even though the resulting taxon-level shift contribution profiles obtained with 

these inferred genomes were overall similar to those obtained based on reference genomes 

(Figures 7C–D, S6), a few taxa were found to have markedly different contributions to 

specific functional shifts when using genomic content inference vs. reference genomes 

(Figures 7E–F, S7). These newly uncovered drivers of functional shifts revealed by genome 

content inference were often supported by experimental observations (see Supplemental 

Text). These findings suggest that our ability to infer missing genomic information not only 

supports the application of our framework for studying communities harboring poorly 

characterized microbial clades, but could also promote discoveries of microbial drivers that 

may be masked by incomplete genomic annotation.

Discussion

The ultimate goal of comparative metagenomics is to identify potentially meaningful 

changes in the microbiome’s taxonomic and functional composition that are associated with 

health. However, to date, the relationship between detected taxonomic and functional shifts 

remains largely unexplored, hindering our ability to characterize the impact of individual 

taxa on disease-associate functional imbalances and ultimately to pinpoint critical 

intervention targets. Our study represents an important first step towards addressing this 

challenge and provides a comprehensive computational framework for integrating taxonomic 

and functional comparative analyses.

Importantly, decomposing each functional shift to its taxon-level contributors offers unique 

insights into both basic and translational research. Specifically, it provides a window to the 

ecological dynamics at play and their relationship to the host environment, highlighting the 

complex and non-trivial ways by which changes in taxonomic composition translate into 

observed shifts in the community-level functional profile. Translationally, the identification 

of function- or disease-specific taxonomic drivers can inform future targeted microbiome-

based therapies that aim to modulate the abundance of these taxa in order to restore desired 

capacity of specific functions.

Notably, our framework’s analysis involves several simplifying assumptions. First, it 

constructs taxa-based functional profiles using fixed genomic content (e.g., based on 

reference genomes) assuming that each species is associated with the same genomic content 

across all samples and ignoring strain-level variation in the presence and copy number of 

genes (Greenblum et al., 2015). Higher resolution taxonomic profiling, extended strain-level 

genomic annotation, and more sophisticated inference techniques can improve the accuracy 

of our taxa-based functional profiles but are ultimately limited and cannot eliminate the 

problem altogether. Second, using our framework’s identified driver taxa as putative 

intervention targets further assumes that removing a single species from the community 

would leave the composition of other species intact. However, since the various species in 

the microbiome likely cross-feed and interact, such interventions could impact the relative 
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abundances of other species in the community and induce an unexpected shift in the 

community’s functional capacity. Addressing this challenge clearly requires a better 

understanding of microbial interactions and ecological dynamics, which could potentially be 

incorporated into a predictive model of the expected impact of taxonomic perturbations.

Future research could also integrate other data types or additional comparative analysis 

settings. For example, integrating community-wide transcriptomic, proteomic, and 

metabolomics data could allow us to examine whether genomic, transcriptional, and 

ultimately metabolic shifts are driven by the same taxa, and help distinguish between 

‘passenger’ taxa that merely increase the abundance of various gene classes in the 

metagenome to ‘driver’ taxa that actively play a role in disease etiology. Similarly, extending 

our framework to decompose functional shifts in longitudinally (rather than only cross-

sectional) obtained samples, while correctly accounting for induced autocorrelations in such 

datasets, would allow us to follow disease dynamics and elucidate how the link between 

taxonomic and functional shifts evolves over time. Such analyses could ultimately pinpoint 

preferred intervention windows in the path leading to disease-associated functional 

imbalances or suggest time-dependent intervention strategies. Finally, going beyond a binary 

classification of samples (e.g., cases vs. controls) and extending our analysis approach to 

support multiple categories of functional imbalance, or preferably identify such categories 

based on both observed functional profiles and the resulting taxonomic contribution profiles, 

could offer more informed, accurate, and personalized microbiome-based intervention 

targets.

Clearly, the link between compositional shifts in taxonomy and function in a dysbiotic 

microbiome is complex and intertwined and distinguishing cause and effect is extremely 

challenging. Frameworks such as FishTaco that aim to characterize and quantify the 

relationship between taxonomic and functional dynamics obviously cannot fully resolve 

these complexities, but are a promising step in gaining a principled understanding of the 

underlying forces shaping microbiome dysbiosis in disease. We accordingly hope that the 

framework and analyses presented above will help to elucidate the role that the microbiome 

plays in human diseases, facilitate the development of microbiome-based therapeutic routes, 

and inspire future studies of the fascinating linkage between composition and function.

Methods

Software implementation and distribution

FishTaco was implemented in Python and is available for download at http://

elbo.gs.washington.edu/software.html. In addition, FishTaco is available as a pip-installable 

python package (i.e., pip install fishtaco), and the source code is available on GitHub (http://

github.com/borenstein-lab/fishtaco). Visualization of FishTaco-based decompositions can be 

done via a web-based application (https://elbo-spice.gs.washington.edu/shiny/FishTacoPlot/) 

or by using a dedicated R package (http://github.com/borenstein-lab/fishtaco-plot).
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Human Microbiome Project (HMP) data

Data were downloaded from the Data Analysis and Coordination Center website (http://

www.hmpdacc.org/), including KEGG Orthology group (KO) abundances (Kanehisa et al., 

2012) and sample metadata and species abundances as calculated by MetaPhlAn (Segata et 

al., 2012). A list of the samples used for each body site is provided in Table S7.

Type 2 diabetes (T2D) and Inflammatory bowel disease (IBD) data

Data were downloaded from the human gut microbiome Integrated Reference Catalogue 

(IGC; Li et al., 2014) website (http://meta.genomics.cn/meta/dataTools), including KO 

abundances, sample metadata, and genera abundances.

Genomic content data

For each species in the HMP data, we obtained all reference genomes corresponding to this 

species from the IMG database (Markowitz et al., 2013), and defined the copy number of 

each KO as the mean copy number across reference genomes. For the T2D and IBD data, we 

used a list curated by the original T2D study (Li et al., 2014) of 511 prokaryotic gut 

reference genomes in IMG and defined the copy number of each KO in each genus as the 

mean copy number across reference genomes corresponding to this genus.

Taxonomic abundance profile filtering and normalization

Taxonomic abundances were normalized to represent relative abundances. For MetaPhlAn 

data, only species level abundances were used, and samples where the total species level 

abundance was <95% were removed from further analysis.

Functional profile normalization

Functional profiles were re-normalized using MUSiCC (Manor and Borenstein, 2015), 

converting relative KO abundances into KO average genomic copy numbers across samples’ 

community members.

Calculating pathway and module abundance profiles

MUSiCC-normalized abundances of all KOs associated with a specific pathway/module in 

the KEGG database were summed for each sample. Pathways with <20 KOs, or that are 

present in <1% of bacterial genomes in KEGG, or that had <5% of their genes present in 

these genomes on average were removed from downstream analysis. Similarly, modules 

present in <1% of bacterial genomes in KEGG or that had <20% of their genes present in 

these genomes on average were removed from downstream analysis. This resulted in a total 

of 80 pathways and 409 modules.

Calculating taxonomic and functional shifts

As noted above, our framework supports the use of any metric of choice for measuring 

functional shifts. In this study, we specifically used the Wilcoxon rank-sum test to compare 

the abundance values of a given taxon (species or genus) or function (KO, module, or 

pathway) between case and control samples (or different body sites) and reported the 

Wilcoxon test statistic, W, as a measure of observed shifts. Multiple hypothesis correction 
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was done using Bonferroni (<5%) for HMP samples and false discovery rate (FDR; <10%) 

for T2D and IBD samples.

Generating taxa-based functional profiles

Let T denote the matrix (size N×M) describing the relative abundances of M taxa across N 
samples, and let G denote the matrix (size M×K) describing the genomic content of each 

taxon (wherein each entry Gi,j denotes the genomic copy number of gene (or any other 

genomic element) j (j = 1 … K) in taxon i (i = 1 … M). F=TxG then denotes the taxa-based 

functional profile matrix (size N×K), in which every entry Fs,j is the inferred taxa-based 

abundance of gene j in sample s.

Functional shift decomposition

To assess the contribution of each taxon to functional shifts while maintaining global 

community composition properties, a permutation-based approach coupled with a game-

theory method was used (see also Figure S1). Briefly, the matrix of taxonomic profiles, T, 

was permuted multiple times, each time permuting the relative abundance of a different 

subset of taxa across samples and preserving the relative abundance of others. Each 

permuted matrix was used to generate the corresponding taxa-based functional profiles and 

to calculate the induced functional shift of each function. Comparing observed shifts when 

using the permuted vs. original taxonomic profiles provided an estimate for the contribution 

of the permuted taxa subset to functional shifts. Using a large ensemble of such taxa subset 

contribution estimates, the average marginal contribution of each taxon to each functional 

shift was calculated to obtain the final contribution score. This approach was inspired by the 

Shapley value analysis – a game-theory technique for obtaining the optimal linear estimate 

of individual contributions in a multi-player game (Shapley, 1953). Since it is not feasible in 

this setting to analyze all 2M possible multi-taxa subsets, we followed the Shapley value 

estimation method presented in Keinan et al. (Keinan et al., 2004), using a partial collection 

of taxa subsets of all sizes from 1 to M. For a formal description of this our framework and 

the parameters used see Supplemental Experimental Procedures.

Genomic content inference

Both de novo and prior-based (i.e., using available reference genomes as a starting point) 

machine learning schemes were implemented to computationally infer the genomic content 

of taxa (e.g., in cases where reference genomes are not available or not complete), extending 

our previously published method (Carr et al., 2013). Briefly, our method is based on 

representing the expected relationship between taxonomic profiles, functional profiles, and 

genomic content as a set of linear equations, and using non-negative elastic-net regularized 

linear regression to infer the genomic content of each taxa. See Supplemental Experimental 

Procedures for a detailed description of this method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A framework for identifying taxonomic drivers of functional shifts in the 

microbiome

• Taxon-level contributions to functional shifts are complex and function-

specific

• Similar functional imbalances in different diseases are driven by different taxa

• Inference of microbial genomes uncovers previously unknown drivers of 

functional shifts
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Figure 1. An illustrative example of taxonomic and functional comparative metagenomic 
analyses
(A) Community composition of case (right) and control (left) samples. (B) Profiling of the 

samples’ taxonomic composition, showing the species counts (upper boxes) and relative 

abundances (pie charts). (C) Profiling of the samples’ functional composition, showing the 

function counts (upper boxes) and abundances (bar charts). (D–E) Comparative analysis 

aims to explore compositional shifts in the microbiome, identifying case-associated taxa 

and/or case-enriched functions. (F) The genomic content of the various community members 

(denoting the copy number of each gene in their genomes) links the community’s taxonomic 

and functional profiles. (G) Taxa-based functional profiles provide a mapping from 

taxonomic to functional compositions, detailing the fraction of each gene’s abundance that 

originated from each species.

Manor and Borenstein Page 18

Cell Host Microbe. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The FishTaco framework
(A) FishTaco first processes the input data (including taxonomic profiles, metagenome-

based functional profiles, and optionally the genomic content of each taxon) to generate 

taxa-based functional profiles. If genomic content is not provided, a previously introduced 

inference method can be used. Taxa-based and metagenome-based functional profiles are 

compared to assess how well they recapitulate the abundances of the various functions in the 

metagenome. (B) FishTaco then quantifies the contribution of each taxon to observed shifts 

in each function. Taxa-based functional shifts between cases and controls are compared to 
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metagenome-based shifts to confirm that the taxa-based profiles exhibit similar shifts to 

those observed in the metagenome. A multi-taxa permutation analysis is then used 

(accounting for taxa co-variation) to assess the contribution of a large ensemble of taxa 

subsets to observed shifts, followed by a Shapley value analysis to obtain taxon-level 

linearized contribution scores (see Methods). (C–D) An illustration of a FishTaco-based 

taxon-level contribution profile, decomposing functional shifts into taxon-level contribution 

scores, and of the 4 different contribution modes identified by FishTaco.
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Figure 3. Identifying the taxonomic contributors to differences in the functional capacity of 
tongue versus cheek microbiome samples
(A) Pearson correlation coefficients between the taxa- and metagenome-based functional 

profiles for each tongue-enriched pathway. (B) Agreement between metagenome-based 

(MG; red diamonds) and taxa-based (Taxa; white diamonds) functional shift scores (C) 
Taxon-level shift contribution profiles for tongue-enriched pathways (see Figure 2C–D for 

more details on the meaning of each bar). For each function, the sum of taxa contribution 

scores matches the observed taxa-based functional shift score. (D) Taxon-level shift 
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contribution profiles of 3 pathways of interest (highlighted by grey boxes in panels A-C): 

LPS biosynthesis, flagellar assembly, and TCA cycle. The scatter plots on the left 

demonstrate the high agreement between metagenome- and taxa-based abundances, where 

each dot represents a sample, and the Spearman correlation across all samples is reported. 

The box plots in the middle column illustrate the distribution of metagenome-based (MG; 

red) and taxa-based (Taxa; white) abundance of this function in the tongue (left boxes) 

versus the cheek (right boxes).
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Figure 4. Identifying the taxonomic contributors in a Type 2 diabetes (T2D) cohort
Taxon-level shift contribution profiles for several T2D-associated functional modules (A) 
and gene orthology groups (B). Certain taxa are labeled by representative letters for 

convenience.
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Figure 5. Identifying taxa driving functional shifts in multiple body sites compared to cheek
The taxon-level contribution profiles for the enrichment (compared to cheek) of the TCA 
cycle and the flavone and flavonol biosynthesis pathways in teeth (A), nose (B), ear (C) and 

gut (D). (E) The shift contribution profiles of all 20 pathways that are enriched in all body 

sites compared to cheek. Ton: Tongue (tongue dorsum); Tee: Teeth (supragingival plaque); 

Gut (stool); Ear (retroauricular crease); Nos: Nose (anterior nares). For easier comparison, 

only the case-associated taxa (case being the body site compared to cheek) that drive the 
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enrichment are presented (see bottom right illustration) and the shift contribution scores are 

normalized to 1.
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Figure 6. Comparing taxon-level contribution profiles of functional shifts in type 2 diabetes 
(T2D) and inflammatory bowel disease (IBD)
Taxon-level shift contribution profiles in T2D and IBD of the methane metabolism pathway 

(A), the PTS system sucrose-specific II component module (B), and the Anaerobic dimethyl 
sulfoxide reductase gene orthology group (C).
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Figure 7. Using genomic content inference provides more accurate taxa-based functional profiles 
in HMP samples
(A) Spearman correlation between metagenome- and taxa-based functional abundance 

profiles for HMP samples, without and with inference (each dot represents a single 

pathway). Median Spearman correlations were ρ=0.8, ρ=0.9 and ρ=0.93 for no inference, 

prior-based inference, and de novo inference, respectively. (B) Absolute difference between 

the metagenome- or taxa-based functional shift scores, with no inference, prior-based 

inference, and de novo inference (median absolute differences were W=2.2, W=0.55 and 
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W=0.8, respectively. (C) Scatter plot comparing taxon-level shift contribution values 

computed by FishTaco using genomic content from reference genomes to those computed 

with prior-based genomic content inference. Each circle represents the contribution of a 

single species (colored by phyla) to a single pathway. Regression line is also depicted. (D) 
Distributions of Pearson correlation values between the resulting taxon-level shift 

contribution profiles when using prior-based or de novo inferences of genomic content and 

the taxon-level shift contribution profiles when genomic content is based on reference 

genomes (i.e., no inference), for the pathways in the HMP dataset. (E) Taxon-level shift 

contribution values for the flavonoid biosynthesis pathway for species in the genus 

Veillonella, with no inference, prior-based inference, and de novo inference. (F) Taxon-level 

shift contribution profiles for the flavonoid biosynthesis pathway without (top) and with 

(bottom) de novo inference of the genomic content. See Supplemental Text for additional 

details.
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